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Abstract—This paper considers time-average stochastic op-
timization, where a time average decision vector, an average
of decision vectors chosen in every time step from a time-
varying (possibly non-convex) set, minimizes a convex objective
function and satisfies convex constraints. This formulation has
applications in networking and operations research. In general,
time-average stochastic optimization can be solved by a Lyapunov
optimization technique. This paper shows that the technique
exhibits a transient phase and a steady state phase. When
the problem has a unique vector of Lagrange multipliers, the
convergence time can be improved. By starting the time average
in the steady state, the convergence times become O(1/ε) under
a locally-polyhedral assumption and O(1/ε1.5) under a locally-
non-polyhedral assumption, where ε denotes the proximity to the
optimal objective cost.

I. INTRODUCTION

Stochastic network optimization can be used to design
dynamic algorithms that optimally control communication net-
works [1]. The technique has several unique properties which
do not exist in a traditional convex optimization setting. In
particular, the technique allows for a time-varying and possibly
non-convex decision set. For example, it can treat a packet
switch that makes binary (0/1) scheduling decisions, or a
wireless system with varying channels and decision sets.

This paper considers time-average stochastic optimization,
which is useful for example problems of network utility
maximization [2]–[5], energy minimization [6], [7], and quality
of information maximization [8].

Time t ∈ {0, 1, 2, . . .} is slotted. Define Ω to be a finite or
countably infinite sample space of random states. Let ω(t) ∈ Ω
denote a random state at time t. Random state ω(t) is assumed
to be independent and identically distributed (i.i.d.) across time
slots. The steady state probability of ω ∈ Ω is denoted by πω .
Let I and J be any positive integers. Each slot t, decision
vector x(t) = (x1(t), . . . , xI(t)) is chosen from a decision set
Xω(t). For any positive integer T , define x(T ) as

x(T ),
1

T

T−1∑
t=0

E [x(t)].

The goal is to make decisions over time to solve:

Minimize lim sup
T→∞

f(x(T )) (1)

Subject to lim sup
T→∞

gj(x(T )) ≤ 0 j ∈ {1, . . . , J}

x(t) ∈ Xω(t) t ∈ {0, 1, 2, . . .}.

This material is supported by the NSF Career grant CCF-0747525.

Here it is assumed that Xω is a compact subset of RI for each
ω ∈ Ω. Assume ∪ω∈ΩXω is bounded, and let C be a compact
set that contains it. The functions f and gj are convex functions
from C to R, where A denotes a convex hull of set A. Results
in [1] imply that the optimal point can be achieved with an
ergodic policy for which the limiting time average expectation
exists.

An example of formulation (1) can be a resource allocation
problem of a stochastic wireless uplink network. The goal is
to achieve:

Minimize lim sup
T→∞

−
3∑
i=1

log (xi(T ))

Subject to lim sup
T→∞

−xi(T ) ≤ −x(min)
i i ∈ {1, 2, 3}

x(t) ∈ Xω(t) t ∈ {0, 1, 2, . . .},

where x(min)
i is the mininum rate for user i. In this example,

Ω = {1, 2}, π1 = 0.3, π2 = 0.7, X1 = {(0, 0, 0), (2, 1, 0), (0, 2, 2)},
X2 = {(0, 0, 0), (0, 1, 2), (1, 1, 1)}.

Solving formulation (1) using the stochastic network opti-
mization framework does not require any statistical knowledge
of the random states. However, if the steady state probabilities
are known, the optimal objective cost of formulation (1) is
identical the optimal cost of the following problem:

Minimize f(x) (2)
Subject to gj(x) ≤ 0 j ∈ {1, . . . , J}

x ∈ X ,

where X,
∑
ω∈Ω πωXω . Note that, for any α, β ∈ R and any

sets A and B, notation αA+βB = {αa+ βb : a ∈ A, b ∈ B}.

Formulation (2) is convex; however, its optimal solution
may not be in any of the sets Xω . In fact, determining whether
x is a member of X may already be a difficult task. This
illustrates that traditional and state-of-the-art techniques for
solving convex optimization cannot be applied directly to
solve problem (1). Nevertheless, their convergence times are
compelling to be mentioned for a purpose of comparison.

The convergence time of an algorithm is usually measured
as a function of an O(ε)-approximation to the optimal solution.
For a convex optimization problem, several techniques utilizing
a time average solution [9]–[11] have O(1/ε2) convergence
time. For unconstrained optimization without a more restrictive
“strong convexity” property, the optimal first-order method
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[12], [13] has O(1/
√
ε) convergence time, while the gradi-

ent and subgradient methods have respectively O(1/ε) and
O(1/ε2) convergence time [14]. For constrained optimization,
two algorithms developed in [15], [16] have O(1/ε) conver-
gence time; however, the results rely on special structures
of their formulation. All of these results are for convex
optimization problems, which are not formulation (1).

This paper considers a drift-plus-penalty algorithm, de-
veloped in [1], that solves formulation (1). The algorithm is
shown to have O(1/ε2) convergence time in [17]. Note that a
deterministic version of formulation (1) and its corresponding
convergence are studied in [18]. Despite the similar analysis
procedures, the analysis in this work is more challenging due
to stochastic events and multiple decision sets.

Inspired by the analysis in [19], the drift-plus-penalty
algorithm is shown to have a transient phase and a steady state
phase. These phases are analyzed in two cases that depend
on the structure of a dual function. The first case is when
a dual function satisfies a locally-polyhedral assumption and
the transient time is O(1/ε). The second case is when the
dual function satisfies a locally-non-polyhedral assumption and
the transient time is O(1/ε1.5). Then, under a uniqueness
assumption on a vector of Lagrange multipliers, if the time
average starts in the steady state phase, a solution converges in
O(1/ε) and O(1/ε1.5) time slots under the locally-polyhedral
and locally-non-polyhedral assumptions respectively.

Even though this characterization of the time complexity
is important in its own right, it can also be used to improve
the convergence speed of a system if enough prior samples of
random states are available. This can be done by using those
samples in the transient phase and only implementing decisions
in the steady state phase. Recent work in this direction is in
[20], which considers methods to improve transient times that
can likely be used in conjunction with results in the current
paper.

The paper is organized as follows. Section II constructs an
algorithm solving problem (1). The behavior and properties of
the algorithm are analyzed in Section III. Section IV analyzes
the transient phase and the steady state phase under the
locally-polyhedral assumption. Results under the locally-non-
polyhedral assumption are provided in Section V. Simulations
are performed in Section VI.

II. TIME-AVERAGE STOCHASTIC OPTIMIZATION

A solution to problem (1) can be obtained through an
auxiliary problem, which is formulated in such a way that its
optimal solution is also an optimal solution to the time-average
problem. To formulate this auxiliary problem, an additional set
and mild assumptions are defined. First of all, it can be shown
that X is compact.

Assumption 1: There exists a vector x̂ in the interior of X
that satisfies gj(x̂) < 0 for all j ∈ {1, . . . , J}.
In convex optimization, Assumption 1 is a Slater condition,
which is a sufficient condition for strong duality [21].

Define the extended set Y that is a compact and convex
subset of RI and contains X . Set Y can be X , but it can be
defined as a hyper-rectangle set to simplify a later algorithm.
Define ‖·‖ as the Euclidean norm.

Assumption 2: Functions f and gj for j ∈ {1, . . . , J} are
convex and Lipschitz continuous on the extended set Y , so
there are constants Mf > 0 and Mgj > 0 for j ∈ {1, . . . , J}
that for any x, y ∈ Y:

|f(x)− f(y)| ≤Mf‖x− y‖ (3)
|gj(x)− gj(y)| ≤Mgj‖x− y‖. (4)

We assume that Assumptions 1 and 2 always hold in this paper.

A. Auxiliary formulation

For function a(x(t)) of vector x(t), define an average of
function values as

a(x), lim
T→∞

1

T

T−1∑
t=0

E [a(x(t))].

Recall that problem (1) can be achieved with an ergodic
policy for which the limiting time average expectation exists.
The time average stochastic optimization (1) is solved by
considering an auxiliary formulation, which is formulated in
terms of well defined limiting expectations for simplicity.

Minimize f(y) (5)

Subject to gj(y) ≤ 0 j ∈ {1, . . . , J}
lim
T→∞

xi(T ) = lim
T→∞

yi(T ) i ∈ {1, . . . , I}

(x(t), y(t)) ∈ Xω(t) × Y t ∈ {0, 1, 2, . . .}.

This formulation introduces the auxiliary vector y(t). The sec-
ond constraint ties limT→∞ x(T ) and limT→∞ y(T ) together,
so the original objective function and constraints of problem
(1) are preserved in problem (5). Let f (opt) be the optimal
objective cost of problem (1).

Theorem 1: The time-average stochastic problem (1) and
the auxiliary problem (5) have the same optimal cost, f (opt).

Proof: Please see the full proof in [22].

B. Lyapunov optimization

The auxiliary problem (5) can be solved by the Lyapunov
optimization technique [1]. Define Wj(t) and Zi(t) to be
virtual queues of the first and second constraints of problem
(5) with update dynamics:

Wj(t+ 1) = [Wj(t) + gj(y(t))]+ j ∈ {1, . . . , J} (6)
Zi(t+ 1) = Zi(t) + xi(t)− yi(t) i ∈ {1, . . . , I}, (7)

where operator [·]+ is the projection to a corresponding non-
negative orthant.

For ease of notations, let W (t),(W1(t), . . . ,WJ(t)),
Z(t),(Z1(t), . . . , ZI(t)), and g(y),(g1(y), . . . , gJ(y)) re-
spectively be the vectors of virtual queues Wj(t), Zi(t), and
functions gj(y).

Define Lyapunov function (8) and Lyapunov drift (9) as

L(t),
1

2

[
‖W (t)‖2 + ‖Z(t)‖2

]
(8)

∆(t),L(t+ 1)− L(t). (9)

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

491



Let notation A
>

denote the transpose of vector A. Define
C, supx∈C,y∈Y

[
‖g(y)‖2 + ‖x− y‖2

]
/2, which is finite.

Lemma 1: For every t ∈ {0, 1, 2, . . .}, the Lyapunov drift
is upper bounded by

∆(t) ≤ C +W (t)
>
g(y(t)) + Z(t)

>
[x(t)− y(t)]. (10)

Proof: The proof is similar to the one in [18] and [22].

Let V > 0 be any positive real number representing a
parameter of an algorithm solving problem (5). The drift-plus-
penalty term is defined as ∆(t)+V f(y(t)). Applying Lemma
1, the drift-plus-penalty term is bounded for every time t by

∆(t)+V f(y(t)) ≤ C+W (t)
>
g(y(t))+Z(t)

>
[x(t)− y(t)]

+ V f(y(t)). (11)

C. Drift-plus-penalty algorithm

Let W 0 and Z0 be the initial condition of W (0) and
Z(0) respectively. Every time step, the Lyapunov optimization
technique observes the current realization of random state ω(t)
before choosing decisions x(t) ∈ Xω(t) and y(t) ∈ Y that
minimize the right-hand-side of (11). The drift-plus-penalty
algorithm is summarized in Algorithm 1.

Initialize V,W (0) = W 0, Z(0) = Z0.
for t ∈ {0, 1, 2, . . .} do

Observe ω(t)

x(t) = arginfx∈Xω(t)
Z(t)

>
x

y(t) = arginfy∈Y

[
V f(y) +W (t)

>
g(y)− Z(t)

>
y
]

W (t+ 1) = [W (t) + g(y(t))]+
Z(t+ 1) = Z(t) + x(t)− y(t)

end
Algorithm 1: Drift-plus-penalty algorithm solving (5).

III. BEHAVIORS OF DRIFT-PLUS-PENALTY ALGORITHM

Starting from (W (0), Z(0)), Algorithm 1 reaches the
steady state when vector (W (t), Z(t)) concentrates around
a specific set (defined in Section III-A). The transient phase
is the period before this concentration. Note that this behav-
ior is different from the deterministic case in [18], where
(W (t), Z(t)) in the steady state is contained in a specific set.

A. Embedded Formulation

A convex optimization problem, called embedded formu-
lation, is considered. This idea is inspired by [19].

Minimize f(y) (12)
Subject to gj(y) ≤ 0 j ∈ {1, . . . , J}

y =
∑
ω∈Ω

πωx
ω

y ∈ Y, xω ∈ Xω ω ∈ Ω.

Note that formulation (12) contains multiple sets Xω and
is more complex than its deterministic version in [18].

This formulation has a dual problem, whose properties are
used in convergence analysis. Let w ∈ RJ+ and z ∈ RI be the
vectors of dual variables associated with the first and second
constraints of problem (12). The Lagrangian is defined as

Γ
(
{xω}ω∈Ω, y, w, z

)
=∑

ω∈Ω

πω

[
f(y) + w

>
g(y) + z

>
(xω − y)

]
.

The dual function of problem (12) is

d(w, z) = inf
y∈Y, xω∈Xω:∀ω∈Ω

Γ
(
{xω}ω∈Ω, y, w, z

)
=
∑
ω∈Ω

πωdω(w, z), (13)

where dω(w, z) is defined in (14) and all of the minimizing
solutions y take the same value.

dω(w, z), inf
y∈Y, x∈Xω

[
f(y) + w

>
g(y) + z

>
(x− y)

]
. (14)

Define the solution to the infimum in (14) as

y∗(w, z), arginf
y∈Y

[
f(y) + w

>
g(y)− z

>
y
]
, (15)

x∗ω(z), arginf
x∈Xω

z
>
x. (16)

Finally, the dual problem of formulation (12) is

Maximize d(w, z) (17)
Subject to (w, z) ∈ RJ+ × RI .

Problem (17) has an optimal solution that may not be unique.
A set of these optimal solutions, which are vectors of Lagrange
multipliers, can be used to analyze the transient time. However,
to simplify the proofs and notations, a uniqueness assumption
is defined below. Define λ,(w, z) as a concatenation vector
of w and z.

Assumption 3: Dual problem (17) has a unique vector of
Lagrange multipliers denoted by λ∗,(w∗, z∗).

This assumption is assumed throughout Section IV and
Section V. Note that this is a mild assumption when practical
systems are considered, e.g., [5], [19]. Furthermore, simulation
results in [18] evince that this assumption may not be needed.

To prove the main result of this section, a useful property
of dω(w, z) is derived. Define h(x, y),(g(y), x− y).

Lemma 2: For any λ = (w, z) ∈ RJ+ × RI and ω ∈ Ω, it
holds that

dω(λ∗) ≤ dω(λ) + h(x∗ω(z), y∗(w, z))
>

[λ∗ − λ]. (18)

Proof: From (14), it follows, for any λ = (w, z) ∈ RJ+ ×
RI and (x, y) ∈ Xω × Y , that

dω(λ∗) ≤ f(y) + h(x, y)
>
λ∗

= f(y) + h(x, y)
>
λ+ h(x, y)

>
[λ∗ − λ]

Setting (x, y) = (x∗ω(w, z), y∗ω(z)), as defined in (15) and
(16), and using (14) proves the lemma.
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The following lemma ties the virtual queues of Algorithm
1 to the Lagrange multipliers. Given the generated W (t)
and Z(t) of Algorithm 1, define Q(t),(W (t), Z(t)) as a
concatenation of these vectors. The queue dynamics (6) and
(7) are equivalent to

Q(t+ 1) = P[Q(t) + h(x(t), y(t))]

where P[(W,Z)] denotes the projection of the concatenated
vector (W,Z) onto the set RJ+ × RI .

Lemma 3: The following holds for every t ∈ {0, 1, 2, . . .}:

E
[
‖Q(t+ 1)− V λ∗‖2

∣∣∣Q(t)
]

≤ ‖Q(t)− V λ∗‖2 + 2C + 2V [d(Q(t)/V )− d(λ∗)].

Proof: The non-expansive projection [21] implies that

‖Q(t+ 1)− V λ∗‖2 ≤ ‖Q(t) + h(x(t), y(t))− V λ∗‖2

= ‖Q(t)− V λ∗‖2 + ‖h(x(t), y(t))‖2

+ 2h(x(t), y(t))
>

[Q(t)− V λ∗]
≤ ‖Q(t)− V λ∗‖2 + 2C + 2h(x(t), y(t))

>
[Q(t)− V λ∗]

(19)

From (14), when λ = Q(t)/V , we have

dω(t)(Q(t)/V ) =

inf
y∈Y, x∈Xω(t)

[
f(y) +

W (t)

V

>

g(y) +
Z(t)

V

>

(x− y)

]
,

so y∗(W (t)/V, Z(t)/V ) = y(t) and x∗ω(t)(Z(t)/V ) = x(t)
where (y∗(W (t)/V, Z(t)/V ), x∗ω(t)(Z(t)/V )) is defined in
(15) and (16), and (y(t), x(t)) is the decision from Algorithm
1. Therefore, property (18) implies that

h(x(t), y(t))
>

[Q(t)− V λ∗] ≤ V
[
dω(t)(Q(t)/V )− dω(t)(λ

∗)
]
.

Applying the above inequality on the last term of (19) gives

‖Q(t+ 1)− V λ∗‖2 ≤ ‖Q(t)− V λ∗‖2 + 2C

+ 2V
[
dω(t)(Q(t)/V )− dω(t)(λ

∗)
]
.

Taking a conditional expectation given Q(t) proves the lemma:

E
[
‖Q(t+ 1)− V λ∗‖2

∣∣∣Q(t)
]
≤ ‖Q(t)− V λ∗‖2 + 2C

+ 2V
∑
ω∈Ω

πω[dω(Q(t)/V )− dω(λ∗)].

The analysis of transient and steady state phases in Sections
IV and V will utilize Lemma 3. The convergence results in the
steady state require the following results.

B. T -slot convergence

For any positive integer T and any starting time t0, define
the T -slot average starting at t0 as

x(t0, T ),
1

T

t0+T−1∑
t=t0

x(t).

This average leads to the following convergence bounds.

Theorem 2: Let {Q(t)}∞t=0 be a sequence generated by
Algorithm 1. For any positive integer T and any starting time
t0, the objective cost converges as

E [f(x(t0, T ))]− f (opt) ≤ Mf

T
E [‖Z(t0 + T )− Z(t0)‖]

+
1

2TV
E
[
‖Q(t0)‖2 − ‖Q(t0 + T )‖2

]
+
C

V
, (20)

and the constraint violation for every j ∈ {1, . . . , J} is

E [gj(x(t0, T ))] ≤ 1

T
E [Wj(t0 + T )−Wj(t0)]

+
Mgj

T
E [‖Z(t0 + T )− Z(t0)‖]. (21)

Proof: Please see the full proof in [22].

To interprete Theorem 2, the following concentration
bound is provided. It is proven in [23].

C. Concentration bound

Theorem 3: Let K(t) be a real random process over t ∈
{0, 1, 2, . . .} satisfying

|K(t+ 1)−K(t)| ≤ δ and

E [K(t+ 1)−K(t)|K(t)] ≤
{
δ ,K(t) < γ
−β ,K(t) ≥ γ,

for some positive real-valued δ, γ, and 0 < β ≤ δ.

Suppose K(0) = k0 (with probability 1) for some k0 ∈ R.
Then for every time t ∈ {0, 1, 2, . . .}, the following holds:

E
[
erK(t)

]
≤ D +

(
erk0 −D

)
ρt

where 0 < ρ < 1 and constants r, ρ, and D are:

r,
β

(δ2 + δβ/3)
, ρ,1− rβ

2

D,

(
erδ − ρ

)
erγ

1− ρ
.

In this paper, random process K(t) is defined to be the
distance between Q(t) and the vector of Lagrange multipliers,
so K(t),‖Q(t)− V λ∗‖ for every t ∈ {0, 1, 2, . . .}.

Lemma 4: It holds for every t ∈ {0, 1, 2, . . .} that

|K(t+ 1)−K(t)| ≤
√

2C

E [K(t+ 1)−K(t)|K(t)] ≤
√

2C.

Proof: The first part is proven in two cases.
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Locally-polyhedral Locally-non-polyhedral

Fig. 1. Illustrations of locally-polyhedral and locally-non-polyhedral dual
functions

i) If K(t+1) ≥ K(t), the non-expansive projection implies

|K(t+ 1)−K(t)| = K(t+ 1)−K(t)

≤ ‖Q(t) + h(x(t), y(t))− V λ∗‖ − ‖Q(t)− V λ∗‖
≤ ‖h(x(t), y(t))‖ ≤

√
2C.

ii) If K(t+ 1) < K(t), then

|K(t+ 1)−K(t)| = K(t)−K(t+ 1)

≤ ‖Q(t)−Q(t+ 1)‖+ ‖Q(t+ 1)− V λ∗‖ −K(t+ 1)

≤ ‖h(x(t), y(t))‖ ≤
√

2C.

Therefore, |K(t+ 1)−K(t)| ≤
√

2C. Using K(t + 1) −
K(t) ≤ |K(t+ 1)−K(t)| proves the second part.

Lemma 4 prepares K(t) for Theorem 3. The only constants
left to be specified are β and γ, which depend on properties
of dual function (13).

IV. LOCALLY-POLYHEDRAL DUAL FUNCTION

This section analyzes the transient time and a convergence
result in the steady state. Dual function (13) in this section is
assumed to satisfy a locally-polyhedral property, introduced in
[19]. This property is illustrated in Figure 1. It holds when f
and each gj for j ∈ {1, . . . , J} are either linear or piece-wise
linear.

Assumption 4: Let λ∗ be the unique Lagrange multiplier
vector. There exists LP > 0 such that dual function (13)
satisfies, for any λ ∈ RJ+ × RI ,

d(λ∗) ≥ d(λ) + LP‖λ− λ∗‖. (22)

Note that, by concavity of the dual function, if inequality
(22) holds locally about λ∗, it must also hold globally. The
subscript P denotes “polyhedral.”

A. Transient time

The progress of Q(t) at each step can be analyzed. Define

BP,max

[
LP

2
,

2C

LP

]
. (23)

Lemma 5: Under Assumptions 3 and 4, whenever
‖Q(t)− V λ∗‖ ≥ BP, the following holds

E [‖Q(t+ 1)− V λ∗‖|Q(t)] ≤ ‖Q(t)− V λ∗‖ − LP

2
.

Proof: If condition

2C + 2V [d(Q(t)/V )− d(λ∗)] ≤ −LP‖Q(t)− V λ∗‖+ L2
P/4
(24)

is true, Lemma 3 implies that

E
[
‖Q(t+ 1)− V λ∗‖2|Q(t)

]
≤ ‖Q(t)− V λ∗‖2 − LP‖Q(t)− V λ∗‖+ L2

P/4

= [‖Q(t)− V λ∗‖ − LP/2]
2
.

Applying Jensen’s inequality [21] on the left-hand-side yields

E [‖Q(t+ 1)− V λ∗‖|Q(t)]
2 ≤ [‖Q(t)− V λ∗‖ − LP/2]

2
.

When ‖Q(t)− V λ∗‖ ≥ LP/2, it follows that

E [‖Q(t+ 1)− V λ∗‖|Q(t)] ≤ ‖Q(t)− V λ∗‖ − LP/2. (25)

It requires to show that condition (24) holds whenever
‖Q(t)− V λ∗‖ ≥ BP. Assumption 4 implies that

2C + 2V [d(Q(t)/V )− d(λ∗)] ≤ 2C − 2LP‖Q(t)− V λ∗‖.

From the definition of BP in (23), ‖Q(t)− V λ∗‖ ≥ BP implies
LP‖Q(t)− V λ∗‖ ≥ 2C and

2C + 2V [d(Q(t)/V )− d(λ∗)] ≤ −LP‖Q(t)− V λ∗‖,

which implies (24).

Lemma 5 implies that, in expectation, Q(t) proceeds closer
to V λ∗ in the next step when the distance between them is at
least BP. This implication means that Q(t) concentrates around
V λ∗ in the steady state.

B. Convergence time in a steady state

Define constants rP, ρP, DP, UP, U
′
P as

rP,
3LP

12C + LP
√

2C
, ρP,1− rPLP

4
, (26)

DP,
erPBP

(
erP
√

2C − ρP

)
1− ρP

(27)

UP,
log (DP + 1)

rP
, U ′P,

2(DP + 1)

r2
P

. (28)

Given the initial condition Q0,(W 0, Z0), define

TP,

⌈
rP
∥∥Q0 − V λ∗

∥∥
log(1/ρP)

⌉
, (29)

where constants rP and ρP are defined in (26). The value TP
is O(V ). The next lemma shows TP can be interpreted as the
transient time, so that desirable “steady state” bounds hold
after this time.

Lemma 6: Suppose Assumptions 3 and 4 hold. Given the
initial condition Q0,(W 0, Z0), for any time t ≥ TP when TP
is defined in (29), the following holds

E [‖Q(t)− V λ∗‖] ≤ UP (30)

E
[
‖Q(t)− V λ∗‖2

]
≤ U ′P, (31)

where constants UP and U ′P are defined in (28).

Proof: Recall that K(t),‖Q(t)− V λ∗‖. From Lemmas
4 and 5, constants in Theorem 3 are δ =

√
2C, γ = BP, and

β = LP/2. Theorem 3 implies, for any t ≥ 0, that

E
[
erPK(t)

]
≤ DP +

(
erPk0 −DP

)
ρtP ≤ DP + erPk0ρtP (32)
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where k0 = K(0) =
∥∥Q0 − V λ∗

∥∥, and constants rP, ρP, DP
are defined in (26) and (27). We then show that

erPk0ρtP ≤ 1 ∀t ≥ TP. (33)

Inequality erPk0ρtP ≤ 1 is equivalent to t ≥ rP‖Q0−V λ∗‖
log(1/ρP) by

arithmetic and the fact that log(1/ρP) > 0. From the definition

of TP in (29), it holds that TP ≥
rP‖Q0−V λ∗‖

log(1/ρP) , and the result
(33) follows.

From (33), inequality (32) becomes

E
[
erPK(t)

]
≤ DP + 1 ∀t ≥ TP. (34)

Jensen’s inequality implies that erPE[K(t)] ≤ E
[
erPK(t)

]
, and

we have erPE[K(t)] ≤ DP + 1. Taking logarithm and dividing
by rP proves (30).

Chernoff bound (see for example in [24]) implies that, for
any m ∈ R+,

P [K(t) ≥ m] ≤ e−rPmE
[
erPK(t)

]
≤ e−rPm(DP + 1) ∀t ≥ TP

(35)
where the last inequality uses (34). Since K(t)2 is al-
ways non-negative, it can be shown that E

[
K(t)2

]
=

2
∫∞

0
mP [K(t) ≥ m]dm by the integration by parts. Using

(35), we have

E
[
K(t)2

]
≤ 2(DP + 1)

∫ ∞
0

me−rPmdm.

Performing the integration by parts proves (31).

The above lemma implies that, in the steady state, the
expected distance and square distance between Q(t) and the
vector of Lagrange multipliers are bounded by constants that
do not depend on V . This phenomenon leads to an improved
convergence time when the average is performed in the steady
state. A useful result is derived before the main theorem.

Lemma 7: For any times t1 and t2, it holds that

E
[
‖Q(t1)‖2 − ‖Q(t2)‖2

]
≤ E

[
‖Q(t1)− V λ∗‖2

]
+ 2‖V λ∗‖E [‖Q(t1)− V λ∗‖+ ‖Q(t2)− V λ∗‖].

Proof: It holds for any Q ∈ RJ+ × RI that

‖Q‖2 = ‖Q− V λ∗‖2 + ‖V λ∗‖2 + 2(Q− V λ∗)
>

(V λ∗).

Using the above equality with Q1, Q2 ∈ RJ+ × RI leads to

‖Q1‖2 − ‖Q2‖2

≤ ‖Q1 − V λ∗‖2 − ‖Q2 − V λ∗‖2 + 2(Q1 −Q2)
>

(V λ∗)

≤ ‖Q1 − V λ∗‖2 + 2‖Q1 −Q2‖‖V λ∗‖
≤ ‖Q1 − V λ∗‖2 + 2‖V λ∗‖[‖Q1 − V λ∗‖+ ‖Q2 − V λ∗‖].

Taking an expectation proves the lemma.

Finally, the convergence in the steady state is analyzed.

Theorem 4: Suppose Assumptions 3 and 4 hold. For any
time t0 ≥ TP and positive integer T , the objective cost
converges as

E [f(x(t0, T ))]− f (opt) ≤ 2MfUP

T
+
U ′P + 4V UP‖λ∗‖

2TV
+
C

V
(36)

and the constraint violation is upper bounded by

E [gj(x(t0, T ))] ≤ 2UP

T
+

2MgjUP

T
. (37)

Proof: From Theorem 2, the objective cost converges as
(20). Since TP ≤ t0 < t0 + T , we use results in Lemma 6 to
upper bound E [‖Q(t)− V λ∗‖] and E

[
‖Q(t)− V λ∗‖2

]
for t0

and t0 + T . Terms in the right-hand-side of (20) are bounded
by

E [‖Z(t0 + T )− Z(t0)‖] ≤ E [‖Q(t0 + T )−Q(t0)‖]
≤ E [K(t0 + T ) +K(t0)] ≤ 2UP. (38)

Lemma 7 implies that

E
[
‖Q(t0)‖2 − ‖Q(t0 + T )‖2

]
≤ E

[
K(t0)2 + 2‖V λ∗‖[K(t0) +K(t0 + T )]

]
≤ U ′P + 4V UP‖λ∗‖. (39)

Substituting bounds (38) and (39) into (20) proves (36).

The constraint violation converges as (21) where TP ≤ t0 <
t0 + T . Using Lemma 6, the last term in the right-hand-side
of (21) is bounded in (38). The first term is bounded by

E [Wj(t0 + T )−Wj(t0)]

≤ E [|Wj(t0 + T )− V λ∗|+ |Wj(t0)− V λ∗|]
≤ E [K(t0 + T ) +K(t0)] ≤ 2UP.

Substituting the above bound and (38) into (21) proves (37).

The implication of Theorem 4 is as follows. When the
average starts in the steady state, the deviation from the optimal
cost is O(1/T +1/V ), and the constraint violation is bounded
by O(1/T ). By setting V = 1/ε and T = 1/ε, both optimal
cost and constrain violation achieve O(ε)-approximation, and
the convergence time is O(1/ε) slots. Note that this setting
yields O(1/ε) transient time, since TP = O(V ) = O(1/ε).

V. LOCALLY-NON-POLYHEDRAL DUAL FUNCTION

The dual function (13) in Section V is assumed to satisfy
a locally-non-polyhedral property, modified from [19]. This
property is illustrated in Figure 1.

Assumption 5: Let λ∗ be the unique Lagrange multiplier
vector. There exist S > 0 and LN > 0 such that, whenever
λ ∈ RJ+ × RI and ‖λ− λ∗‖ ≤ S, dual function (13) satisfies

d(λ∗) ≥ d(λ) + LN‖λ− λ∗‖2.

Note that the subscript N denotes “non-polyhedral.”

It can be shown that Assumption 5 implies

d(λ∗) ≥ d(λ) + SLN‖λ− λ∗‖

for all λ ∈ RJ+ × RI and ‖λ− λ∗‖ > S.1

1We would like to thank Hao Yu for noticing this fact.
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A. Transient time

The progress of Q(t) at each step can be analyzed. Define

BN(V ),max

[
1√
V
,
√
V

(
1 +
√

1 + 4LNC

2LN

)]
B′N,max

[
SLN

2
,

2C

SLN

]
.

Lemma 8: Suppose Assumptions 3 and 5 hold. When V
is large enough to ensure both BN(V ) ≤ SV and B′N ≤ SV ,
the following holds

E [‖Q(t+ 1)− V λ∗‖|Q(t)]− ‖Q(t)− V λ∗‖

≤
{
− 1√

V
, if BN(V ) ≤ ‖Q(t)− V λ∗‖ ≤ SV

−SLN
2 , if ‖Q(t)− V λ∗‖ > SV

(40)

Proof: Please see the full proof in [22].

The interpretation of Lemma 8 is similar to Lemma 5
except that BN(V ) and the negative drift (40) are functions
of V . Nevertheless, Lemma 8 implies that Q(t) concentrates
around V λ∗ in the steady state.

B. Convergence time in a steady state

Define constants rN(V ), ρN(V ), DN(V ), UN(V ), U ′N(V ) as

rN(V ),
3

6C
√
V +

√
2C

, ρN(V ),1− rN(V )

2
√
V
, (41)

DN(V ),
erN(V )BN(V )

(
erN(V )

√
2C − ρN(V )

)
1− ρN(V )

(42)

UN(V ),
log (DN(V ) + 1)

rN(V )
, U ′N(V ),

2(DN(V ) + 1)

rN(V )2
.

(43)

Given the initial condition Q0,(W 0, Z0), define the transient
time for a locally-non-polyhedral dual function as

TN,

⌈
rN(V )

∥∥Q0 − V λ∗
∥∥

log(1/ρN(V ))

⌉
, (44)

where constants rN(V ) and ρN(V ) are defined in (41). Defini-
tion (44) implies that the transient time under the locally-non-
polyhedral assumption is O(V 1.5). This TN can be interpreted
as the transient time, so that desirable bounds hold after this
time.

Lemma 9: Suppose Assumptions 3 and 5 hold. When V
is large enough to ensure BN(V ) ≤ SV , B′N ≤ SV , and√
V ≥ 2/SLN, for any time t ≥ TN, the following holds

E [‖Q(t)− V λ∗‖] ≤ UN(V ) (45)

E
[
‖Q(t)− V λ∗‖2

]
≤ U ′N(V ) (46)

where UN(V ) and U ′N(V ) are defined in (43).

Proof: Please see the full proof in [22].

The convergence results in the steady state are as follows.

Theorem 5: Suppose Assumptions 3 and 5 hold. When V
is large enough to ensure BN(V ) ≤ SV,B′N ≤ SV , and

√
V ≥

2/SLN, then for any time t0 ≥ TN and any positive integer T ,
the objective cost converges as

E [f(x(t0, T ))]− f (opt) ≤ 2MfUN(V )

T

+
U ′N(V ) + 4V UN(V )‖λ∗‖

2TV
+
C

V
(47)

and the constraint violation is upper bounded by

E [gj(x(t0, T ))] ≤ 2UN(V )

T
+

2MgjUN(V )

T
. (48)

Proof: Please see the full proof in [22].

The implication of Theorem 5 is as follows. When the
average starts in the steady state, the deviation from the
optimal cost is O(

√
V /T + 1/V ), and the constraint violation

is bounded by O(
√
V /T ). Note that this can be shown by

substituting BN(V ), rN(V ), ρN(V ), DN(V ) into (47) and (48).
By setting V = 1/ε and T = 1/ε1.5, this achieves an O(ε)-
approximation with transient time and convergence time of
O(1/ε1.5).

VI. SIMULATION

A. Staggered Time Averages

In order to take advantage of the improved convergence
times, computation of time averages must be started in the
steady state phase shortly after the transient time. To achieve
this performance without knowing the end of the transient
phase, time averages can be restarted over successive frames
whose frame lengths increase geometrically. For example, if
one triggers a restart at times 2k for integers k, then a restart
is guaranteed to occur within a factor of 2 of the time of the
actual end of the transient phase.

B. Results

This section illustrates the convergence times of the
drift-plus-penalty Algorithm 1 under locally-polyhedron and
locally-non-polyhedron assumptions. Let Ω = {0, 1, 2},X0 =
{(0, 0)},X1 = {(−5, 0), (0, 10)},X2 = {(0,−10), (5, 0)},
and (π0, π1, π2) = (0.1, 0.6, 0.3). A formulation is

Minimize lim sup
T→∞

f(x(T )) (49)

Subject to lim sup
T→∞

[−2x1(T )− x2(T )] ≤ −1.5

lim sup
T→∞

[−x1(T )− 2x2(T )] ≤ −1.5

(x1(t), x2(t)) ∈ Xω(t), t ∈ {0, 1, 2, . . . }

where function f will be given for different cases.

Under locally-polyhedron assumption, let f(x) = 1.5x1 +
x2 be the objective function of problem (49). In this set-
ting, the optimal value is 1.25 where limT→∞ x1(T ) =
limT→∞ x2(T ) = 0.5. Figure 2 shows the values of objective
and constraint functions of time-average solutions. It is easy to
see the improved convergence time O(1/ε) from the staggered
time averages compared to the convergence time O(1/ε2) of
Algorithm 1.

Under locally-non-polyhedral assumption, let f(x) = x2
1 +

x2
2 be the objective function of problem (49). Note that the
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Fig. 2. Processes of solving (49) with f(x) = 1.5x1 + x2

Fig. 3. Processes of solving (49) with f(x) = x2
1 + x2

2

optimal value of this problem is 0.5 where limT→∞ x1(T ) =
limT→∞ x2(T ) = 0.5. Figure 3 shows the values of objective
and constraint functions of time-average solutions. It can be
seen from the plot of constraints that the staggered time
averages converge faster than Algorithm 1. This illustrates the
different between convergence times O(1/ε1.5) and O(1/ε2).
Additional results of problems without the uniqueness assump-
tion can be found in [22].

VII. CONCLUSION

We consider the time-average stochastic optimization prob-
lem with a non-convex decision set. The problem can be solved
using the drift-plus-penalty algorithm, which has convergence
time O(1/ε2). After we analyze the transient and steady state
phases of the algorithm, the convergence time can be improved
by performing time average in the steady state. We prove that
the improved convergence time is O(1/ε) under the locally-
polyhedral assumption and is O(1/ε1.5) under the locally-non-
polyhedral assumption.
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