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Abstract—We study an offloading mechanism for cellular
networks in which mobiles with good cellular links can act
as hotspots and can assist other mobiles. We study throughput
optimal offloading and also a fair offloading strategy which we
call proportional increment offloading. We show that the former
problem can be reduced to a capacitated facility location problem
(CFLP) whereas the latter can be solved by solving a sequence
of CFLPs. We propose a belief propagation based algorithm to
solve CFLP, a well known NP complete problem. We primarily
consider point coordination function (PCF) based WiFi access for
offloading but also discuss distributed coordination function (DCF)
based access and related issues. Further, we argue that all the
mobiles benefit through participating in offloading. We perform
extensive simulation to evaluate the performance of the proposed
algorithms and effectiveness of mobile assisted offloading.

I. INTRODUCTION

Recent advances in cellular network have resulted in dra-
matic enhancements in wireless capacity. However, the wire-
less capacity remains in constant deficit due to exploding
mobile data traffic usage. Proliferation of smartphones have
boosted the data usage through data-hungry mobile apps, video
streaming and various social and cloud services. Recently,
Cisco has predicted that global mobile data traffic is expected
to grow 18 folds between 2011-2018, three time faster than
the overall fixed IP traffic in the same period [2], in which
66.5% will be contributed by video content.

Data offloading is becoming the most promising solution
either from macrocell to smaller cells (e.g., picocells, fem-
tocells) or over Wireless Fidelity (WiFi) enabled by hetero-
geneous network deployment. These solutions have become
integral part of the next generation cellular network such as
LTE. Typically, additional infrastructure is deployed to enable
offloading in either case, e.g. Femto/Pico base stations (BSs)
to offload mobile traffic from macrocells [17] or WiFi hotspots
to offload cellular traffic to a backbone or cable network [21].
In some cases, the urban widespread home WiFi access point
acts as a hotspot for small range offloading which reduces the
additional infrastructure deployment cost [21].

In this work, we study a scheme where mobiles with good
cellular links can act as WiFi hotspots, which can offload the
cellular data of nearby mobiles with poor cellular links. More
precisely, the good cellular link of the hotspot is shared with
the associated mobiles with poor links. Further, the hotspot
sends data to a mobile (or, receives data from it in the
case of uplink communication) using WiFi. We focus on the
problems of hotspot selection and hotspot mobile association
to achieve fair and optimal network wide throughputs. We
study a sum throughput maximization problem in which each
mobile obtains at least the rate it was originally getting. We
see that the aggregate network throughput can be significantly
enhanced. Towards fairness, we study a proportional increment
fair strategy in which each mobile obtains a proportional gain
as compared to the base rate. While a mobile serving as a
hotspot results in overall network throughput gain, incentive
for becoming a hotspot is a natural question. To address this,

we study a simple incentivizing scheme in which the hotspot
is provided an additional amount of throughput fraction. We
formulate an optimization problem to capture the incentivizing
scheme which has similar structure as that of the sum through-
put maximization problem. We consider both PCF and DCF
based WiFi access for the mobiles to connect to the hotspots.

Interestingly, we show that our problem can be reduced
to a capacitated facility location problem (CFLP). A facility
location problem consists of a set of candidate facilities and a
set of customers. Here, the objective is to open a subset of the
facilities so as to minimize the sum of the facility opening
costs and the transportation costs. In case of CFLPs the
facilities have certain capacities and the associated customers’
demands should not exceed these. On the other hand, there are
no capacity constraints in the uncapacitated facility location
problems (UFLPs). Both UFLP and CFLP are know to be
NP complete [24]. Belief Propagation based message passing
algorithms for UFLP have been proposed in [13]. In this
paper, we propose a message passing based algorithm to solve
CFLP, which is also suitable for a distributed setting. We apply
this algorithm to our network configuration problem which
is shown to perform well through numerical evaluation. In
particular, the key contributions of this work are as follows:
• We frame joint problems of BS resource allocation,

hotspot selection and association for optimal and fair
mobile assisted offloading as constrained mixed integer
nonlinear programming problems. Then, we reduce these
to CFLPs, a widely studied class of mixed integer linear
programming problems.

• We propose a belief propagation based algorithm to
solve general CFLPs. Observe that CFLPs are rooted in
operation research and are known to be NP-complete.
The proposed algorithm is suitable for distributed imple-
mentation. We apply this algorithm to solve optimal (and
fair) offloading problems.

• We discuss incentivizing strategies for mobiles to serve
as hotspots. We analyse one such strategy and illustrate
its impact via numerical evaluation.

• Besides PCF, we also consider DCF based WiFi offload-
ing and discuss its performance and related issues.

A. Related Work
There are several works on offloading cellular data traffic

using small cells [5], [8], [17] and WiFi [14], [19].In contrast
to our work, they consider offloading the cellular data over in-
dependent connection to internet through infrastructure based
backhaul or cable based connections. The authors in [10], [21]
focus on WLANs wherein the APs also need to serve non-
local mobiles. They propose collaborative approaches for the
APs to share some of their bandwidth to serve these mobiles.
The set of APs is known a priori and mobiles are connected
to these access points optimally. In [22], the authors focus
on placement of a fixed number of Mobile backbone nodes
(MBNs) and the assignment of regular nodes to MBNs. Unlike
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our problem, in their network, the mobiles and the MBNs
belong to disjoint sets. In particular, a mobile cannot act as
an MBN for other mobiles. Also, we do not a priori fix the
number of hotspots as in [22].

A cellular data sharing is proposed in [15] where mobile
hosts with poor links use peer-to-peer links to access proxy
clients with better channel quality. The paper does not consider
the key problem of network reorganization in such cases and
how the sharing is done to ensure benefits to all the nodes.
The authors in [7], [9] allow a few mobiles to be hotspots and
design incentive mechanisms to encourage them to do so. The
work in [16] also studies mobile assisted offloading aiming at
maximizing the aggregate network throughput. However, they
deal with a simplistic model and only provide heuristics.

Facility location problem (FLP) is well studied in operation
research context. Simple FLP or uncapacitated FLP (UFLP)
involves locating an undetermined number of facilities to
minimize the aggregate cost of serving the demand from these
facilities. In [11], authors have established NP-completeness of
UFLP using packing-covering-partition approach. The author
in [6] has presented a dual based algorithm for solving UFLP
which remains the most efficient technique yet. Message
passing based algorithm for UFLP is presented in [13], [20]
and is shown to perform well. The capacitated version of
FLP, called as capacitated facility location problem (CFLP),
incorporates the capacity limitations on the facilities. Besides
several earlier methods, cross-decomposition algorithm of [23]
and Lagrangian based approach in [4] are the most effective
techniques. The basic idea in [23] is to obtain UFLP structure
by dualyzing the capacity constraints.

Remaining of the paper is organized as follows. The
network model and optimization problem is described in
Section II which includes the cellular and Wifi connection
configuration specific to our problem. In Section III, we show
the reduction of our problem to CFLP and propose belief
propagation based message passing algorithm for CFLP. In
Section IV, we study a simple hotspot incentivizing scheme
and describe the optimization problem formulation. In Section
V, we formulate the hotspot selection problem, in which,
the WiFi access happens using DCF. Through numerical
evaluation, we show the benefit of optimal and fair mobile
assisted offloading in various cases in Section VI. Finally, we
conclude with remarks in Section VII.

II. HOTSPOT SELECTION PROBLEM

A. Network Model
We consider a single cell of a cellular network where the

cell has N mobiles indexed by i = 1, 2, . . . , N . If the BS uses
all its resources, e.g., physical resource blocks in an OFDMA
network or time slots in a TDMA network, to serve mobile
i, the mobile would obtain a throughput Ri. Assume that the
mobiles are indexed such that R1 ≥ R2 ≥ · · · ≥ RN . The
BS can arbitrarily divide the resources among the mobiles;
if it allocates a fraction α of the resources to serve mobile
i, the mobile would obtain throughput αRi. We assume that,
in the base case, the resources are equally shared among the
mobiles. Thus, for each i, mobile i receives a throughput
Ri/N . However, the following analysis can easily be adapted
to an arbitrary allocation of resources.

Mobiles with good cellular links can aid to the network by
acting as hotspots and serve other mobiles. For example, in the
case of downlink communication, a hotspot can use its cellular

Fig. 1: An illustration of mobile assisted offloading

link to receive data intended for the mobiles that it serves,
and can deliver the same to the mobiles using WiFi. So, in
our model, each mobile either directly connects to the BS and
possibly acts as a hotspot for a few other mobiles or receives
data through another hotspot. In the latter case, it can connect
to exactly one hotspot. Let aij ∈ {0, 1}, i, j = 1, 2, . . . , N be
binary variables such that
(a) aii is one if and only if i directly connects to the BS, and
(b) aij , i 6= j is one if and only if i serves as a hotspot for j
Clearly, N∑

i=1

aij = 1, j = 1, . . . , N, (1)

and aij ≤ aii, i, j = 1, . . . , N. (2)

Note that the BS needs to allocate its resources only among
the hotspots. Let αi be the fraction of resources allocated
to mobile i; αj = 0 if j is not a hotspot. Let Wij be the
maximum possible WiFi rate between mobiles i and j when
the former becomes a hotspot and serves the latter. The actual
rate depends on the modulation and coding scheme and can be
less than Wij . Finally, let Tj denote the throughput received by
mobile j. Note that, for any hotspot, the sum of its throughput
and its client mobiles’ throughputs must equal the throughput
that it receives from the BS. So, we must have

N∑
j=1

aijTj = αiRi, i = 1, . . . , N (3)

where
N∑
i=1

αi ≤ 1. (4)

We assume that the hotspots constitute noninterfering WiFi
cells. This holds true if the hotspots are sufficiently far apart
or if they use disjoint frequency bands. The hotspots can
serve mobiles using either PCF or DCF modes of WiFi. In
PCF mode, the hotspot can allocate arbitrary fractions of air-
times (WiFi slots) to the connected mobiles. These fractions
determine the mobiles’ throughputs. For a mobile j to get
throughput Tj , its hotspot i must give it Tj/Wij fraction of
air-time. Clearly,

N∑
j=1:j 6=i

aij
Tj
Wij

≤ 1, i = 1, . . . , N. (5)

On the other hand, in DCF mode the nodes use distributed
CSMA-CA protocol for medium access. Here, all the mobiles
connected through the same hotspot receive equal throughput
that is limited by the least WiFi rate among all mobiles. More
precisely, for all hotspots i,
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Tj =
1∑N

l=1 ail
1
wil

,∀j 6= i such that aij = 1, (6)

where wil ≤ Wil are the actual WiFi rates between hotspot i
and the mobiles.1

While DCF mode allows distributed access and is suit-
able for general hotspots, it is throughput-wise inefficient in
case of excessive backoffs. In our offloading setup, mobiles’
throughput requirements are prescribed and their association
is also regulated (through the optimization problems that we
formulate). Hence, a centrally optimized access mode, such
as PCF, is preferred. Moreover, forthcoming WiFi standards
also advocate centrally controlled medium access (e.g., Target
Wake Time in IEEE 802.11ah [1]). Hence, we primarily
consider PCF mode, i.e., constraints (5), in our analysis. We
briefly discuss the analysis of DCF mode and associated
complexities in Section V.

B. Problem Formulation

We study the joint problem of BS resource allocation,
hotspot selection and mobile-hotspot association which to-
gether determine mobiles’ throughputs Tis. In general, one
may want to optimize some utility function U(T1, . . . , TN ) in
making decisions. Here, we focus on a particular notion that
maximize mobiles’ throughputs while ensuring that these are
in proportion to mobiles’ base throughputs Ri/Ns - we call
it proportional increment optimization. In particular, we focus
on the following optimization

P1 : maximize ξ

subject to Tj = ξ
Rj
N
, j = 1, . . . , N,

(1), (2), (3), (4) and (5)

The above optimization has a = (aij , i, j = 1, . . . , N), α =
(αi, i = 1, . . . , N), T = (Tj , j = 1, . . . , n) as decision
variables. This is a complex combinatorial optimization prob-
lem. Hence, we reduce it to a sequence of problems that are
relatively simpler to solve in Section II-C.

Throughput Optimization: We can consider the objective of
maximizing the aggregate throughput of all the mobiles subject
to each mobile receiving no less that its base throughput. Such
a solution is likely to be unfair but gives an estimate of the
maximum benefit of offloading.

P2 : maximize
∑
j

Tj

subject to Tj ≥
Rj
N
, j = 1, . . . , N. (7)

(1), (2), (3), (4), (5)

The decision variables in the above optimization problem are
a, T and α. The authors in [16] have dealt with a problem
similar to ours. However, they do not account for WiFi
constraints such as (5) or (6). They also assume that the
BS’s resources are equally divided among all the mobiles that
directly connect to it. This can lead to highly disproportionate
resource sharing. To see this, consider a scenario where only
two mobiles connect to the BS, first of these act as a hotspot
and serves all the other mobiles where as the second one does

1Actually, (6) gives an upper bound on the throughput of each mobile. This
expression well approximates the throughput for very high packet lengths and
has been widely used [12].

not serve any. According to [16], both the mobiles get equal
share of the BS’s resources. The authors in [16] also do not
consider any notion of fairness.

Time varying cellular and WiFi rates: We can account
for time varying rates by instantiating and solving a new
hotspot selection problem, after every few slots, when the rates
have changed noticeably. The proposed message passing based
solutions are distributed and quickly converge and hence suit
our need.

C. Reduction to Simpler Problems
We begin with the throughput optimization problem. We

show that it is equivalent to the following problem that has
only a = (aij , i, j = 1, . . . , N) as decision variables.

P3 : minimize
N∑
i=1

N∑
j=1

aij
Rj
NRi

,

subject to
∑
j 6=i

aij
Rj

NWij
≤ 1, i = 1, . . . , N, (8)

(1), (2)

The optimal objective value of this problem can be interpreted
as the least fraction of resources the BS needs to spend to meet
the base rate requirements of all the mobiles.

Lemma 2.1: The optimization problems P2 and P3 give rise
to same sets of solutions (aij , i, j = 1, . . . , N). Furthermore,
for any solution a∗ of P3, (a∗, T ∗, α∗), where

T ∗j =
Rj
N
, j = 2, . . . , N,

α∗i =
∑
j

a∗ijRj

NRi
, i = 2, . . . , N,

α∗1 = 1−
∑
i≥2

α∗i ,

and T ∗1 = α∗1R1 −
∑
j≥2

a∗1jRj

N
,

is a solution of P2.
Please refer [18] for the proof. Now, we consider pro-

portional increment optimization as described by problem P1.
Consider a solution a∗ to P3 and the corresponding optimal
value θ∗. Define T ∗ = (T ∗j = Rj/N, j = 1, . . . , N) and
α∗ = (α∗i =

∑N
j=1 a

∗
ijRj/NRi, i = 1, . . . , N). Recall that

θ∗ is actually the least fraction of the BS resources required
to serve all the mobiles’ base rates. However, we cannot
scale T ∗ and α∗ up by 1/θ∗ to get a solution to P1 as
(a∗, T ∗/θ∗, α∗/θ∗) may violate (8). We now present a way
to solve this problem.

Consider P3 with constraint (8) replaced by∑
j 6=i

aijRj/NWij ≤ θ, i = 1, . . . , N, for some θ ≤ 1.

Let Pθ3 denote the modified problem. Let a(θ) and γ(θ) be
the solution and objective value, respectively, of Pθ3 . γ(θ) is
a stepwise decreasing function and γ(θ) = θ may or may
not have a fixed point. Refer Fig. 3 for an illustration. We
propose an iterative algorithm (Algorithm 1) to obtain a
solution to P1.

Let us define

R = (R1, R2, . . . , RN ),
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Algorithm 1

initialize k = 0, θ̄0 = 1,
¯
θ0 = γ(1),

while k ≤ K do // K is the number of iterations.

θ̃k = ¯
θk+θ̄k

2 ,

¯
θk+1 = max

{
¯
θk,min{θ̃k, γ(θ̃k)}

}
,

θ̄k+1 = min
{
θ̄k,max{θ̃k, γ(θ̃k)}

}
,

k = k + 1

end while

αi(θ) =
N∑
j=1

aij(θ)Rj
NRiθ

, i = 1, . . . , N,

and S(θ) = max
i

∑
j 6=i

aij(θ)Rj
NWij

.

Remark 2.1: For any θ, there should be unique a(θ) for
S(θ) to be well defined. In the following, we assume this to
be the case wherever we use S(θ). If there are multiple a(θ)
for some θ, we can define S(θ) to be minimum of the above
expression across all a(θ).

Lemma 2.2: The optimal value of P1 is 1/θ∗,
where θ∗ = min{θ : γ(θ) ≤ θ}.

Proof: We first show that 1/θ∗ is achievable. Recall that
a(θ∗) denotes the solution to Pθ∗3 . Clearly,

∑
j 6=i

aij(θ∗)Rj

NWijθ∗
≤

1 and
∑
i

αi(θ
∗) ≤ 1. Also, a(θ∗) satisfies the constraints (1)

and (2). Thus, the optimal value of P1 is atleast 1/θ∗.
Next, suppose ξ′ > 1/θ∗ is the optimal value of P1 and

(a′, T ′, α′, ξ′) is an optimal solution. Clearly, a′ is also a
feasible solution to P3 with the right hand side of (8)
replaced by 1/ξ′ and γ(1/ξ′) ≤ 1/ξ′. But, since 1/ξ′ < θ∗,
γ(1/ξ′) > 1/ξ′ leading to a contradiction. Therefore, 1/θ∗ is
the optimal value of P1.

Remark 2.2: Define θ′ := sup{θ : γ(θ) ≥ θ}. In general,
θ∗ can be strictly less than γ(θ′). In that case 1/γ(θ′) is not
the optimal value of P1.

Consider Fig. 2. Let bk, k ≥ 1 be successive jump points as
shown in the figure. Then, we have the following:

Lemma 2.3: If Pθ3 has unique solution for all θ ∈ [bk, bk+1),
then S(θ) = bk, ∀ θ ∈ [bk, bk+1).
Please refer [18] for the proof.

Theorem 2.1: (i) For all k ≥ 0, θ̄k ≥
¯
θk, γ(

¯
θk) ≥

¯
θk and

γ(θ̄k) ≤ θ̄k.
(ii) θ̄k−

¯
θk, k ≥ 1 is strictly decreasing until it becomes zero.

However, there exists a K such that both γ(θ̄k) and γ(
¯
θk)

converge in K steps.
(iii) For any k ≥ K, if a(θ̄k) is unique, then θ∗ =
max{S(θ̄k), γ(θ̄k)}, and a(θ̄k) is an optimal association for
P1. Moreover, if aij(θ̄k) = 1, hotspot i serves mobile j

Rj

NWijθ∗
fraction of time.

Proof: (i) We prove the inequalities via induction.
Clearly, θ̄0 = 1 ≥ γ(1) =

¯
θ0. Suppose θ̄k ≥

¯
θk for some

k ≥ 0. Then

max
{

¯
θk,min{θ̃k, γ(θ̃k)}

}
≤ min

{
θ̄k,max{θ̃k, γ(θ̃k)}

}
,

Fig. 2: S(θ) = bk ∀θ ∈ [bk, bk+1), where bk, k ≥ 1 are
successive jump points.

(a) (b)

Fig. 3: γ(θ) vs θ. In (a) for k ≥ K,S(θ̄k) < γ(θ̄k) and
θ∗ = γ(θ̄k). In (b) for k ≥ K,S(θ̄k) > γ(θ̄k) and θ∗ = S(θ̄k).

which proves the inequality for k + 1, thus completing the
induction step.

Next, since γ(θ) is nonincreasing, γ(
¯
θ0) ≥ γ(1) =

¯
θ0.

Suppose γ(
¯
θk) ≥

¯
θk for some k ≥ 0. Also note that θ̃k ≥

¯
θk.

Now there can be three cases:
(a) γ(θ̃k) ≥ θ̃k : In this case

¯
θk+1 = θ̃k, and so, the desired

inequality holds for k + 1.
(b)

¯
θk ≤ γ(θ̃k) ≤ θ̃k : In this case

¯
θk+1 = γ(θ̃k). Again,

using the fact that γ(θ) is nonincreasing, γ(
¯
θk+1) =

γ(γ(θ̃k)) ≥ γ(θ̃k) =
¯
θk+1, which is the desired inequality

for k + 1.
(c) γ(θ̃k) ≤

¯
θk ≤ θ̃k : In this case,

¯
θk+1 =

¯
θk. So there is

nothing to prove.
Thus the inequality holds for all k. The last inequality can
also be shown similarly.

(ii) Clearly,
¯
θk+1 ≥

¯
θk and θ̄k+1 ≤ θ̄k for all k ≥ 0. We

show that at least one of the inequalities is strict for each k
until θ̄k −

¯
θk = 0. For any such k,

¯
θk < θ̃k < θ̄k. Now, there

can be cases:
(a) γ(θ̃k) ≥ θ̃k : In this case,

¯
θk+1 = θ̃k >

¯
θk.

(b) γ(θ̃k) ≤ θ̃k : In this case, θ̄k+1 = θ̃k < θ̄k.
Thus ∆θk := θ̄k −

¯
θk goes arbitrarily close to zero. However,

notice that γ(θ) is a stepwise decreasing function. Hence,
depending on the smallest step width (this is positive since
there are finitely many positive step widths) there exists a
threshold on ∆θk, and hence on k, beyond which variation in

¯
θk and θ̄k do not affect γ(

¯
θk) and γ(θ̄k). This threshold on k

is referred to as K.
(iii) From Lemma 2.3, S(θ) = min{θ′ : γ(θ′) = γ(θ)}.

From Fig. 3 if γ(θ) = θ has a fixed point, then for k ≥
K,S(θ̄k) < γ(θ̄k) and θ∗ = γ(θ̄k). On the other hand, when
γ(θ) = θ does not have a fixed point, for k ≥ K,S(θ̄k) >
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γ(θ̄k) and θ∗ = S(θ̄k). Thus, θ∗ = max{S(θ̄k), γ(θ̄k)}. Also,
from part (ii) for k ≥ K, γ(θ̄k) = γ(θ∗). Hence, a(θ̄k), which
is feasible for Pθ∗3 is also optimal. Further, it is also an optimal
association for P1. Also, from Lemma 2.2, each mobile j gets
a throughput of Rj

Nθ∗ , which is obtained by hotspot i serving
mobile j for which aij(θ̄k) = 1 for Rj

Nθ∗Wij
fraction of time.

Remark 2.3: Observe that we do not know K in prac-
tice. Let θk = max(S(θ̄k), γ(θ̄k)), for k ≥ 1. Then,
(a(θ̄k), R/θk, α(θk)) is a feasible solution to P1 and yields
a value 1/θk for all k ≥ 1. In fact, numerical results suggest
that K ≤ 5 for the parameter values of interest, i.e., we get
the optimal solution of P1 in at most 5 iterations.

III. BELIEF PROPAGATION ALGORITHM

Observe that P3 is an instance of CFLP. Consider a
CFLP consisting of M facilities, F1, F2, . . . , FM , and N
customers, C1, C2, . . . , CN . The facilities have associated
opening costs, f1, . . . , fM , and supply constraints (i.e., capac-
ities), S1, . . . , SM . The customers have demands denoted as
d1, . . . , dN . A facility, if opened, can serve a set of customers
whose aggregate demand does not exceed the facility’s capac-
ity. Finally, if a facility i serves a customer j, a service cost
gij is also incurred. The CFLP deals with the joint problem
of facility opening and allocation to the customers, with its
aim being minimizing the total cost. It can be expressed as
the following optimization problem.

P4 : minimize
∑
i

∑
j

xijgij +
∑
i

yifi

subject to
∑
i

xij = 1, j = 1, . . . , N

xij ≤ yi, i = 1, . . . ,M, j = 1, . . . , N (9)∑
j

xijdij ≤ Si, i = 1, . . . ,M (10)

xij , yi ∈ {0, 1}, i = 1, . . . ,M, j = 1, . . . , N.
(11)

In P3, the facilities and the customers come from the same
set (in particular, M = N ),

gij =

{
Rj

NRi
if j 6= i

0 if j = i,
fi =

1

N
, i = 1, . . . , N,

dij =

{
Rj

NWij
if j 6= i

0 if j = i,
and Si = 1, i = 1, . . . , N.

Next, we present a belief propagation based algorithm for the
general CFLP, which we also use to solve P3.

Remark 3.1: In the absence of constraints (9), P4 becomes
the generalized assignment problem [27], whereas in the
absence of (10), it becomes UFLP [13]. The authors in [27]
and [13] have proposed belief propagation based algorithms
for the respective problems. Those algorithms can be deduced
from our algorithm for CFLP.

A. The Graphical Model
We pose P3 as a joint probability maximization problem in

a pairwise Markov random field. A pairwise Markov random
field consists of a graph, where each node is associated with
a random variable (please see [26] for the general model and
algorithm). For example, in CFLP,

(a) the facilities and the customers constitute the nodes,
(b) there is an edge between every facility and every customer,
(c) for each facility Fi, the associated random variable is

the set valued variable representing the set of customers
served by Fi.

(d) for each customer Cj , the associated random variable
represents the facility serving Cj , i.e., it takes values in
{1, . . . ,M}.

The joint distribution of the variables can be factored into
terms consisting of one or two variables (in the latter cases
the variables correspond to nodes that are connected in the
underlying graph). Further, the joint probability maximiza-
tion (or, minimization) can be decomposed into optimization
of marginal probabilities, also called beliefs. An iterative mes-
sage passing algorithm, called belief propagation is used for
efficient computation of these beliefs. The algorithm provably
converges to the correct beliefs in singly connected graphs but
has empirically shown excellent performance for many general
graphs also. The graph underlying CFLP clearly has many
loops. In this case, the joint distribution takes the following
form. For ψ1, . . . , ψM ∈ 2[N ] and l1, . . . , lN ∈ [M ],

p(ψ1, . . . , ψM , l1, . . . , lN )

= Z
∏
i,j

δCj ,Fi
(lj , ψi)

∏
j

βj(lj)
∏
i

φi(ψi)

where

δCj ,Fi
(lj , ψi) =


1, if lj = i, Cj ∈ ψi
1, if lj 6= i, Cj /∈ ψi
∞, otherwise

βj(lj) = egjlj

φi(ψi) =


efi , if 0 <

∑
q∈ψi

diq ≤ Si
1, if

∑
q∈ψi

diq = 0

∞, otherwise

and Z is the normalizing constant.

B. Message Passing Algorithms
Now we describe the message passing algorithm for com-

putation and optimization of beliefs. In each iteration, all the
facilities send messages to all the customers and viceversa.
Let mk

Cj→Fi
be the message from customer Cj to facility Fi

at kth iteration:

mk
Cj→Fi

=
(
mk
Cj→Fi

(ψ), ψ ⊂ [N ]
)
.

Similarly, let mk
Fi→Cj

be the message from facility Fi to
customer Cj at kth iteration:

mk
Fi→Cj

=
(
mk
Fi→Cj

(l), l = 1, . . . ,M
)

Let bkFi
and bkCj

be facility Fi’s and customer Cj’s belief
vectors, respectively, and akCj

be customer Cj’s choice at the
end of kth iteration. Finally, for each facility Fi, let Fi be the
collection of sets of customers that can be served by Fi:

Fi =

ψ ⊂ [N ] :
∑
j∈ψ

aijdij ≤ Si

 .
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BP Algorithm

1) Initialization:

m0
Cj→Fi

= m0
Fi→Cj

= 0

2) Messages at kth iteration:

mk
Cj→Fi

(ψ) = min
l
δCj ,Fi

(l, ψ)

∑
p6=i

mk−1
Fp→Cj

(l) + glj


mk
Fi→Cj

(l)

= min
ψ∈Fi

δCj ,Fi(l, ψ)

∑
p6=j

mk−1
Cp→Fi

(ψ) + fi1{ψ 6=∅}


3) Belief at kth iteration:

bkFi
(ψ) = fi1{ψ 6=∅} +

∑
p

mk
Cp→Fi

(ψ)

bkCj
(l) = glj +

∑
p

mk
Fp→Cj

(l)

4) Assignment at the end of kth iteration:

akCj
= argmin

l
{bkCj

(l)}

1) A Simplified Algorithm: Note that the dimension of the
vector mk

Cj→Fi
in the above algorithm is 2N (i.e., exponential

in N ). Also, to compute each entry for the message mk
Fi→Cj

,
one needs to compare up to 2N subsets of customers if facility
i has enough capacity to serve all the customers. Consequently,
the algorithm has exponential running time.

We now simplify the previous message passing algorithm
to a pseudo-polynomial one. In particular, the facilities and
customers send scalar messages in this algorithm.

Simplified BP Algorithm

1) Initialization:

µ0
Cj→Fi

= µ0
Fi→Cj

= 0

2) Messages at kth iteration:

µkCj→Fi
= −gij −max

l 6=i
(µk−1
Fl→Cj

− glj)

µkFi→Cj
= max
ψ∈Fi:
j∈ψ

 ∑
p∈ψ:p6=j

µk−1
Cp→Fi


−max

 max
ψ∈Fi:

j /∈ψ,ψ 6=∅

∑
p∈ψ

µk−1
Cp→Fi

 , fi


3) Belief at kth iteration:

b̃kCj
(l) = glj − µkFl→Cj

4) Assignment at the end of kth iteration:

ãkCj
= argmin

l
{b̃kCj

(l)}

For brevity, we omit the proof of equivalence of this
algorithm with the original one.

2) Damped Message Passing: Note that the above mes-
sage passing algorithms are not guaranteed to converge. A
common approach to deal with message oscillations is to use
damped messages. In damped message passing, the updates
at each iteration are calculated from the messages of the
previous iteration exactly as before. But the new messages
are weighted averages of the old messages and updates.
More specifically, the damped version of the above simpli-
fied message passing algorithm works as follows. Suppose
{µk−1

Fi→Cj
, µk−1
Cj→Fi

, i = 1, . . . ,M, j = 1, . . . , N} are the
messages passed at (k − 1)th iteration (k ≥ 1). Also, let
{µ̃kFi→Cj

, µ̃kCj→Fi
, i = 1, . . . ,M, j = 1, . . . , N} denote the

updates at kth iteration. These are functions of the messages
at (k − 1)th iteration and are given by the same expressions
as in Simplified BP Algorithm. However, the new messages
from any node to any other node are computed as follows

µk·→· = λµk−1
·→· + (1− λ)µ̃k·→·,

where λ ∈ [0, 1) is the dampness parameter. A larger value of
λ increases computational stability (i.e., instances of conver-
gence) but yields inferior solutions.

IV. OFFLOADING IN PRESENCE OF RATIONAL MOBILES

When mobiles become hotspots and serve other mobiles,
they spend resources (e.g., energy, memory etc.) Therefore
mobiles should have a rational basis for acting as hotspots.
This aspect can be modeled in several ways; following are a
few examples.

Each mobile that acts as a hotspot can be given added
throughput where the extra throughput is proportional to the
throughput that the tagged mobile offers to other mobiles.
We consider this scheme in Section IV-A. We show that the
resulting optimization problems have similar structure as those
in Section II-B.

In yet another framework, each mobile that becomes a
hotspot can be paid off in terms of free data usage in
proportion to the throughput that it delivers to other mobiles.
On the other hand, the mobiles may have utility for extra
throughput and may even pay of the same. Here, the mobiles
would be interested in optimizing their net payoffs. However,
we do not incorporate utilities for data usage and throughputs
in our framework, and do not pursue this viewpoint.

A. Incentivizing Hotspots

Suppose each hotspot gets additional throughput that is a
factor η of the throughput that it delivers to other mobiles.
We can study both, throughput maximization and proportional
increment problems under this strategy. For example, the
throughput maximization problem will be same as problem
P2 with constraint (7) replaced by

Ti ≥
Ri
N

+ η
∑
j 6=i

aijTj .

We can argue that it is equivalent to the following problem
that has only (a = (aij , i, j = 1, . . . , N) as decision variables.

P5 : minimize (1 + η)
∑
i

∑
j 6=i

aij
Rj
NRi

+
∑
i

aii
1

N

subject to (1), (2), (8)
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In particular, a solution a∗ to this problem yields a solution
to the throughput maximization problem. This can be argued
as in Lemma 2.1. We omit the details for brevity.

V. OFFLOADING USING DCF

Solving for throughput optimal (or, fair) offloading using
DCF is a more complex problem. We focus on the throughput
maximization to illustrate the difficulty. We also show how the
problem can be converted to a relatively simpler mixed-integer
linear integer problem.

The throughput optimization problem can be expressed as:

P6 : maximize
∑
j

Tj

subject to Tj ≥
Rj
N
, j = 1, . . . , N

(1), (2), (3), (4), (6)

Notice that the rate constraints for DCF based access, given
by (6), are more complex than the corresponding constraints
for PCF based access. We now develop equivalent mixed-
integer linear constraints. First, observe that the mobiles’ rates
must satisfy

aijTj ≤
1∑N

l=1 ail
1
Wil

,∀i, j, i 6= j (12)

which can be also written as∑
l

ail
1

Wil
≤ aij
Tj

+ (1− aij)
∑
l

1

Wil
(13)

Next, following the arguments similar to Lemma 2.1, we can
show that all the mobiles but the first one should be given their
least throughput. But under DCF, all the mobiles connecting
to the same hotspot must get equal throughput. Thus the
optimization problem can be written as

minimize
∑
i

∑
j 6=i

aij
Ri

max
l 6=i

{
ailRl
N

}
+
∑
i

aii
N

subject to (1), (2), (13),

where we set Tj = Rj/N in (13). Here, the objective function
is a nonlinear function. Let θi be the aggregate throughput
delivered by i to other mobiles. Then, the above objective can
also be expressed as

minimize
∑
i

θi
Ri

+
∑
i

aii
N

subject to θi ≥

∑
l 6=i

ail

 Rj
N
− (1− aij)B,∀i, j, i 6= j,

(1), (2), (13),

where B is large constant and Tj = Rj/N in (13).
Discussion: Clearly, optimal offloading using DCF is a

much more difficult problem than optimal offloading using
PCF. Moreover, notice that rate constraints (12) could be strict
inequalities for a few hotspots in the optimal solution. For any
such hotspot i, in view of (6), wij < Wij for at least a few
mobiles connecting to i. In other words, at least a few hotspots
and mobiles operate at less than their maximum feasible
rates (they can do so via appropriate choices of modulation

and coding schemes). This reemphasizes why DCF is not the
preferred mode of access for optimal offloading.

VI. PERFORMANCE EVALUATION

We now illustrate performance of the proposed algorithms
and benefits of mobile assisted offloading through numeri-
cal evaluation. We assume that the mobiles’ base cellular
rates (Ri, i = 1, . . . , N ) are in the range 100 − 250Mbps.
On the other hand, WiFi rates between the mobiles and
the hotspots (Wijs) are considered to be in the range 50 −
100Mbps. We perform numerical evaluation for several values
of N , namely, N = 5, 10, 15, 20 and 25. For each N ,
we consider 100 sets of values of rates, and evaluate the
performance of the proposed algorithms and offloading for
each set of parameters. The rates for different mobiles and
for different evaluations are chosen to be independent and
uniformly distributed in the respective ranges. We now report
the average performance measures.

We first present the performance of the proposed message
passing algorithm. We use two values of the dampness param-
eter, λ = 0.7 and λ = 0.8. Table I shows the number of times
the damped message passing algorithm converges (out of 100
runs) and also shows the average errors in the objective value
at the limiting point compared to the optimal objective value.
Expectedly, the higher value of λ (i.e., λ = 0.8) increases the
chances of convergence and still gives satisfactory results.

In practice, one may not want to wait until the message
passing algorithm converges. We can rather terminate the algo-
rithm if the objective function does not improve substantially
in a few successive iterations - this requires defining suitable
thresholds on differences of successive objective values. We
have found that such heuristics lead to quicker termination and
still yield satisfactory performance. In most of the instances
the message passing algorithm took less than 20-50 iterations
(depending on the values of N and λ) to converge and less
than 10 iterations to give satisfactory results.

We next focus on the benefits of offloading. Table II shows
the improvement in the aggregate throughput when we aim at
maximizing it. It also shows the average throughput improve-
ment of each mobile when pursuing proportional increment
optimization. An interesting observation is that one does not
lose much in terms of the aggregate throughput while being
fair - per mobile throughput improvement in the proportional
increment case are of the same order as the maximum possible
throughput enhancement. We also see that, in either case, the
benefit of offloading increases with the number of mobiles.

Finally, we evaluate the mechanism of Section IV-A where
we incentivize the mobiles for acting as hotspots. Here, we
focus on aggregate throughput optimization. We see that as
the incentivization factor η increases, the improvement in the
average percentage gain diminishes but this degradation is not
substantial (see Table III). Even for η = 0.2, we observe
marked improvement in the average percentage gain.

N 5 10 15 20 25

λ = 0.7
No. of times
converged 100 98 90 71 68

% error 2.84 3.18 2.45 1.24 0.85

λ = 0.8
No. of times
converged 100 99 96 92 90

% error 5.43 4.07 3.74 2.83 2.06

TABLE I: Performance of the message passing algorithm.
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N 5 10 15 20 25
(a) % gain
in aggregate
throughput

25.47 33.42 36.59 38.45 38.62

(b) % gain
in mobiles’
throughputs

22.40 29.48 33.47 35.62 37.98

TABLE II: Benefit of offloading in (a) throughput optimization
and (b) proportional increment optimization.

N 5 10 15 20 25
η = 0.1 24.86 32.61 35.68 37.58 38.15
η = 0.2 23.89 31.03 33.75 35.55 36.66

TABLE III: Benefit of offloading while incentivizing hotspots.
N 5 10 15 20 25
Using MATLAB
intlinprog solver 20.20 30.41 — — —

Using Local
search heuristic 18.93 25.98 28.81 29.91 30.58

TABLE IV: % gain in aggregate throughput for offloading
using DCF.

The performance of offloading using DCF is given in Table
IV. The corresponding optimization problem can be solved
using MATLAB intlinprog solver. We have shown results
for N = 5, 10, in Table IV but the solver takes excessively
long time for higher values of N . Thus we use a local search
heuristic to obtain an approximate solution to this optimization
problem [25]. Such a heuristic is used in [3] to solve a similar
but simpler access point association problem. This iterative
method is much faster than the MATLAB intliprog solver and
gives satisfactory results2. As we expect, the average percent-
age gain in the aggregate throughput is lesser when compared
to the offloading using PCF. However, the performance gain
is still noticeable.

VII. CONCLUSION

We have studied mobile assisted offloading in cellular
networks where mobiles are capable of acting as hotposts and
serving other mobiles. We have studied throughput optimal
offloading and also a fair offloading strategy which we call
proportional increment offloading.We show that the former
problem can be reduced to a capacitated facility location
problem (CFLP) whereas the latter can be solved by solving
a sequence of CFLPs (Theorem 2.1). Then, we have pro-
posed a belief propagation based algorithm to solve general
CFLPs (Section III-B). This generalizes analogous algorithms
for generalized assignment problems and UFLPs. We have also
argued why DCF based WiFi access is not preferred for the
proposed offloading mechanism.

Our future work consists of investigating other notions of
fairness in the context of offloading. In particular, we will
focus on solution concepts from the theory of coalitional
games. We also plan to study properties of the proposed belief
propagation based algorithm.
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Association optimization in wi-fi networks: Use of an access-based
fairness. In Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pages 119–126. ACM, 2016.

[4] J.E. Beasley. An algorithm for solving large capacitated warehouse lo-
cation problems. European Journal of Operational Research, 33(3):314
– 325, 1988.

[5] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen. Energy-efficiency
oriented traffic offloading in wireless networks: A brief survey and a
learning approach for heterogeneous cellular networks. IEEE Journal
on Selected Areas in Communications, 33(4):627–640, April 2015.

[6] Donald Erlenkotter. A dual-based procedure for uncapacitated facility
location. Operations Research, 26(6):992–1009, 1978.

[7] Lin Gao, George Iosifidis, Jianwei Huang, and Leandros Tassiulas.
Hybrid data pricing for network-assisted user-provided connectivity. In
IEEE INFOCOM 2014-IEEE Conference on Computer Communications,
pages 682–690. IEEE, 2014.

[8] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas. An iterative double
auction for mobile data offloading. In International Symposium on
Modeling Optimization in Mobile, Ad Hoc Wireless Networks (WiOpt),
pages 154–161, May 2013.

[9] George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas.
Enabling crowd-sourced mobile internet access. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications, pages 451–459.
IEEE, 2014.

[10] O. B. Karimi, J. Liu, and J. Rexford. Optimal collaborative access point
association in wireless networks. In Proceedings of IEEE INFOCOM,
pages 1141–1149, April 2014.

[11] Jakob Krarup and Peter Mark Pruzan. The simple plant location
problem: Survey and synthesis. European Journal of Operational
Research, 12(1):36–57, 1983.

[12] Anurag Kumar and Vinod Kumar. Optimal association of stations and
APs in an IEEE 802.11 WLAN. In 11th National Conference on
Communications, pages 145–149, Jan 2005.

[13] Nevena Lazic, Brendan J Frey, and Parham Aarabi. Solving the unca-
pacitated facility location problem using message passing algorithms. In
Proceedings of AISTATS, pages 429–436, 2010.

[14] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data offloading:
How much can wifi deliver? Proceedings of IEEE/ACM Transactions
on Networking, 21(2):536–550, April 2013.

[15] Haiyun Luo, Ramachandran Ramjee, Prasun Sinha, Li Erran Li, and
Songwu Lu. Ucan: a unified cellular and ad-hoc network architecture.
In Proceedings of international conference on Mobile computing and
networking, pages 353–367. ACM, 2003.

[16] V. Mittal, S. K. Kaul, and S. Roy. On optimal hotspot selection
and offloading. In Proceedings of IEEE International Conference on
Communications (ICC), pages 1–6, May 2016.

[17] M. H. Qutqut, F. M. Al-Turjman, and H. S. Hassanein. Mfw: Mobile
femtocells utilizing wifi: A data offloading framework for cellular net-
works using mobile femtocells. In 2013 IEEE International Conference
on Communications (ICC), pages 6427–6431, June 2013.

[18] Divya R., Amar Prakash Azad, and Chandramani Singh. Fair
and optimal mobile assisted offloading. Technical report, 2017.
http://www.dese.iisc.ernet.in/people/chandra/publications/divya-
etal17mobile-assisted-offloading.pdf.

[19] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno,
and M. Conti. Data offloading techniques in cellular networks: A survey.
IEEE Communications Surveys Tutorials, 17(2):580–603, 2015.

[20] Sujay Sanghavi, Dmitry Malioutov, and Alan Willsky. Networking
sensors using belief propagation. In Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on, pages 384–391.
IEEE, 2008.

[21] D. Shehadeh, N. Montavont, T. Kerdoncuff, and A. Blanc. Minimal
access point set in urban area wifi networks. In International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), pages 221–228, May 2015.

[22] A. Srinivas and E. Modiano. Joint node placement and assignment for
throughput optimization in mobile backbone networks. In Proceedings
of IEEE Conference on Computer Communications (INFOCOM), 2008.

[23] Tony J. van Roy. A cross decomposition algorithm for capacitated
facility location. Operations Research, 34(1):145–163, 1986.

[24] Vedat Verter. Uncapacitated and Capacitated Facility Location Prob-
lems, pages 25–37. Springer US, Boston, MA, 2011.

[25] Joachim Paul Walser. Integer optimization by local search: a domain-
independent approach. Springer-Verlag, 1999.

[26] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Exploring
artificial intelligence in the new millennium. chapter Understanding
Belief Propagation and Its Generalizations, pages 239–269. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[27] Mindi Yuan, Chong Jiang, Shen Li, Wei Shen, Yannis Pavlidis, and Jun
Li. Message Passing Algorithm for the Generalized Assignment Problem,
pages 423–434. Springer Berlin Heidelberg, 2014.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)


