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Abstract—We consider the problem of scheduling in wireless
networks with the aim of maintaining up-to-date and synchronized
(also called, aligned) information at the receiver across multiple
flows. This is in contrast to the more conventional approach of
scheduling for optimizing long-term performance metrics such
as throughput, fairness, or average delay. Maintaining the age
of information at a low and roughly equal level is particularly
important for distributed cyber-physical systems, in which the ef-
fectiveness of the control decisions depends critically on the fresh-
ness and synchrony of information from multiple sources/sensors.
In this work, we first expose the weakness of several popular
MaxWeight scheduling solutions that utilize queue-length, delay,
and age information as their weights. Then, we develop a novel
age-based scheduler that combines age with the interarrival times
of incoming packets in its decisions, which yields significant gains
in the information freshness at the receiver. We characterize the
performance of our strategy through a heavy-traffic analysis that
establishes upper and lower bounds on the freshness of system
information.

I. INTRODUCTION

Wireless networks are expected to form the communica-
tion backbone of many future cyber-physical systems that are
expected to support diverse applications such as autonomous
driving in vehicular networks, monitoring and response in
sensor networks, efficient supply and demand management
in smart power grids, etc. As such, wireless networks are
no longer merely a medium of high-rate information transfer
that are detached from the content of the information, but an
integral part of a distributed controller-actuator system whose
performance is highly dependent on the timeliness and accuracy
of the information that guides the system operation.

Over the last few decades, wireless resource allocation
research has been increasingly more effective in maximizing
long-term performance metrics such as throughput, utility, reli-
ability, and average delay (see [1]–[6] and references therein).
These advances have benefited from an ever-expanding frame-
work of adaptive controller design that utilize measures such as
actual/virtual queue-length (e.g., [7]–[13]), Head-of-Line (HoL)
delay (e.g., [14]–[18]), drop-rates (e.g., [19], [20]), time-since-
last-service (e.g., [21], [22]) information in order to guide a
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variety of decisions including rate control, scheduling, and
routing.

Separate from these developments, relatively recently there
has been an interest in maintaining fresh information of a flow
at the receiving end of a communication link (e.g., [23]–[27]).
This is important in applications, where the freshness of the
system state information is critical to the control decisions.
Most of these prior works (e.g., [23]–[26]) have focused on
the analysis and/or control of the status updates from a single
source or multiple sources to a single server, i.e., maintaining
up-to-date ‘status of the source(s)’ at the receiver.

In this paper, we consider a different concept of freshness
that is measured by the ‘age of received packet’ from each
source. Such a measure is motivated by applications where
it is important to maintain equally delayed information from
multiple sources at the receiver, such as network monitoring
and distributed sensing. In these applications, it is important
that the information flow from different sources are roughly
synchronized for accurate tracking (in monitoring applications)
and stable control (in distributed sensing and control applica-
tions). Further, we consider the problem of scheduling for fresh
information in a general network of wirelessly inter-connected
servers that receive randomly arriving stream of updates. This
setting calls for a different set of models as well as analysis and
design tools than those employed in the aforementioned works.
The more recent work [27] considers the problem of scheduling
for fresh information in wireless networks, and presents a set
of interesting structural results concerning the tractability and
intractability of the optimal scheduling solution. It also provides
a so-called steepest-age-descent algorithm that is numerically
investigated. In our work, we take a different approach based
on the drift-minimization methodology, and conduct a heavy-
traffic analysis of its performance in terms of the freshness
metric. We believe that these complementary works collectively
help expand our understanding and management of networks
for the new metric of information freshness.

With this vision, we first provide a measure of information
freshness for multi-source wireless networks based on a virtual
queueing model. Then, we present a comparative investiga-
tion of three well-known scheduling strategies – namely, two
MaxWeight Schedulers that use queue-lengths and HoL delays
as their weights, and a round-robin scheduler – to reveal that
each of these three choices can result in deficient scheduling
choices for the new freshness metric.
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Based on these observations, we develop a new age-based
scheduler that combines age information with interarrival times
in order to determine the weights assigned to different flows. To
characterize the performance of our proposed scheduler, we also
perform its heavy-traffic analysis that yields lower and upper
bounds on the heavy-traffic performance of our proposed policy.
Heavy-traffic analysis has been an effective methodology for
analyzing the performance of scheduling policies (e.g., see [28]
and references therein). While the results are obtained under
heavy-traffic conditions, the scheduler possess desirable fresh-
ness characteristics even in lightly-loaded conditions, thereby
making it a good choice for maintaining up-to-date information
of flows at the receiving end.

The key message that we learn from this work is the
value of interarrival times in maintaining fresh and equally-
delayed information updates of continuous flows. This insight is
expected to be useful in designing the communication backbone
of future cyber-physical systems whose operation is critically
dependent on freshness of information.

II. SYSTEM MODEL

We consider a network graph G = (N,L) with the set
N of nodes and the set L of wireless links. Due to wireless
interference, at each time t, a subset of links S(t) ∈ L can be
scheduled at the same time. The subsets of links that satisfy
the interference constraints are said to be a feasible schedule.
Let S denote the set of all feasible schedules. Once a link
is scheduled, it transmits one packet during the time slot. We
assume that all the transmissions occur in a time slotted manner:
the i-th packet at link l arrives at tl,i ∈ R and is served at
t′l,i ∈ N, where R denotes the set of real numbers and N denotes
the set of non-negative integers.

At each link l, packets arrive following a stochastic process
with mean rate λl. Let λ denote its vector. Also let Xl,i denote
the interarrival time between the i-th packet and the (i + 1)-
th packet at link l. We assume that the interarrival times are
independent and bounded by Xmax, i.e.,

Xl,i := tl,i+1 − tl,i ≤ Xmax. (1)

Let Al(t) denote the number of packet arrivals in (t, t+1] for
t ∈ N, and let Sl(t) ∈ {0, 1} denote the number of served
packets in (t, t + 1], in particular, Sl(t) = 1 if l ∈ S(t) and
Sl(t) = 0 if l /∈ S(t). We slightly abuse our notation and use
interchangeably the set S(t) of scheduled links and the vector
{Sl(t)} of served packets. Let Ql(t) denote the queue length at
link l, which evolves as Ql(t+1) = (Ql(t)−Sl(t))+ +Al(t),
where (·)+ := max{0, ·}. All the queues are served in a first-
come-first-served manner. Let Nl(t) denote the index of Head-
of-Line (HoL) packet at the queue of link l at the beginning of
time t, i.e.,

Nl(t) := min{i | t′l,i ≥ t}, (2)

which is well-defined when Ql(t) > 0.
We define the age of link l as the difference between the

current time and the time when the HoL packet of link l is
generated. The age is set to 0 if the queue is empty. As such, age
is a measure of how outdated the data at the receiving end of the
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Fig. 1. Example of deterministic packet arrivals.

link is compared to the data at its transmitting end. Assuming
that only the links with non-zero queue can be scheduled, the
age Ul(t) of link l can be considered as a virtual queue that
evolves as, for t ∈ N,

Ul(t+ 1) =

{

Ul(t) + 1{Ql(t)>0}, if l /∈ S(t),
(

Ul(t) + 1−Xl,Nl(t)

)+
, if l ∈ S(t),

(3)

where 1{·} denotes the indication function. The first equation
implies that the age increases by 1 when the packet is not
served, and the second equation implies that the age decreases
by the amount of interarrival time when the packet is served. We
note that our definition of the age is slightly different from [23].
Specifically, the age equals 0 when the queue is empty under
our definition, and accounts for the oldness of the information
waiting at the HoL of the link. Also, we assume Ql(0) = 0
and Ul(0) = 0.

We say that the system is stable if the time-averaged mean
ages of all the links remain finite. Let Λ denote the set of arrival
rates such that for any λ ∈ Λ (strictly inside), there exists
a scheduling policy that can stabilize the system. Note that
from the Little’s law, the stability region of age is equivalent to
the stability region of the queue lengths, and any throughput-
optimal schedulers that keep all the queue lengths finite (e.g.,
Queue-length based MaxWeight [7]) is an optimal solution that
achieves Λ.

III. MOTIVATION

In this section, we expose the deficiency of a round-

robin scheduler as well as commonly used throughput-optimal
MaxWeight schedulers that utilize queue-lengths and delays to
make the scheduling decisions. In particular, we design flows
with particular arrival patterns, and show that these popular
schedulers are unable to keep system information freshness
equally low. This will motivate us in the next section to
develop and analyze a new age-based scheduler that is aimed
at optimizing freshness of information.

Let us consider a simple network with three flows. Three
flows A,B,C have deterministic packet arrivals of different
patterns, and share a server that can serve one packet from one
flow at a time. In this example, we assume that all packets arrive
at the beginning of the time slot, and in each flow, packets are
served in the first-come-first-serve manner. At time 1, all the
three flows have a packet arrival. Flow A has additional arrival
at time 3. The pattern repeats as shown in Fig. 1, where the
k-th packet from flow Z is marked as Zk.

Suppose that there is no service until time slot 4 and we start
transmitting the packets from time slot 5. First, we transmit the
packets following the largest queue-length first policy. At time
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5, we have the queue length vector of Q = {QA, QB , QC} =
{3, 2, 2}, and we serve A1. At time 6, we have Q = {2, 2, 2},
and break the tie by transmitting the oldest packet first, i.e.,
B2 (or C2). At time 7, packet A4 arrives and we have Q =
{3, 1, 2}, and transmit A2. At time 8, we have Q = {2, 1, 2}
and transmit C2. At time 9, we have Q = {3, 2, 2} and transmit
a packet from flow A. It can be easily observed that the service
repeats in the order of {A,B,A,C}.

Second, we consider another scheduling following the oldest
packet first policy. At time 5, we have the flow age vector of
U = {UA, UB , UC} = {4, 4, 4}. We break the tie in the order
of {A,B,C}, and transmit A1. At time 6, we have U = {3, 5, 5}
and transmit B1. At time 7, we have U = {4, 2, 6} and transmit
C1. At time 8, we have U = {5, 3, 3} and transmit A2. At time
9, we have U = {4, 4, 4} and transmit a packet from flow A.
It can be easily observed that the service repeats in the order
of {A,B,C,A}.

Finally, we consider the scheduler that serves the packet with
the largest age-weighted age drop. Let us consider the ages
(t− tl,Nl(t), t− tl,Nl(t)+1) of two packets at the head of queue.
For example, at time 5, flow A has (4, 2) for the age of two
HoL packets, i.e., for (A1, A2), and flows B and C have (4, 0).
The scheduler chooses the packet that leads to the largest age-
weighted age drop, i.e., the HoL packet of the flow with the
largest (t− tl,Nl(t)) · (tl,Nl(t)+1 − tl,Nl(t)) (break the tie in the
order of {A,B,C}), and thus, we will schedule B1 at time 5.
At time 6, the age of all the packets remained in the queues
increases by one, and we have {(5, 3), (1, 0), (5, 1)}, where we
set the age of not-yet-arrived packet to 0. The scheduler will
transmit C1. At time 7, we have {(6, 4), (2, 0), (2, 0)} and serve
A1. At time 8, we have {(5, 3), (3, 0), (3, 0) and serve A2. At
time 9, we have {(4, 2), (4, 0), (4, 0)} and serve a packet from
flow B. It can be easily observed that the service repeats in the
order of {B,C,A,A}.

Under each scheduling policy, the packet delay of
{A1,A2,B1,C1} can be calculated as in Table I. We first note
that the total delay sums are equal for all the policies. In
fact, it will be the same for all work-conserving schedulers.
Then, we observe that they have different per-flow delays.
Under the largest-queue-first policy, we have {4, 5, 7} for flows
A,B,C, respectively. Under the oldest-packet-first policy, we
have {4.5, 5, 6}, and under the largest-age-weighted-drop-first
policy, we have {5.5, 4, 5}.

TABLE I
DELAY OF EACH PACKET (t′l,i − tl,i) IN TIME SLOTS.

largest- oldest- largest-age-
queue-first packet-first weighted-drop-first

(A1,A2) (4,4) (4,5) (6,5)

B1 5 5 4

C1 7 6 5

The result raises an interesting question about the fairness of
packet delays, in particular when the flows have different arrival
rates. Considering the oldest-packet-first policy and the largest-
age-weighted-drop-first policy, they have similar per-flow delay

performances, but they do have different preference, which
will be clarified later in Section V. Prioritizing the packets (or
information) of the same age with their flow’s interarrival time
can motivate the sources to decrease their transmission rate to
achieve better delay performance. To this end, it is interesting
to investigate how the ages related to the per-flow delay
performance. Extending the largest-queue-first and the oldest-
packet-first schemes, we introduce the well-known scheduling
policies, and investigate their behaviors under symmetric and
asymmetric traffic.

The solution that finds the schedule with the maximum
queue-weighted sum, denoted by Q-MW, has been well-known
to be throughput-optimal. At each time slot, it has the schedule
SQ(t) as

SQ(t) = argmax
S∈S

∑

l∈L

Ql(t) · Sl, (4)

Another well-known throughput-optimal solution is the max-
imum HoL delay weighted sum, denoted by D-MW [17]. At
each time slot, it has the schedule SD(t) as

SD(t) = argmax
S∈S

∑

l∈L

Ul(t) · Sl. (5)

Also, the round-robin scheduler (RR) is a well-known alterna-
tive. Through simulations under simple scenarios, we demon-
strate the age performance of these three scheduling choices.

We consider a symmetric scenario with two links. Each
link has an on-off channel and turns on with probability 0.9,
independently across times and links. Each link has a flow with
the same mean packet arrival rate1 0.45, but their interarrival
times are different. For one flow (regular flow), packets arrive
with a fixed interarrival time, and for the other flow (bursty
flow), packets arrive in a burst: 10 packets within 0.1 slot time.
Note that all packets in a burst have similar generation times,
and thus, the HoL delay of the link will keep increasing until
all the packets in the burst are served out.

Fig. 2 shows the ages of the two flows (i.e. the HoL delay
of the two links) under RR, Q-MW, and D-MW scheduling
schemes, respectively. Under RR, the regular flow achieves
good age performance while the bursty flow suffers from large
ages. This is because the last packet of a burst has to wait for
long time under RR. (Each age drop of the bursty flow indicates
that the last packet of a burst is served out.) Under Q-MW, we
can observe the age of the regular flow increases from when a
packet burst of the bursty flow arrives. It is because the larger
queue will be served first under Q-MW. Upon the arrival of
a burst, the bursty flow will be served first, and then when
the queue lengths of the two flows are the same, they will be
served in turn. The priority given to the bursty flow reduces the
age of the bursty flow less than that under RR. Under D-MW,
the bursty flow has a priority if its burst arrive earlier than the
HoL packet of the regular flow, which delays the packets of the
regular flow and causes it to have as high ages as the bursty
flow.

1The arrival rates are within the stability region, since the total arrival rate
0.9 is less than the channel opportunity rate 1− 0.12 = 0.99.
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(a) RR (b) Q-MW (c) D-MW

Fig. 2. Ages of two flows with the same arrival rate λregular = λbursty. One flow has regular traffic (black) while the other has bursty traffic (red).

(a) RR (b) Q-MW (c) D-MW

Fig. 3. Ages of two flows with different arrival rates. λregular = λbursty/3.

(a) RR (b) Q-MW (c) D-MW

Fig. 4. Ages of two flows with different arrival rates. λregular = 3λbursty.

Similar results are observed when the bursty flow has a
higher arrival rate than that of the regular traffic as shown
in Fig. 3, where we set λregular = λbursty/3 = 0.2. However,
when the bursty flow has a lower arrival rate, where we set
λregular = 3λbursty = 0.6, we can observe that Q-MW suffers
from large ages, as shown in Fig. 4.

TABLE II
TOTAL AVERAGE AGE

RR Q-MW D-MW

λregular = λbursty 12.08 12.11 9.33

λregular = λbursty/3 7.64 8.27 7.20

λregular = 3λbursty 6.54 8.49 5.65

For each scenario, the total average age 1
T

∑T
τ=1

∑

l Ul(τ)
is as shown in Table II. It clarifies that Q-MW has the largest
average age. An interesting result is that when the bursty flow
has a lower arrival rate, the ages under Q-MW are larger than
the ages under RR for both the flows: 5.74 (Q-MW) vs. 4.50
(RR) for the bursty flow, and 2.74 (Q-MW) vs. 2.04 (RR) for
the regular flow. This implies that Q-MW is not even a Pareto-
optimal solution to minimizing the ages and we may be able
to lower ages for all the flows.

IV. AGE-BASED MAXWEIGHT SCHEDULING

In this section, we develop new policies that utilize a
combination of age and interarrival time realizations/statistics
in order to maintain fresh information at the receiver, instead
of queue-lengths and delays. We apply a modified drift-based

heavy-traffic analysis [28] to derive the heavy-traffic perfor-
mance of our new policy in terms of the desired metric.

A. Algorithm Design

Under the assumption of heavy traffic loads, where Ql(t) > 1
with high probability for all l with λl > 0, the evolution of the
age (3) can be simplified as

Ul(t+ 1) =

{

Ul(t) + 1, if l /∈ S(t),
Ul(t) + 1−Xl,Nl(t), if l ∈ S(t),

or Ul(t+ 1) = Ul(t) + 1−Xl,Nl(t) · Sl(t),

(6)

since Ql(t) > 1 implies Ul(t) ≥ Xl,Nl(t). For any arrival λ

strictly inside Λ, there is a stationary scheduler that schedules
SS(t) independent of the system state and satisfies, for small
ϵ > 0,

E[SS
l (t)] ≥ λl + ϵ, for all l. (7)

We consider a Lyapunov function V (t) := 1
2

∑

l Ul(t)2. Let
∆V (t) denote the drift of the Lyapunov function. We have

∆V (t) := E[V (t+ 1)− V (t) | U(t) = U]

= 1
2

∑

l E
[

(Ul(t) + 1−Xl,Nl(t) · Sl(t))2 − Ul(t)2|U
]

≤
∑

l Ul · E[1−Xl,Nl(t) · S
S
l (t) | U]

+
∑

l Ul · E[Xl,Nl(t) · (S
S
l (t)− Sl(t)) | U] + C1,

(8)

where C1 := 1
2 |L|(1+X2

max) ≥
1
2

∑

l

(

1−Xl,Nl(t) · S(t)
)2

is
a constant. For the first term, since the interarrival time process
and the service process of the stationary static scheduler are
independent, and from (7), we can obtain that

Ul · E
[(

1−Xl,Nl(t) · S
S
l (t)

)

| U
]

≤ − ϵ
λl
Ul. (9)
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For the second term, we can minimize it by choosing SI(t) as

IA-MW: SI(t) = argmax
S∈S

∑

l∈L

Ul(t) ·Xl,Nl(t) · Sl, (10)

where S denotes the set of all feasible schedules. This imme-
diately extends MaxWeight to take into account the product of
Instantaneous interarrival time and Age2 (thus denoted by IA-
MW). As we will see later in Section V, however, the variation
of the interarrival process often causes significant delaying of
HoL packets. Hence, we also consider the class of scheduling
policies that do not have the instantaneous interarrival times,
in which case, we choose the schedule SA(t) such that

A-MW: SA(t) = argmax
S∈S

∑

l∈L

Ul(t)

λl
· Sl, (11)

which takes into consideration average interarrival time and
denoted by Age-based MaxWeight scheduling policy (A-MW).

Now, although A-MW may achieve good performance, it
requires the information of arrival rate λ, which may be
unknown a priori. For more practical use, we can replace the
arrival rate with measured value as

mA-MW: Sm(t) = argmax
S∈S

∑

l∈L

Ul(t)

λ̂l(t)
· Sl, (12)

where λ̂l(t) :=
1
t

∑t−1
τ=0 Al(τ).

In the following, we focus on the performance charac-
terization of A-MW due to mathematical tractability. Since
λ̂l(t) → λ as t → ∞, we claim that the performance of A-
MW and mA-MW is close to each other, which will be verified
through simluations in Section V.

B. Performance

In this section, We address the performance of A-MW in
terms of stability, direction of state space collapse, and age
bounds. We first show the stability of A-MW as follows.

Lemma 1: Age-based MaxWeight scheduling policy
achieves the stability region Λ.

Proof: Under A-MW, the second term of (8) becomes
∑

lUl · E
[

Xl,Nl(t) · (S
S
l (t)− SA

l (t)) | U
]

= E
[

∑

l
Ul

λl
· SS

l (t)−
∑

l
Ul

λl
· SA

l (t)
∣

∣U
]

≤ 0,
(13)

where the first equality comes from the independence between
the schedules and X. Combining (8), (9), and (13), we have

∆V (t) ≤ −ϵ
∑

l∈L
Ul

λl
+ C1, (14)

which implies that i) A-MW has a negative Lyapunov drift for
sufficiently large ages (thus achieves Λ), and ii) the information
of the interarrival time instance is not required to achieve the
(age) stability.

Recall that the stability region of age is equivalent to the
capacity region, which is shown in [28] to be bounded by K
hyperplanes. Let F (k) denote the k-th face of Λ, and let c(k)

2We refer to [23] for intuitive explanation about the relationship between
the interarrival times and the ages.

l(k) 

c(k)
L

(a) Original stability region

1

L/l(k)

U U^ 

U|| 

d(k)=l(k)c(k)

= ·d(k),UÒ

(b) Scaled stability region

Fig. 5. Stability region and its scaled version (scaled by 1/λ(k)). Due to
the componentwise division, the linearity is preserved. In the scaled stability
region, we omit superscript (ϵ) or (ϵ, k) for the age vectors.

denote the normal vector of F (k) with ∥c(k)∥ = 1. Then there
is a constant b(k) such that

⟨c(k), r⟩ = b(k) for all r ∈ F (k). (15)

We define 1
λ(k)Λ := { λ

λ(k) |λ ∈ Λ}. All vector multiplications

and divisions are componentwise. We consider λ(k) ∈ relative
interior of F (k), and obtain 1

λ(k)Λ by scaling each element λl of

λ in Λ with λ(k)
l as shown in Fig. 5. Due to the componentwise

division, we have point-to-point mapping between Λ and 1
λ(k)Λ,

and the linearity is preserved. Hence, a face in Λ is mapped
to a face in 1

λ(k)Λ. Let G(k) denote the face in 1
λ(k)Λ that

corresponds to face F (k) in Λ. We define d(k) := c(k) · λ(k),
and given ϵ > 0, we choose an arrival vector λ(ϵ) such that

1

λ(ϵ)
l

=
1

λ(k)
l

+ ϵ ·
∥d(k)∥

d(k)l

, (16)

for all l with non-zero λ(k)
l and d(k)l . We have λ(ϵ)

l ≤ λ(k)
l , ∀l.

Proposition 1 (State Space Collapse): Under the assump-
tion of heavy traffic loads and independent interarrival times,
the state space of the ages collapses under A-MW, to direction
d(k), as ϵ → 0.

To prove this, we basically follow the line of the analysis
in [28]. However, the proof is not straightforward since the
age processes do not evolve as the queue length processes:
according to (6), they increase by 1 at each time slot, and
decrease by the interarrival time. We scale the whole state
space by λ

(k), and show that the mapping of the age to the
hyperplane characterized by d(k) approaches 0 as ϵ → 0. We
refer the readers to [29] for the detailed proof.

From our results in [29] and Lemma 1 of [28], we can show
that {U(t)}t converges in distribution to a random variable U

with all bounded moments. For a vector U(ϵ), which is the age
under A-MW with λ

(ϵ), we define its parallel and perpendicular
components with respect to d(k) as follows:

U
(ϵ,k)
∥ := ⟨ d

(k)

∥d(k)∥ ,U
(ϵ)⟩ d

(k)

∥d(k)∥ ,

U
(ϵ,k)
⊥ := U(ϵ) −U

(ϵ,k)
∥ .

(17)

Then, we have the following performance bounds, whose proofs
can be found in [29].

Proposition 2 (An Upper Bound): As ϵ → 0, A-MW
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(a) λregular = λbursty (b) λregular = λbursty/3 (c) λregular = 3λbursty

Fig. 6. Ages of two flows with different arrival rates under A-MW.

achieves that

lim
ϵ→0

ϵE[∥U∥∥] ≤
1

2
· ⟨( d

(k)

∥d(k)∥ )
2, (σX)2⟩, (18)

where σX denotes the variance vector of the interarrival times.
The following proposition shows that the performance bound
under A-MW may not be tight.

Proposition 3 (A Lower Bound): For the class of scheduling
policies that do not take into consideration the instantaneous
interarrival times (i.e., interarrival-time-agnostic schedulers),
the age performance is bounded by

lim
ϵ→0

ϵE[∥U∥∥] ≥
1

2
⟨(d(k))2, (σX)2 · (λ(k))2⟩. (19)

For the upper bound, we define V∥(U, k) := ∥U(ϵ,k)
∥ ∥2 and

note that its drift E[∆V∥(U, k)] is zero from the age stability
under A-MW. Starting from the zero drift, we carefully derive

the equations in terms of E[∥U(ϵ,k)
∥ ∥] when ϵ → 0, which

results in the upper bound. Technical difficulties mainly come
from the product form of the processes X ·S and the non-linear
relationship between λ

(ϵ) and λ
(k). For the lower bound, we

consider a single-queue server with constant arrival ⟨d(k),1⟩
and departure maxS∈Λ⟨d(k),X · S⟩, which outperforms A-MW
in terms of age. The product form of the processes X ·S again
becomes the technical difficulty. We restrict our attention to the
class of interarrival-time-agnostic schedulers, and show that the
departure process of the single-queue server that achieves λ

(k)

is an optimal solution, which leads to (19).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of A-MW. We
first present the behavior of A-MW with two flows (one bursty
and one regular traffic), and then compare the performance
of A-MW with those of RR, Q-MW, and D-MW. Finally, we
observe the state space collapse of the ages under A-MW.

Under the same scenarios as in Section III, we can observe
the age performance of A-MW under equal and unequal packet
arrivals as in Fig. 6. See Figs. 3 and 4 for comparison with RR,
Q-MW, and D-MW. The age performance of A-MW is similar
to that of D-MW, which can be also observed by the total
average ages: 9.73 when λregular = λbursty, 6.86 when λregular =
λbursty/3, and 5.65 when λregular = 3λbursty.

Next, we further evaluate the performance of A-MW in terms
of queue lengths, packet delays, and normalized age. Besides
RR, Q-MW, and D-MW, we also consider IA-MW of (10) that
takes into account instantaneous interarrival times, and mA-
MW of (12). We consider a simple network scenario with one
base station and 4 users (flows) as shown in Fig. 7. The base

BS/AP

station
Poisson 0.5 x load
Poisson 0.25 x load
Poisson 0.125 x load
Poisson 0.125 x load

Fig. 7. Network topology with 4 flows.

station has 4 downlinks, where each link is dedicated to a
flow. Packets for each flow arrive at the base station, stored
in separate per-flow queues, and served through the links. At
a given time slot, the channel of each link is either on or off

with probability 0.5, and the scheduler of the base station can
choose one link with on channel. Once a link is chosen, it
can serve one packet during the time slot. Packets for each
flow arrive following a Poisson process with mean arrival rate
λ = ρ · {0.5, 0.25, 0.125, 0.125}, where load ρ is the scaling
factor of the arrival rate vector. We simulate the system for
106 time slots under different traffic loads. We use 10 different
random seeds, and in each simulation run, we measure moving
average of total queue lengths

∑

l Ql(t), total packet delays
1∑

l
Nl(t)

∑

l,i(t
′
l,i − tl,i), and total normalized ages

∑

l
Ul(t)
λl

.

Fig. 8 show, in log scale, the measured values after the
simulations end, and each point represents an average over the
10 simulation runs. Given our setting, ρ = 1− (0.5)4 = 0.9375
is the boundary of Λ. First, we can observe that under RR and
IA-MW, the queue lengths, the packet delays, and the ages start
soaring before the load increases close enough to the boundary,
which implies that they may not achieve the stability region. For
IA-MW, the variance of interarrival times seems to often cause
excessive delay for the packets with short interarrival times,
which degrades the performance. Second, the performance
of A-MW and mA-MW are very similar. By replacing the
arrival rate λl with our measurement 1

t

∑t
τ=0 Al(τ), we can

implement the scheduling policy without the rate information
of the flows. Third, in the queue lengths and the packet delays,
Q-MW and D-MW outperform A-MW and mA-MW, but the
differences reduce as the load approaches the boundary. In
contrast, A-MW and mA-MW outperform Q-MW and D-MW
in the normalized ages, and there are substantial differences
remain at the boundary and even the beyond. This shows that
A-MW and mA-MW achieve higher age performance at no
significant cost of queue length and delay.

Fig. 9 provides the per-flow performance when ρ = 0.935,
which is more than 99.7% of the capacity. It clarifies the
differences of Q-MW, D-MW, and A-MW in the per-flow delay
performance. Flows are numbered in the decreasing order of
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(a) Queue lengths (b) Packet delays (c) Normalized ages

Fig. 8. Performance with different traffic loads.

(a) Queue lengths (b) Packet delays (c) Normalized ages

Fig. 9. Per-flow performance when load ρ = 0.935.

l = direction(2,1)

2

1 c = direction(2,1)

1 f low 1

f low 2

(a) Stability region Λ (b) ∥U⊥∥ with different loads (c) Ages of each flow (load ρ = 1.59)

Fig. 10. State space collapse.

the arrival rate. In comparison of the queue lengths shown
in Fig. 9(a), Q-MW achieves almost equal queue length (as
denoted by the dotted line) over all the flows. In packet delays,
D-MW achieves equal per-packet delays over the flows in
Fig. 9(b). Finally, Fig. 9(c) shows that A-MW and mA-MW
achieve equal normalized age over the flows (as denoted by
the dotted line). Considering the Little’s law that associates the
queue lengths (that Q-MW schedules with as in (4)) and the
packet delays (that D-MW schedules with as in (5)) by the
arrival rate as 1

λl
, one may expect that the performances under

Q-MW and D-MW are also related by 1
λl

as shown in the

results3. A similar relationship that can be expected between
D-MW (5) and A-MW (11) is supported by our results. We

3We note that the packet delays are a per-packet average while the queue
lengths and the ages are a time average. However, our statement will hold
under Poisson arrival processes due to PASTA.

emphasize that the property of A-MW that gives a priority
to the flow with a small arrival rate is desirable. A traffic
source can decrease its transmission rate to achieve better delay
performance, which will improve the overall delay performance
by decreasing the traffic load.

Finally, we investigate the state space collapse. We consider a
network with two users. The network settings are the same, ex-
cept that the channel is on with probability 1 and 0.5 for user 1
and user 2, respectively, and the link for user 2 can serve up to 2
packets if it is scheduled. For the non-unit service rate, we have
modified Q-MW (4) SQ(t) = argmaxS∈S

∑

l∈L Ql(t) · Sl · rl,
where rl denote the service rate of link l. The other policies
of D-MW, IA-MW, A-MW, and mA-MW are also modified
accordingly. In this scenario, the stability region is as shown in
Fig. 10(a). Consider λ = ρ · {0.5, 0.25}. Then, the slope is the
face and we have the normal vector c(k) = 1√

5
{2, 1}, and thus
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d(k) = c(k) · λ = ρ√
5
· {1, 0.25}. Note that the arrival rate is

on the boundary of Λ when ρ = 1.6. Fig. 10(b) demonstrates
that as ρ increases, the perpendicular element ∥U⊥∥ of the
age keeps increasing under RR, Q-MW, D-MW, and IA-MW.
In contrast, A-MW achieves a finite ∥U⊥∥, which verifies
the state space collapse to direction d(k) under A-MW. mA-
MW has slowly increasing ∥U⊥∥ due to some measurement
errors, but it has much smaller ∥U⊥∥ than RR, Q-MW, and
D-MW. Fig. 10(c) directly shows the evolution of the ages
for the flows {U1(t), U2(t)} when ρ = 1.59. Since D-MW
tries to have U1(t) = 2U2(t), where the doubling is due to
the high link rate, it has the ages to the direction of {2, 1}.
Q-MW tries to have Q1(t) = 2Q2(t), hence, through Little’s

law, achieves E[D1(t)] = E[Q1(t)
0.5ρ ] = E[ 2Q2(t)

0.5ρ ] = E[D2(t)],
i.e., has direction {1, 1}. A-MW and mA-MW tries to have
U1(t) · 2 = 2U2(t) · 4, and thus the ages evolve along direction
{4, 1}.

While we have shown that A-MW and mA-MW achieve
good performance and desirable properties of state-space col-
lapse under heavy traffic loads, the schemes can be considered
as a weighted version of D-MW, and needs a long-term
averaging of interarrival times, which may make the scheme
less responsive to traffic changes. To this end, a time-weighted
moving average of the interarrival times could be helpful.
Taking into consideration the low performance of IA-MW (i.e.,
without averaing interarrival times), finding a good factor of
time-averaging would be an interesting open problem.

VI. CONCLUDING REMARKS

In this work, we address the scheduling problem in wireless
networks with a focus on the information freshness and the
delay alignment, which are of great importance to the sys-
tems where the effectiveness of the control decisions depends
critically on the delay and synchronism of the system state
information. We start with inefficiency of conventional ap-
proaches in maintaining fresh information updates of multiple
continuous flows, and show the critical value of both age
and interarrival times. We develop new schedulers, with and
without the knowledge of arrival rates, that account for both
age information and interarrival times of incoming packets, and
characterize its performance under heavy-traffic condition. To
elaborate, we show that it achieves the state space collapse in
a properly scaled coordination system, and provide its upper
and lower performance bounds. Although the analytical results
are obtained under heavy-traffic conditions, we observe through
numerical results that the scheduler achieves desirable freshness
performance even in lightly-loaded conditions. In addition,
the scheduler has good long-term performance in throughput
and average delay, while also maintaining equally-up-to-dated
information from multiple sources.
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