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Abstract—A transmitter powered by a renewable en-
ergy source becomes self sustainable. In this paper, we
consider the broadcast channel with a transmitter and
N receivers. The transmitter is powered by a renewable
energy source and has finite battery capacity. Transmitter
requires power Pi to transmit a packet to ith user. In this
setting, our objective is to minimize the expected backlog
at the transmitter while accounting for randomness in
the arrival and the recharge processes. We formulate the
problem as an infinite horizon Markov Decision Process
(MDP) problem and obtain the structural properties of an
optimal policy. These structural properties provide valu-
able insights for designing close to optimal policies that
are computationally efficient for real life implementations.
In special cases, we provide complete description of an
optimal policy.

I. INTRODUCTION

World is in power crisis as most conventional energy
sources are draining rapidly. Future communication
devices are aiming at becoming self sustainable with
the use of green energy sources. However, for self
sustainability one has to effectively deal with the ran-
domness in energy harvesting process. This introduces
new challenges e.g. the existing optimal scheduling
algorithms with respect to the conventional sources may
not be optimal in energy harvesting networks. So, it’s
necessary to investigate and obtain optimal algorithms
for energy harvesting scenarios. In this paper, we in-
vestigate the broadcast channel with multiple receivers
and a single transmitter having a finite capacity battery
that is powered by a green energy source. Our aim is to
minimize the expected backlog at the transmitter. Note
that minimizing backlog is equivalent to minimizing
queuing delay.

Data communication in energy harvesting systems
has been explored in different scenarios, e.g. see [1]–
[7]. Optimal offline policy for minimization of transmis-
sion completion time in a broadcast channel with finite
battery setup is computed assuming the knowledge of
future energy values in [1]. Optimal online and offline
policies for maximizing throughput and minimizing
transmission time is obtained for a wireless fading
channel in [2]. The sum throughput is maximized using
techniques from calculus of variations in [3]. Here the
battery is modeled using the storage dam model. There

has also been work that looked into information theo-
retic capacity of channels in energy harvesting scenarios
e.g. see [4]–[6], but this body of work does not consider
delay minimization. Optimal policy for maximizing to-
tal amount of data transmitted in a given finite duration
is obtained in [7]. Transmission completion time under
a deterministic setting, i.e. when the arriving energy
values are known apriori, is minimized in [8]. The
problem of throughput maximization in a point to point
link is framed as a Markov Decision Process (MDP)
problem and monotone property of an optimal policy
is obtained in [9]. Note that most of this work aims at
throughput maximization and do not consider delay. In
this work, we focus on delay minimization.

Optimal policy that minimizes delay in every slot for
any sample path of packet arrivals for tandem and paral-
lel queuing systems is obtained in [10]. Optimal policy
for throughput maximization and delay minimization
in every slot in a parallel queuing system is obtained
in [11]. Trade-offs between average power and average
delay has been analyzed for a fading wireless channel in
[12]. Average packet transmission delay is minimized
for a single user and multiuser uplink fading channel
respectively controlling the power and rate dynamically
under conventional energy setup in [13], [14]. Average
waiting time for a head of line packet is minimized
using dynamic programming in loss tolerant MAC layer
multicast in [15]. Under average delay constraint, aver-
age power is minimized for a single user fading channel
and online implementation using stochastic approxima-
tion is obtained in [16]. Order optimal delay result in
a one hop wireless network with N users and ON-
OFF channels is shown in [17]. In renewable energy
paradigm, an online algorithm for minimizing delay is
proposed and its competitive ratio is analyzed for a
arbitrary wireless channel in finite time and Gaussian
single user, multi user channels respectively in [18] and
[19]. Above branch of work considers some variant
of delay optimization in wireless networks. However
they do not consider energy harvesting networks. Here
our aim is to minimize delay for energy harvesting
networks.

In this paper, we investigate the problem of mini-
mizing the backlog at the renewable energy empowered
transmitter in a broadcast channel. The transmitter is
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assumed to have a finite battery that is recharged as per
some stationary stochastic process. We first demonstrate
that, on account of randomness in recharge process,
no policy can minimize the backlog on every sample
path. This is in contrast with the sample path wise op-
timality obtained for wireless system with conventional
energy sources in [11]. This motivates design of policies
that minimize the expected backlog. To this end, we
formulate the problem as an MDP, and obtain struc-
tural properties of an optimal policy. These structural
properties not only aid in reducing computations for
obtaining optimal policy, but also provide insight that
prove useful for designing near optimal heuristics. In
some special cases, we provide the complete description
of an optimal policy.

The remaining paper is organized as follows. Sec-
tion II describes the system model and challenges
involved in designing optimal policy. The problem
is formulated as MDP in Section IV. In Section V,
structural properties of the optimal policy are proved.
Simulation results are presented inVI. We conclude the
paper in Section VII.

II. SYSTEM MODEL

Consider a single server and N parallel queues.
Packets are of the constant length l. The time is
divided into intervals of fixed length τ called time
slots. Server can serve one packet in a slot. This is
similar to downlink network with N separate queues
for N users and a single base station which decides
which user is scheduled. We only assume slow fad-
ing, i.e., the channel gains do not vary over time.
Let the channel gains be h1, . . . , hN . Without loss of
generality, |hi| > |hi+1|, ∀i ∈ {1, . . . , N − 1}.The
transmission rate is given by the Shannon’s capacity

formula B log2

(

1 + P |h|2

BN0

)

, where N0 is Noise power

spectral density. Without loss of generality, assume
bandwidth B to be 1. The power required to transmit
a packet from the base station to user within a slot is

given by Pi = N0

|hi|2

(

2
l
τ − 1

)

for i = 1, . . . , N . So,

Pi < Pi+1 ∀i.

Let Ai(t) be the number of packets arriving in queue
i at beginning of slot t, for t ≥ 1. Let R(t) be the
recharge energy arrivals which are added to the energy
buffer/battery at the beginning of slot t, for t ≥ 1. The
system model with the arrivals are shown in Fig. 1.
Action or decision is taken after the arrivals. Queues
are considered to be of infinite capacity. So the packet
loss never happens. Battery is of finite capacity with
ξm being the maximum value. Let Qi(t) indicate the
number of packets in the queue i at the beginning of
slot t. Let E(t) indicate the amount of energy in the
battery at the beginning of slot t. A queue i is said to
be connected, if Qi(t) > 0 and E(t) ≥ Pi. Thus in any
slot t, a packet can be transmitted only from the set of
connected queues, not otherwise. We define a few terms
which will be used in this paper hereafter.

N Queues
Users

Server/BS

Battery

h1

h2

hN

A1(t)

A2(t)

AN(t)

R(t)

Fig. 1. System Model

Definition 1 (Scheduling Policy). Scheduling policy
is a sequence of decision rules at each slot t, that
chooses a connected queue from which a packet will
be transmitted in the slot or decides to stay idle.

We assume scheduling policy to be causal i.e., the
action taken is a function of the past actions, energy
arrivals and packet arrivals.

Definition 2 (Stationary Policy). Stationary policy is a
map π : S → {0, 1, . . . , N}, i.e. the policy maps the
system state s to an action {0} ∪ Cs, where Cs is the
set of connected queues in state s.

The stationary policy does not depend on time. Also,
given the current state, the decision solely depends on
the state and not on the past.

Definition 3 (Non-idling Policy). A policy π is non-
idling,

1) if it is stationary

2) if Cs 6= ∅, then the policy schedules a queue from
Cs for every s

Any stationary policy which is not non-idling is
referred to as idling policy.

Queue length and the battery energy level depend on
the scheduling policy. This dependence is made clear by
mentioning the policy in the superscript. Let us define
a indicator variable, Iπi (t) which is 1, if a packet is
scheduled from queue i by policy π in slot t and 0
otherwise. Also, Pπ(t) denotes power spent in slot t
and ξm denotes battery capacity. (Q(0), E(0)) denotes
the initial values in slot 0. Queue length under policy π
evolves as follows. For every t ≥ 1 and i ∈ {1, . . . , N},

Qπ
i (t) = Qπ

i (t− 1) +Ai(t)− Iπi (t− 1). (1)

The queue state at t is Qπ(t) = [Qπ
1 (t), . . . , Q

π
N (t)]T ,

where xT denotes the transpose of vector x. Thus in
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vector notation queue state evolves as follows:

Qπ(t) = Qπ(t− 1)+A(t)− Iπ(t− 1).

The battery energy level under policy π in slot t is given
as follows,

Eπ(t) = min {Eπ(t− 1) +R(t)− Pπ(t− 1), ξm} .
(2)

Recall that policy π can schedule only from a connected
queue, which implies Eπ(t − 1) + R(t) ≥ Pπ(t − 1)
always. On the next section we discuss challenges
involved in designing delay optimal policy for energy
harvesting network.

III. CHALLENGES IN DESIGNING OPTIMAL POLICY

Let us first define notion of delay optimality akin to
the one considered in [11].

Definition 4 (Backlog optimality everywhere).
Scheduling policy π is backlog optimal everywhere

if it satisfies
∑N

i=1 Q
π
i (t) ≤

∑N

i=1 Q
π′

i (t) ∀π′, t =
{0, 1, 2, . . .}, under any packet and recharge energy
arrivals and any initial state (Q(0), E(0)).

Note that the backlog optimality everywhere is the
sample path wise optimality. Different systems have
been studied in a similar way in [10], [11]. In [10],
authors have described the policy which achieves delay
optimality everywhere for tandem queuing and parallel
queuing systems with adjacency constraints on servers.
In the parallel queuing system, the policy which sched-
ules such that it serves most number of queues, achieves
backlog optimality everywhere. Whereas in a tandem
queuing system with a single destination, the follow-
ing policy is shown to be delay optimal everywhere:
Select a non-empty queue (say i) that is closest to
the destination, then choose a non-empty queue that
is closest to the queue i and does not interfere with i’s
transmission and repeat this until no further queue can
be selected. The policy schedules a packet from all the
chosen queues simultaneously in a slot. For multi user
downlink with random connectivity, when all users’
arrival and channel connectivity processes are identical.
The authors show that the longest connected queue
(LCQ) policy minimizes the backlog in the system at
every time slot in [11]. From these papers, it is observed
that for some systems, there exists a policy which has
optimality at every time slot.

Note that the aforementioned work does not con-
sider energy harvesting scenario. In our model, if
all queues remain connected in all slots, then any
non-idling policy is backlog optimal everywhere. The
queues remain connected if for example, energy arrival
R(t) > PN , ∀ t. Next we address the existence of
backlog optimality everywhere when queues do not
remain connected in all the slots . Specifically we show
that backlog optimality everywhere does not exist in
this scenario. We state this formally in the following
theorem.

Theorem 1. There does not exist an optimal stationary
policy π that achieves backlog optimality everywhere.

This theorem is proved in the following four sub-
parts. In the first part we show that if there exists
an optimal policy, then there exists a stationary policy
which is optimal. In the second part, it is shown that
if an optimal stationary policy exists, then it belongs
to the class of non-idling policies. Next we show that
the optimal non-idling policy must schedule the lowest
index connected queue (LICQ). In the last part, it is
shown that LICQ policy is not an opitmal policy with
the help of an example. These four parts are proved in
the following four lemmas.

Lemma 1. If there exists a policy that is backlog
optimal everywhere, then there exists a stationary policy
that is optimal.

Proof: Let π be an optimal policy. Let the
initial system state be s. Let the sample path be
{A(t), R(t)}, t ≥ 1. Let us denote uπ(t) as the action
chosen by policy π in slot t. Let us shift the optimal
policy to the left by one slot and denote it as π′. So,

π′ is such that uπ′

(t) = uπ(t + 1), ∀t ≥ 0. Next,
let us shift the packet and energy arrivals to the left
by one slot and let them be {A′(t), R′(t)}, t ≥ 1.
So A′(t) = A′(t + 1) & R′(t) = R(t + 1), ∀t ≥ 1.
At slot 1, let the system state under policy π be
s′ = (Qπ(1), Eπ(1)). If the system starts at state s′,
with arrivals {A′(t), R′(t)}, t ≥ 1 and under policy
π′, then

N∑

i=1

Qπ′

i (t) =
N∑

i=1

Qπ
i (t+ 1) , ∀t ≥ 0. (3)

Since π is optimal for every sample path, π is also
optimal for the the shifted packet and energy arrivals
{A′(t), R′(t)}, t ≥ 1. Hence from Eq. 3, it follows
that π′ is also optimal. Thus if optimal policy exists,
then there exists a stationary policy which is optimal.

Lemma 2. Optimal stationary policy belongs to the
class of non-idling policies.

Proof: Suppose a policy π1 which does not belong
to non-idling policies is optimal. π1 has atleast one
system state s such that Cs 6= ∅, where it idles without
choosing any of the connected queues. Let π2 be a
non-idling policy same as policy π1 except at state
s, where it chooses any one connected queue. Then

if the system starts at state s, then
∑N

i=1 Q
π2

i (1) =
∑N

i=1 Q
π1

i (1)− 1. So
∑N

i=1 Q
π1

i (1) >
∑N

i=1 Q
π2

i (1).
Hence a contradiction. So, any policy which idles
cannot be an optimal policy.

Now let us the define the notion of Lowest index
connected queue policy, which is used often hereafter.

Definition 5 (Lowest Index Connected Queue (LICQ)
Policy). The non-idling policy which chooses the con-
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nected queue with the lowest power requirement is
referred as Lowest Index Connected Queue policy.
u∗(s) = min Cs, ∀s such that |Cs| > 0.

Now we state and prove the third of the four
lemmas.

Lemma 3. Among class of non-idling policies any
policy other than the Lowest Index Connected Queue
(LICQ) policy is not optimal

Proof: Let π1 be an optimal non-idling policy that
is different from LICQ policy. Then there exists a state
s, such that Cs 6= ∅ and |Cs| > 1, in which π1 does not
choose the lowest index connected queue. Lets assume
that the system starts in state s. Let min Cs = i. Let
πLICQ be the LICQ policy. Then πLICQ chooses i
whereas the other policy π1 chooses another connected
queue, say j, such that j > i. Then, energy remaining in
policy π2 is E(0)−Pi, which can be written as kP1 ≤
E(0)−Pi < (k+1)P1 for some integer k. From slot 1
till slot k, assume packet arrivals to be [1 0 . . . 0]T and
zero energy arrivals. In slots 1 to k, πLICQ transmit a
packet from queue 1 whereas π1 may transmit from any
of the connected queues. At the end of kth slot, energy
remaining in the battery under π1 is strictly smaller
than πLICQ. Moreover, the energy remaining in πLICQ

is smaller than P1. At slot k+1, assume packer arrival
be [1 0 . . . 0]T and energy arrival be R(k + 1) =
P1 − (E(0)− Pi − kP1). So EπLICQ(k+ 1) = P1 and
Eπ1(k+1) < EπLICQ(k+1). So, LICQ policy πLICQ

chooses queue 1, whereas policy π1 stays idle in slot k+
1. So

∑N

i=1 Q
πLICQ

i (k + 1) ≤
∑N

i=1 Q
π1

i (k + 1) − 1.

So
∑N

i=1 Q
π1

i (k + 1) >
∑N

i=1 Q
πLICQ

i (k + 1). Hence
a contradiction. Thus we have shown an example
of packet and energy arrivals where every non-idling
policy other than LICQ policy fails to attain backlog
optimality everywhere.

Intuitively, choosing LICQ i.e., queue with the low-
est power requirement seems optimal as it retains the
most energy in the battery for future transmissions.

Lemma 4. Lowest Index Connected Queue (LICQ)
policy is not an optimal policy.

Proof: Let us consider a system with N = 2. Let
the policy πLICQ be optimal. Let us consider π2 as an
idling policy, which transmits packets only from queue
1 and stays idle if queue 1 is not connected. We show
an example where policy π2 achieves lesser backlog
than the LICQ policy. Initial state is (Q(0), E(0)) =
([0, 1]T , P2). From slot 1 till slot k−1 , energy arrival,
R(t) = P2 and packet arrivals, A(t) = [0, 1]T . For all
slots greater than k-1, the energy arrival, R(t) = 0 and
packet arrivals, A[t] = [1, 0]T .

TABLE I. ACTION AT EACH SLOT (QUEUE FROM WHICH

PACKET IS SCHEDULED)

t 0 1 – k-1 k k+1 – k +
kP2

P1
− 1

πLICQ(t) 2 2 – 2 0 0 – 0

π2(t) 0 0 – 0 1 1 – 1

N∑

i=1

Q
πLICQ

i

(

k

(

1 +
P2

P1

))

−
N∑

i=1

Qπ2

i

(

k

(

1 +
P2

P1

))

= k

(
P2

P1
− 1

)

We have shown that there exists packet arrivals and
energy arrivals under which LICQ policy does not
minimize backlog everywhere and hence it is non-
optimal in this sense.

Remark 1. The example can be generalized to any
number of queues.

Remark 2. Difference in the backlog under LICQ

policy and that under policy π2 is k
(

P2

P1

− 1
)

and can

become unbounded as k increases. However, battery ca-
pacity needs to be at least kP2. Hence under the given
example, the difference between the backlog increases
if the battery is scaled appropriately.

Remark 3. Even within the class of non-idling policies,
it can be shown that LICQ policy is not backlog optimal
everywhere. In fact the backlog under πLICQ can grow
arbitrarily larger than a non-idling policy along some
sample path. Kindly refer to the technical report [20]
for the example, where backlog under πLICQ grows ar-
bitrarily large. Thus, πLICQ policy is not even bounded
distance away from optimal.

Proof of Theorem 1: From Lemma 1, we know
that if an optimal policy exists, then there exists a
stationary policy that is backlog optimal everywhere.
In Lemma 2 and Lemma 3, we have shown that if an
optimal stationary policy exists, then the optimal policy
must be the LICQ policy. Finally, we show that LICQ
policy is not backlog optimal everywhere. Hence as a
consequence of the four lemmas, it is proven that there
does not exist an optimal policy that achieves backlog
optimality everywhere.

This motivates us to construct policies that are
backlog optimal in the expected sense. In the following
section, we present our approach in detail.

IV. MDP FORMULATION

In this section, the problem of minimizing backlog
is formulated as a discounted infinite horizon Markov
decision process (MDP) problem. For a user i, the
arrival process {Ai(t)}t≥1 is assumed to be independent
and identically distributed (i.i.d). The arrival processes
for different users are assumed to be independent. Also
for simplicity we assume that Ai(t) ∈ {0, 1} for every
i and t. The recharge process is {R(t)}t≥0 is i.i.d.
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Let emax be the maximum value of recharge arrival.
Assume emax < P1. We define the system state to be
s = (q, ξ), where q denotes the number of packets
present in the queues and ξ denotes the energy present
in the battery. Note that the state space S is N + 1
dimensional. An action chosen by a policy in any state
could be either to remain idle or to schedule from
a connected queue. Thus, in a state (q, ξ), possible
actions are U(q, ξ) = {0} ∪

{
i : qi > 0 and ξ ≥ Pi;

i ∈ {1, . . . , N}
}

. Action u = 0 implies that no queue
is scheduled and it is possible in every state. Union of
all action spaces are U = {0, . . . , N}. We assume that
the queue buffer capacity to be large, but finite. The
reward function r : S × U → ℜ+ is

r(q, ξ, u) =
N∑

i=1

qi

Let us consider λ ∈ (0, 1) as a discount factor, uπ(t)
is the queue scheduled by policy π in slot t. We refer
to uπ(t) as the action taken by policy π in slot t. Let
us define the cost function of policy π, Jπ : S → R+

0
for the state (q, ξ) that we start with.

Jπ(q, ξ) = lim
T→∞

E

[
T∑

t=0

λtr(Qπ(t), Eπ(t), uπ(t))

|S0 = (q, ξ)

]

= E

[
∞∑

t=0

λt

N∑

i=1

Qπ
i (t)

]

Note that since queue is finite, reward is finite and hence
limit and expectation can be interchanged. Now, let us
define the notion of expected backlog optimality.

Definition 6 (Expected backlog optimality). A schedul-
ing policy π is expected backlog optimal if it satisfies
the following relation,

Jπ(q, ξ) ≤ Jπ′

(q, ξ) ∀q, ξ (4)

So, here our objective is to minimize the queue
backlog at the transmitter. Let us define pe as the proba-
bility of energy arrival value being e, with e assumed to
be discrete valued. Let α(q,q′) be the transition proba-
bility from queue state q to q′. pa is the probability
of packet arrival being a with a = [a1, . . . , aN ]T ;
ai ∈ {0, 1}. Iu- [0, . . . , 0, 1, 0 . . . , 0]T is a N × 1
vector with 1 in the uth position, zeros elsewhere;
I0 =zero vector. The optimal reward function satisfies
the Bellman’s equation of dynamic programming, given

by

J
∗(q, ξ) = min

u∈U(q,ξ)

{

r(q, ξ, u)

+λ

ξm−ξ+Pu−1
∑

e=0

pe
∑

q′

α(q,q′)J
∗(q′

, ξ−Pu+e)

+λP (e ≥ ξm−ξ+Pu)
∑

q′

α(q,q′)J
∗(q′

, ξm)

}

= min
u∈U(q,ξ)

{

r(q, ξ, u)

+λ

ξm−ξ+Pu−1
∑

e=0

pe
∑

a

paJ
∗(q−Iu+a, ξ−Pu+e)

+ λP (e≥ξm−ξ+Pu)
∑

a

paJ
∗(q−Iu+a, ξm)

}

At each epoch, the policy maps the state to its optimal
action. Since, it is a infinite horizon problem with
discounted rewards and state space is finite, we know
from [21] that, there exists a stationary deterministic
policy which attains optimality. Let π∗ = {u∗, u∗, . . .}
represent the optimal stationary deterministic policy.
The optimal action at each state is given by,

u
∗(q, ξ) = arg min

u∈U(q,ξ)

{

r(q, ξ, u)

+λ

ξm−ξ+Pu−1
∑

e=0

pe
∑

q′

α(q,q′)J
∗(q′

, ξ − Pu + e)

+ λP (e ≥ ξm − ξ + Pu)
∑

a

pq′J
∗(q′

, ξm)

}

In the next section we obtain structural properties of
the optimal policy.

V. STRUCTURAL PROPERTIES OF OPTIMAL POLICY

In our first result, we show that when available
energy level is high, the optimal policy is non-idling.

Theorem 2 (Work Conservation of Optimal Policy).
There exists an energy threshold ξth such that for every
state s = (q, ξ) such that ξ > ξth and Cs > 0, then the
optimal action u∗(s) 6= 0.

Proof: Let us assume a state s such that ξ > ξth
and suppose u∗(s) = 0. Let the system start with state
s. Let π1 be non stationary policy which chooses action
0 in slot 0. Let π2 be an optimal policy. Let us compare
between actions 0 and N . There are two possible

TABLE II. ACTION AT EACH SLOT

slot 0 1 2 - m m+1 m+2 - m +
PN
P1

π1 0 N N – N 1 1 – 1

π2 N N N – N 0 0 – 0

explanations, according to the nature of recharge values.
They are as follows:
a)Let us consider recharge values to be 0 from slot 0

till slot m+ PN

P1

. Here m would be ξ
PN

−1 as shown in
Table II. At slot m + 1, Energy in policy π2 becomes
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zero. At the end of slot m + PN

P1

, Energy in policy
π1 is also zero. Policy π2 transmits m packets from
queue N until battery gets drained. Since, policy π1

has transmited only m− 1 packets in the same number
of slots, it has PN energy more than π1. Now if π1

transmits from first queue, it can transmit many packets
and reduce the backlog. So this is the only way policy
π1 can minimize backlog better than policy π2. So when
this happens, we show that if energy is greater than
some threshold, policy π1 can never be better.

Jπ1(q, ξ)− Jπ2(q, ξ) ≥

term1
︷ ︸︸ ︷

λ+ λ2 + . . .+ λ
ξ

PN

−
PN − P1

P1
λ

ξ
PN

+2
(

∞∑

k=0

λk)

︸ ︷︷ ︸

term2

For (term1 − term2) > 0, ξ > PN

(
ρ(N)

log λ
− 1

)

≥ ξth

(5)
where,

ρ(j) , log




λ

1 + λ
(

Pj

P1

− 1
)



 .

b) When recharge values from slot 0 are non zero,
term 1 in the above equation may increase, term 2 may
decrease, so eventually value difference increases.

Note that, when we compare with action j < N ,
then the threshold value obtained will be less than that
of action N .

For ξ > PN

(
ρ(N)

log λ
− 1

)

≥ ξth, u∗(s) 6= 0 (6)

So, if energy is greater than this ξth, then optimal action
at this state s, u∗(s) 6= 0 .

Above some energy threshold, it is never optimal
to stay idle. Only reason for which a policy may
want to stay idle is to wait for packets to arrive in a
lower indexed queue rather than transmitting a packet
now from a higher indexed queue which may require
a lot more energy. However, when enough energy is
available, it becomes more prudent to transmit a packet
to reduce cost now rather than conserving energy for
future potential cost reduction. The value of ξth depends
on discount factor λ.

Let us assume that the battery capacity ξm >
ξth + PN . In the next result, we show that the optimal
action is to either remain idle or it follows πLICQ i.e.
it transmits from the lowest index connected queue.
Formally we show the following.

Theorem 3. At a state s = (q, ξ) such that |Cs| > 1
and if u∗(s) 6= 0, then the optimal action is to choose
the LICQ. u∗(s) = min Cs = i.

Proof: Let π1 be an optimal policy. Suppose there
exists a state s such that u∗(s) = j, even when

min Cs = i. Let the system start with state s. Let
π2 be a non-stationary policy, which chooses action i
at slot 0. As a consequence of Theorem 2, whenever
battery level in policy π1 crosses ξth, it transmits
and since emax < P1, battery level in π1 nevers
reaches ξm in any sample path. Since we know that
ξm > ξth+PN ≥ ξth+(Pj −Pi)+ emax, energy level
under policy π2 as well does not reach ξm. If optimal
policy π1 chooses action i in some slot, say t′ as shown
in Table III, then in slots 1 to t′ − 1, policy π2 chooses
same actions as optimal policy π1. In slot t′, policy π1

chooses action i and Eπ2(t′) = Eπ1(t′) + Pj − P − i,
π2 chooses action j. Hence from slot t′ + 1, the queue
state and energy state are same for both policies π1 and
π2 and their rewards become equal. It is possible that,
optimal policy π1 may never choose action i. In that
case, from slot 1 as energy under policy π2 is higher,
it can do better or as good as policy π1. By choosing
action i in slot 0, there exists a policy which is better or
atleast as good as policy π1. Hence, the optimal action
at state s, u∗(s) = min Cs = i.

TABLE III.

Slot 0 1 - - - t’

π1 j u2 u3 – – i

π2 i u2 u3 – – j

Spending lower power saves more energy in battery,
so more packets can be transmitted in future and hence
backlog is lesser when compared to transmitting from
any other connected queue.

In the next result we show that if queue 1 is
connected then the optimal action is to choose 1.

Theorem 4. At a state s = (q, ξ) such that 1 ∈ Cs,
then the optimal action at this state, u∗(s) = 1.

Proof: Let π1 be an optimal policy. Suppose there
exists a state s such that u∗(s) = 0, even when
min Cs = 1. Let the system start with state s. Let π2

be a non-stationary policy, which chooses action 1 at
slot 0. As a consequence of Theorem 2, battery level
in policies π1 and π2 nevers reaches ξm in any sample
path. Let t̃ ≥ 1 be the first instance when policy π1

chooses to transmit a packet from a connected queue,
say x. Note that if optimal policy decides never to
transmit a packet in any slot, in that case, policy π2

has lesser reward than π1 and hence π2 is better than
π1. So, when t̃ exists, policy π2 stays idle in slots 1
to t̃. If optimal policy π1 chooses action 1 in some
slot, say t′ as shown in Table IV, then in slots t̃ + 1
to t′ − 1, policy π2 chooses same actions as optimal
policy π1. In slot t′, policy π1 chooses action 1 and
π2 chooses action x. Hence from slot t′ +1, the queue
state and energy state are same for both policies π1 and
π2 and their rewards become equal. It is possible that,
optimal policy π1 may never choose action 1. In that
case, from slot 1 as energy under policy π2 is higher,
it can do better or atleast as good as policy π1. At slot
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TABLE IV.

slot 0 1 - - t - - - t′

π1 0 0 – 0 x u1 u2 – 1
π2 1 0 – 0 0 u1 u2 – x

t̃, Jπ1 = Jπ2 + (1 + λ + λ2 + · · · + λt̃−1). Between
slots t̃ and t′, rewards are same. After t′, the state is the
same in both π1 and π2 and the rewards will be equal.
So, Jπ2 < Jπ1 . Hence, a contradiction. Optimal action
u∗(s) is not 0. So, when u∗(s) 6= 0, we know from
Theorem 3, the optimal action u∗(s) = min Cs = 1.

This follows the Theorem 3 in which there is a
necessity for knowing the optimal action to be non
zero, whereas here in this theorem we characterize it
completely, without any apriori knowledge about the
optimal action, that the optimal action is 1, whenever
queue 1 is connected.

As a consequence of Theorem 3 and 4, we show that
if only non idling policies are allowed, then πLICQ is
optimal.

Corollary 1. Among the class of non-idling policies, the
policy that chooses the connected queue with the lowest
index i.e., LICQ policy is expected backlog optimal.

Proof: Under a non idling policy, whenever there
is a connected queue, the action is not 0. So, based
on the proof of Theorem. 3, it is observed that, trans-
mitting a packet from a connected queue with the
lowest power requirement i.e., Lowest Index Connected
Queue (LICQ) is better than transmitting from any
other connected queue. So, LICQ policy is an expected
backlog optimal policy among this class of non-idling
policies.

In this special class of policies, we have completely
characterized an optimal policy that minimizes the
expected backlog.

VI. SIMULATION RESULTS

In this section, the results from the simulation
have been described. The scenario is simulated and
performance of LICQ policy is shown with respect
to different metrics. The simulation parameters are as
follows. The number of users are N = 3. The power
required to transmit a packet from the queues are
[P1 P2 P3] = [4 6 9] respectively. Number of slots
are 100,000 over which the simulations are carried out.
The packet arrivals are Bernoulli process with values
0 and 1 with mean arrival rate α = [0.1 0.1 0.1].
The recharge energy arrivals are of Poisson distribution
with mean Ē. The battery capacity ξm is assumed
to be 50 units. Note that the simulations are carried
out without the assumptions that emax < P1 and
finite queue buffer, which were required for analytical
guarantees. Also notice that on account of infinite state
space computation of optimal policy through methods
like policy iteration and value iteration is not possible.
Hence, we simulate the performance of LICQ policy,
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which was shown to be optimal in the class of non
idling policies.

Let us define energy ratio to be α1P1+α2P2+α3P3

Ē
.

Note that energy ratio is equivalent to Erlang load on
the energy queue. In Fig 2 we plot average delay in
network as function of energy ratio. As expected, the
average delay increases with energy ratio. In Figure 3,
using Jain’s index, we investigate fairness of the LICQ
policy, in terms of delay for various users. It can be
shown that, as energy ratio increases the fairness goes
down as most of the times LICQ transmits from lowest
index queue.

VII. CONCLUSION

Under finite battery setup in minimizing expected
backlog, structural properties of an optimal policy has
been proved. Importantly, we have shown that above
some threshold in battery energy, it is optimal to
transmit, rather than staying idle. Among class of non-
idling policies, the policy that schedules the connected
queue with the lowest index (LICQ), i.e lowest power
requirement is optimal. Hence under this special class
of policies, optimal policy is completely characterized.
But, the same LICQ policy is not backlog optimal
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everywhere and is justified via a counter example. From
the analysis of backlog optimality at every slot, it can
be inferred that with energy being a random value, an
optimal policy does not exist.
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