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Abstract—Topology Control (TC) is a fundamental research
problem where the goal is to determine a set of wireless links such
that the composed topology satisfies some desirable properties.
Some of the achievable properties are connectivity, symmetricity,
planarity, minimal use of energy, sparseness, bounded maximum
node degree etc. A topology is said to be planar if there is no
link crossing in the topology. Planar topologies are heavily used
by several protocols lying on different layers of the protocol
stack. Several TC algorithms generating planar topologies have
been proposed recently. Although sparseness is a key metric in
evaluating performance of such topologies, none of the prior algo-
rithms provide any mathematical model to determine sparseness
of the topology. In this paper, we provide a generic analytical
model for evaluating sparseness of planar topologies. The derived
analytical expressions can be used in determining average node
degree, topology size etc., without running simulations or prior
to the deployment of real systems. The analytical expressions are
validated through extensive simulation experiments.

I. INTRODUCTION

The link in wireless multi-hop networks is a virtual concept.

We say there exists a link between two (wireless) transceivers

if they are located within the transmission range of each other.

By weaving all virtual links between every transceiver pairs,

the topology of a wireless network is derived. As the very basic

purpose of any network is to facilitate exchange of information

between any two nodes, all wireless links are not necessarily

needed as long as the connectivity between all possible pairs

is ensured. Therefore, by rearranging the transmission range,

one can easily eliminate unnecessary links and reshape the

underlying topology as needed. This possible rearrangement

of transmission powers is known as topology control (TC).

Formally, the topology control is a fundamental research

problem where the goal is to determine a set of wireless

links such that the composed topology satisfies some desirable

properties. Some of the achievable properties investigated by

several researchers are connectivity, symmetricity, planarity,

minimal use of energy, sparseness, bounded maximum node

degree etc. Among those properties, planarity has drawn atten-

tion in a significant number of researchers [10], [7], [5], [6].

A topology is said to be planar if there is no link crossing

in the topology. Planar topologies are heavily used by several

protocols lying on different layers of the protocol stack. For

instance, routing layers determine shortest paths quickly in

linear time when the underlying topology is planar [7]. Several

position-based routing algorithms use planar topologies to

guarantee successful delivery of a packet. For example, Gabriel

graph was used as a planar subgraph in Face routing protocol.

Geographic routing protocols like GOAFR [3] or GPSR [6]

forwards the packet to the neighbor that is closest to the

destination in terms of distance or direction. However, they

frequently encounters local minima, where a packet gets stuck

due to all neighboring nodes being further away from the target

than its current location. As a fall back, they require a planar

subgraph (traditionally a Gabriel Graph) which essentially

allows the packet to be routed around the communication

voids in the network. Relative Neighborhood Graph (RNG),

another planar graph, was used for efficient broadcasting that

minimizes the number of retransmissions [15].

Many protocols generating planar topologies occupy a rich

proportion of state-of-the-art topology control algorithms. A

series of planar graph structures, also known as proximity

graphs, borrowed from computation geometry have widely

been used for solving different fundamental problems of wire-

less multi-hop networks. Some examples of those planar graph

structures are Euclidean Minimum Spanning Tree (EMST),

RNG [17], GG [4], Delaney triangulation (DT) [10] etc, to

name a few. Another special class of planar graphs, dubbed

as r-neighborhood graph [5], has recently been proposed for

mobile wireless multi-hop networks. It has been shown that

RNG and GG are special instances of r-neighborhood graph.

All of these graph structures have been heavily analyzed using

graph theoretic approaches. Some of the metrics derived from

those analysis include maximum bound on total number of

edges, maximum node degree, power stretch factor, distance

stretch factor etc. However, it is unclear how to estimate

sparseness of those topologies using such graph theoretic

approaches. One inherent reason lies on the fact that most

of the topology control algorithms typically generate highly

complex structures which are often difficult to analyze using

simple graph theoretic approaches and the existing algorithms

were only targeting simple heuristics. Nevertheless, sparseness

is a key metric in evaluating performance of any topology as

it indicates how many (wireless) links are still present in the

network after running TC. Sparseness also provides insight to

average node degree once it is analyzed on a per node basis.

Many other performance metrics are directly or indirectly

related to the sparseness. For instance, per node sparseness

(i.e. the average node degree) provides a crude estimation

of the level of relaying burden, contention and interference.

In general, the relaying burden is inversely proportional to
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the average node degree whereas contention and interference,

experienced by a node, are directly proportional to the av-

erage number of neighbors. Moreover, larger (average) node

degree means tighter dependency among nodes which is truly

undesirable when nodes move very rapidly.

Although sparseness is a key metric in evaluating perfor-

mance of such topologies, none of these prior planar topology

generating algorithms provide any mathematical model to

determine sparseness. Therefore, in this paper, we focus on a

class of planar topologies called the r-neighborhood graph, and

provide a generic analytical model for evaluating sparseness of

such topologies. Unlike other research works, we derive our

analysis by marrying the probability theory with the graph

theory. The derived analytical expressions can be used in

determining average node degree, topology size etc., without

running simulations or prior to the deployment of real systems.

A careful insight to derive analytical expressions backed-

up by the simulation results find that the performance of r-

neighborhood graphs, in terms of topology size and sparseness,

strongly depends on a number of network parameters (node

number, deployment area, and node distribution), and some

other transceiver parameters (transmission range, antenna

height, and gain). Notably, with the increase in transmission

power and node density the sparseness also increases. It turns

out that, the r value in r-neighborhood graph also has major

impact on the sparseness. More specifically, with the increase

in r value the sparseness drastically increases.

The major contributions of the paper are summarized as

follows: (i) we provide an analytical model for determining

sparseness/size of a class of planar topologies dubbed as r-

neighborhood graph (RNG and GG are special instances of this

class), (ii) for the first time in the literature, we demonstrate

how to analytically couple sparseness of planar topologies with

the radio transceiver parameters. (iii) finally, we quantitatively

explore how several factors such as transceiver and network

parameters affect the sparseness of the planar topologies.

II. RELATED WORKS

The sparsest possible topology of n nodes is the global

minimum spanning tree (MST) containing exactly n−1 edges.

Somewhat closer to global MST is the local MST (LMST)

proposed by Li et al. [9] where each node creates LMST

within its neighborhood graph by assigning appropriate weight

to an edge based on the necessary transmission power to

reach its two ends. After constructing the LMST, each node

contributes to the final topology those nodes that are its

neighbors in its LMST. Although LMST can be constructed

in an energy-efficient distributed manner, no analytical model

is known to estimate its size or sparseness. In terms of

planarity, another established solution is the Relative Neigh-

borhood Graph (RNG) proposed by Toussaint [16] where

a link 〈s, t〉 is eliminated if the distance d(s, t) is greater

than the distance of any other node w from s or t, i.e.:

∃w 6= s, t : max(d(s, w), d(t, w)) < d(s, t).
On the other hand, GG [4], which is a super graph of RNG,

eliminates a link 〈s, t〉 if for any other node w it happens that:

Fig. 1. The r-neighborhood region

∃w 6= s, t : d2(s, w) + d2(t, w)) ≤ d2(s, t).
Milic and Malek derived analytical models for quantifying

dropped edges and face sizes of RNG and GG [11]. Inspired

by their work, we propose a framework for more generic

planar topologies dubbed as r-neighborhood graphs proposed

by Jeng et al [5]. However Milic and Malek limit themselves

only to sparseness. Here we provide analytical expressions

for some additional performance metrics such as average

node degree and topology sizes. There exists a volume of re-

search constructing minimum-energy path-preserving (MEPP)

topologies [14], [8] etc., neither of these topologies are pla-

nar nor there exist any analytical models to determine the

sparseness/topology size. In [13], Rahman and Abu-Ghazaleh

provide a generic framework for determining sparseness of

only MEPP topologies. However, the authors provide no

insight to determine sparseness of planar topologies. Thus, by

introducing a general framework for modeling sparseness of

planar topologies, we seek to fill a notable gap in the literature.

III. BACKGROUND OF THE PROBLEM

In this section we present as background some of the

definitions and the distributed algorithm for constructing r-

neighborhood graph structures.

A. The r-Neighborhood region

The r-neighborhood graph [5] is based on a concept of a

region dubbed as r-neighborhood region between any node

pair u and v located on a two dimensional space. This region

is basically the intersecting area of three circles:–(i) the circle

centered at u with radius ‖uv‖, (ii) the circle centered at v
with radius ‖uv‖, and finally, (iii) the circle centered at the

middle point muv on the line segment uv with radius luv =√
1+2r2

2 , where 0 ≤ r ≤ 1. In Fig. 1, the shaded region is

the r-neighborhood region between node pair (u, v), which is

the intersecting area of three open disks as defined above. Let

us assume that D(x, d) denotes a circle centered at point x
with radius d. Then the r-neighborhood region, denoted by

NRr(u, v), is formally defined as:

NRr(u, v) = D(u, ‖uv‖) ∩D(v, ‖uv‖) ∩D(muv, luv)

In the following theorem we provide an important property

of the r-neighborhood region. We prove the theorem in the

appendix.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

340



Theorem 1: For any two points u and v separated by

distance ‖uv‖, the area of r-neighborhood region is:

ANRr(u,v) = ‖uv‖2
(

π +
α2

2
δ − 2β +

α2

4
sin(2δ)− sin(2β)

)

where, 0 ≤ r ≤ 1, α =
√
1 + 2r2, δ = sin−1 (3−α2)

2α , and

β = sin−1
(

5−α2

4

)

B. The r-Neighborhood graph

The r-neighborhood graph [5], denoted as NGr(V ) over a
set of nodes V , is a proximity graph where two vertices u and

v are connected by an edge if and only if there is no node

w ∈ V is located in the r-neighborhood region NRr(u, v)
of node pair (u, v). The NGr(V ) at three different values

of r is shown in Fig. 2. Note that, many links are removed

from the initial graph shown in Fig. 2(a) while forming r-

neighborhood graph structures and as we increase the value

of r, the r-neighborhood graph becomes more and more sparse.

C. Some known results of r-Neighborhood graphs

In [5], the authors have analyzed r-neighborhood graphs

NGr(V ) using graph theoretic approaches. They have shown

that all r-neighborhood graphs are planar graphs and is a

generalized structure of both the GG and the RNG. In par-

ticular, for r = 0 the NGr(v) becomes GG and for r = 1
the NGr(V ) becomes RNG. This relation ship between three

graph structures is formally shown below:

RNG(V ) ⊆ NGr(V ) ⊆ GG(V )

Two other important properties that were derived are

power stretch factor ρ(NGr(v)) and maximum node degree

dmax(NGr(V )). Both were defined as functions of r, and
their definitions are as follows:

ρ(NGr(V )) ≤ 1 + rα(n− 2)

where n is the number of vertices, and,

dmax(NGr(V )) =
π

sin−1(r/2)

D. Our contribution

Although the power stretch factor and the maximum node

degree is known for r-neighborhood graphs, the average node

degree, sparseness and topology size are unknown. There-

fore, we develop analytical expressions to measure these new

performance metrics and comment on their various aspects.

Table I summarizes a complete picture of all performance

measures including the new metrics, what is known and what

is unknown at this point.

E. Algorithm for constructing r-neighborhood graphs

In this section we present as background the distributed

algorithm for constructing r-neighborhood graph. The al-

gorithm is presented with some inessential changes to make

the notation and presentation more suitable for better under-

standing of the proposed analytical models. Let, W be the

set of all nodes in the deployment area. For each s ∈ W ,

TABLE I
PERFORMANCE METRICS OF NGr(V ) AT A GLANCE)

Performance metrics Notation Analytical expression

Power stretch factor ρ(NGr(V )) 1 + rα(n− 2)

Maximum node degree dmax(NGr(V )) π
sin−1(r/2)

Average node degree davg(NGr(V )) Unknown

Sparseness Fe Unknown

Topology size S(GNGr(V )) Unknown

our goal is to find two sets of nodes:–(i) the initNeighbor set,

and, (ii) remainingNeighbor set. The first set initNeighbor
is the set of nodes in the initial topology and the second set

remainingNeighbor is the set of nodes in the r-neighborhood
graph. By taking union of the remainingNeighbor sets of

all nodes, the r-neighborhood graph NGr(V ) is constructed.

The distributed algorithm starts by broadcasting a “HELLO”

message from each node s ∈ W as shown in line 1 of the

Algorithm 1 DiscoverNeighbor. While s collects the replies

from its neighbors, it learns their identity and location. Each

replying node v is handled in Algorithm 2 HandleReply(v).

In the algorithm, at first for each x ∈ remainingNeighbor set,

we check whether v is located in the r-neighborhood region

of s and x (line 2). If that is the case, then we update the

remainingNeighbor set by deleting node x in line 3. When

this checking is done we insert v to the remainingNeighbor

set (line 6). There might be a node in the initNeighbor set of

s which is located in the r-neighborhood region of s and v.
This checking is done in line 8. If such a node x is found then

node v is deleted from the remainingNeighbor set (line 9).

Algorithm 1 DiscoverNeighbor

1: / ∗ broadcast“HELLO”message ∗ /
2: for each v that Replies do

3: handleReply(v)
4: end for

Algorithm 2 HandleReply(v)

1: for each x in remainingNeighbor do

2: if Loc(v) ∈ NRr(s, x) then
3: remainingNeighbor = remainingNeighbor\{x}
4: end if

5: end for

6: remainingNeighbor = remainingNeighbor ∪ {v}
7: for each x in initNeighbor do

8: if Loc(x) ∈ NRr(s, v) then
9: remainingNeighbor = remainingNeighbor\{v}
10: goto marker.

11: end if

12: end for

13: marker: initNeighbor = initNeighbor ∪ {v}
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(a) Initial deployment (b) r = 0 (c) r = 0.5 (d) r = 1

Fig. 2. The initial topology and the r-neighborhood graph for three different levels of r

Finally, we insert node v in the initNeighbor set in line 14.

IV. ANALYTICAL MODEL

In this section, we develop mathematical expressions for

determining sparseness, the average node degree, and topology

size.

Consider a multi-hop wireless network with n nodes uni-

formly distributed over a rectangular region with area A. The
average node density is µ = n

A
. The maximum transmission

radius of each node is R. We assume that transmission (TX)

range is homogeneous and same for every nodes.

Sparseness. The number of links removed from the initial

topology determines the sparseness of a r-neighborhood sub-

graph. Here we focus on per node sparseness which is the

average fraction of links removed from a node’s neighborhood.

When a link is removed, the node at the other end of the

link also gets removed from a node’s neighbor set. Thus,

mathematically, (per node) sparseness is defined as follows:

Sparseness = Average fraction of nodes eliminated

=
Average number of nodes removed

Number of nodes in a node’s TX area
(1)

As the node distribution is assumed to be uniform, it is

easy to determine the number of nodes present in a node’s

transmission (TX) area if the node density is known apriori.

To see how, let us observe an arbitrary node s within the

deployment area. The average number of nodes located in the

communication region of node s is:

NR = Node density×Transmission area = µ×πR2 =
πnR2

A
To find the average number of nodes removed in Equation 1, at

first we need to find PN (x), the probability that there exists a

neighbor t at distance x from s. Clearly, PN (x) = 0 for x >
R. For x ≤ R, consider a small area strip defined by dx at

the perimeter of the circle with radius x and centered at s as

shown in Fig. 3. Consider a small angle dθ measured from

an arbitrary but fixed axis. The length of the arc l = xdθ and

the area of the small region dA within this small strip can be

approximated as dA = ldx = xdxdθ. Therefore the area of

the entire small strip denoted by Astrip becomes:

Astrip =

∫ 2π

0

dA =

∫ 2π

0

ℓdx =

∫ 2π

0

xdxdθ = 2πxdx

Thus PN (x) becomes:

PN (x) = Area of the strip × Node density = Astrip × µ

= 2πxdx × µ = 2πµxdx (2)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

dθ
x

s

dx

ℓ

dA

Fig. 3. Illustrating a circular strip at distance x

Once we find the probability of a node’s existence at distance

x, the next thing is to find the probability that a node s would

prune such a node from its neighborset. According to the

definition of r-neighborhood graph, the node t gets pruned

from node s’s neighborhood if there exists a node in the r-

neighborhood region. Let Pp(x) be the probability that there

exists a node in the r-neighborhood region NRr(s, t) between
node pair (s, t). The probability PE(x) of eliminating any

node t from the neighbor set of s is the probability that there

exists a neighbor t at distance x from s, and there is a node

in the r-neighborhood region between (s, t). So PE(x) is:

PE(x) = PN (x)×Pp(x) =
2πnxdx

A
×Pp(x) = 2πµxdx×Pp(x)

The expected number of neighbors eliminated by s from its

neighbor set is found by integrating PE(x) over the transmis-

sion radius R within which s possibly can communicate:

Te =
∫ R

0

2πµx× PP (x)dx (3)

If we assume a disc communication area for s with radius

R then the expected number of nodes within s’s maximum

communication range becomes πR2 × µ = πµR2. Therefore,

if we divide Te by πµR2, we get the average fraction of

neighbors eliminated, Fe, which we define as sparseness,

Sparseness = Fe =
Te

πµR2
(4)

Average node degree. The average node degree (davg) is

the expected number of neighbors retained after pruning.

Therefore, if we subtract Te from the expected number of

neighbors within s’s communication range then we get davg:

davg = πµR2 − Te = πµR2

(

1− Te
πµR2

)

= πµR2 (1−Fe) = πµR2 (1− Sparseness) (5)
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Topology size. Finally, if we multiply davg by the total number

of nodes n, we obtain twice the number of links retained after

running the topology control algorithm (an edge contributes

to exactly two node’s degree counts). Thus, the size of the

r-neighborhood graph GNGr(V ) becomes,

S(GNGr(V )) =
n× davg

2

=
πµnR2

2
(1− Sparseness) (6)

V. SPARSENESS OF r-NEIGHBORHOOD GRAPHS

In this section we derive the exact expression of sparseness.

Let us revisit Equation 4. To solve the equation we need to

determine the quantity, pruning probability Pp(x). Recall that,
Pp(x) is the probability that a node t located at distance x
from a node s gets pruned. As, node t gets pruned from node

s’s neighborhood if there exists at least one node in the r-

neighborhood region, Pp(x) becomes the probability that there

exists a node in the r-neighborhood region NRr(s, t) between
node pair (s, t). The distance x between s and t plays an

important role in determining the value of Pp(x). For large x,
the size of the r-neighborhood region NRr(s, t) is also large

and the probability of a node’s existence within this region

also becomes large. At first, let us find the probability that a

certain number of nodes k is located within the r-neighborhood

region of the node pair (s, t). The probability PT that a node

is placed in this r-neighborhood region NRr(s, t) within the

deployment area A is:

PT =
Area of r-neighborhood region

Total deployment area
=

ANRr(s,t)

A
.

According to Theorem 1 the area of r-neighborhood region:

ANRr(s,t) = ‖st‖2
(

π +
α2

2
δ − 2β +

α2

4
sin(2δ)− sin(2β)

)

Therefore, PT becomes:

PT =
‖st‖2

(

π + α2

2 δ − 2β + α2

4 sin(2δ)− sin(2β)
)

A

The distance between s and t is x, i.e., x = ‖st‖. Let γ =
(

π + α2

2 δ − 2β + α2

4 sin(2δ)− sin(2β)
)

. So PT becomes:

PT =
γ‖st‖2

A
=

γx2

A
(7)

The probability Pm(NRr(s, t)) that exactly m nodes are

located within r-neighborhood region NRr(s, t) is:

Pm(NRr(s, t)) =

(

n− 2

m

)

Pm
T × (1− PT )

n−2−m

Note that, here we have used n − 2 rather than n because

we exclude s and t. For large n and small PT , the binomial

distribution can be approximated using Poisson distribution

with mean nPT [1]. Thus,

Pm(NRr(s, t)) =
(nPT )

m × e−nPT

m!

The probability that there exists at least one node within

r-neighborhood region NRr(s, t) is:

Pp(x) =
n
∑

k=1

Pm(NRr(s, t)) =
∞
∑

k=1

(nPT )
m × e−nPT

m!

= e−nPT

∞
∑

k=1

(nPT )
m

m!
= e−nPT

( ∞
∑

k=0

(nPT )
m

m!
− 1

)

= e−nPT (e−nPT − 1) = 1− e−nPT (8)

By substituting the value of PT from Equation 7 into Equa-

tion 8, we get:

Pp(x) = 1− e
−nγx2

A = 1− e−γµx2
[

As, µ =
n

A

]

(9)

By replacing Pp(x) in Equation 3 we get:

Te =
∫ R

0

2πµx× Pp(x)dx =

∫ R

0

2πµx× (1 − e−γµx2

)dx

= πµR2 − πµ

∫ R

0

2xe−γµx2

dx (10)

Let γµx2 = z. ∴ 2xdx = dz
γµ

. Using these values we get:

Te = πµR2 − π

γ

∫ γµR2

0

e−zdz

= πµR2 +
π

γ

(

e−γµR2 − 1
)

(11)

Sparseness, Fe = Te/πµR2. Therefore:

Sparseness = Fe =
πµR2 + π

γ

(

e−γµR2 − 1
)

πµR2

=
γµR2 + e−γµR2 − 1

γµR2
(12)

Substituting the value of sparseness on Equation 5 we get:

davg = πµR2 (1− Sparseness)

= πµR2

(

1− γµR2 + e−γµR2 − 1

γµR2

)

=
π

γ

(

1− e−γµR2
)

(13)

Finally, substituting sparseness on Equation 6 we get:

S(GNGr(V )) =
πµnR2

2
(1− Sparseness)

=
πµnR2

2

(

1− γµR2 + e−γµR2 − 1

γµR2

)

=
πn

2γ

(

1− e−γµR2
)

=
n

2
× davg (14)
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VI. DIFFERENT r-NEIGHBORHOOD GRAPHS

Let us find the expression of Fe for two extreme values of

r. Recall that, r assumes a value between 0 ≤ r ≤ 1.

r = 0, α =
√

(1 + 2r2) =
√

(1 + 2.02) = 1

δ = sin−1 (3− α2)

2α
= sin−1 (3− 12)

2× 1
= sin−1(1) =

π

2

β = sin−1

(

5− α2

4

)

= sin−1

(

5− 12

4

)

= sin−1(1) =
π

2

γ =

(

π +
α2

2
δ − 2β +

α2

4
sin(2δ)− sin(2β)

)

=

(

π +
12

2

π

2
− 2

π

2
+

12

4
sin(2

π

2
)− sin(2

π

2
)

)

=
π

4

Plugging in the value of γ into Equation 12 we get:

Fe =
πµR2 + 4e

−µπR2

4 − 4

πµR2
(15)

As, for r = 0, the r-neighborhood graph becomes GG [5],

Equation 15 gives us the sparseness expression for GG graphs.

Similarly for r = 1,

α =
√
3, δ = 0, β =

π

6
, γ =

4π − 3
√
3

6

Plugging in the value of γ into Equation 12 we get:

Fe =
(4π − 3

√
3)µR2 + 6

(

e−
1
6 (4π−3

√
3)µR2 − 1

)

(4π − 3
√
3)µR2

(16)

As, for r = 1, the r-neighborhood graph becomes RNG [5],

Equation 16 gives us the sparseness expression for RNG.

VII. SIMULATION RESULTS

In this section, we present simulation results to verify the

accuracy of our analytical model. We also explore the effect of

network and transceiver parameters on performance metrics.

A. Simulation environment and performance metrics

To evaluate the performance, we simulate randomly de-

ployed networks of 100–500 nodes over a 625m × 625m
square region. The maximum transmission radius is limited

between 125m to 225m. We consider three different values of

r = 0, 12 , and 1. Three performance metrics sparseness, aver-

age node degree and topology size are measured. For detailed

definition and analytical expressions for these performance

metrics please see Section IV and Section V.

B. Experimental Results

r-Neighborhood regions. The area of NRr(u, v) increases

with the the increase of r which indicates that the probability

that at least one node exists in this NRr(u, v) also increases.

Thus, one should expect more and more elimination of links

when r value is increased.

Effect of node density on sparseness. Node density were

varied by varying number of nodes between 100–500 while

keeping the deployment region constant at 625m × 625m

square area. A higher fraction of neighbors is eliminated in

more dense networks for all transmission ranges. With larger

node densities, it is highly probable that at least one node

exists in the r-neighborhood region of a link, and the link

gets pruned by the algorithm. Also the fraction of eliminated

neighbors is much higher in Fig. 4(b) compared to 4(a)

because the r value increases from 0 to 1
2 . The sparseness

increases when we increase r values because the size of the

r-neighborhood region also increases (cf. see Fig. 4). Figure

4(a), 4(b) and 4(c) show that for all scenarios, the results of

analytical expressions are very close to the simulation results;

the difference is very small, maximal being around 4.5%.

The small inaccuracy arises from the nodes located close

to the boundaries of the deployment region, for which the

communication area is restricted, and thus they have fewer

neighbors. We ignored this “boundary effects” to simplify the

analytical models.

Effect of TX range on sparseness. To see the effect of trans-

mission range on sparseness, we measure Fe with different

node densities. The transmission range is varied between 125m
to 225mwith an increment of 25m at each step. Figure 5 shows

the result for three different values of r. When transmission

range is increased, Fe exponentially increases at the beginning

and linearly increases at the end. Also, as expected, the

sparseness increases when we increase r values.

Average node Degree. Fig. 6 shows the plot of Equa-

tion 13 under two transmission ranges R = 225m and

R = 125m. With the increase of r, the average node degree

davg(NGr(V )) decays exponentially indicating that the r-

neighborhood graph becomes sparser when we increase r.
Topology size. Based on Equation 6, the topology size can

be derived by multiplying davg(NGr(V )) with a constant n
2 .

Therefore, its plot would have the similar shape of Fig. 6 but

magnified by a factor of n
2 . As it is clearly evident from the

discussion, we omit the plots due to page limitations.

C. Comparison with traditional topologies

r-Neighborhood graphs can be compared to some traditional

topologies such as Minimum Spanning Tree (MST), Local

Minimum Spanning Tree (LMST), RNG and GG in terms of

sparsity. Prior work [12] has shown that MST ⊆ RNG ⊆
GG. Cartigny et al. [2] show that LMST ⊆ RNG. It

is also known that LMST contains MST (see [12]). For

r-neighborhood graph NGr, the authors in [5] show that

RNG ⊆ NGr ⊆ GG. Combining all these results the

following conclusion can be made about the topology size

of r-neighborhood graph:

|MST | ≤ |LMST | ≤ |RNG| ≤ |NGr| ≤ |GG|
VIII. CONCLUSION

r-neighborhood graphs constitute an important class of

planar topologies. The algorithm generating such topologies

is very appealing and practically implementable due to their

simplicity, distributed property, and strictly local behavior. We

provided analytical models to determine the structural densi-

ties for this class of topologies. Using the proposed models, the
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Fig. 4. Number of nodes were varied

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 140  160  180  200  220

F
ra

c
ti
o

n
 o

f 
N

o
d

e
s
 E

lim
in

a
te

d

Transmission Range(Tx)

Deployment Area= 625m X 625m

Analyis,N=100
Simulation,N=100

Analyis,N=300
Simulation,N=300

Analyis,N=500
Simulation,N=500

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 140  160  180  200  220

F
ra

c
ti
o

n
 o

f 
N

o
d

e
s
 E

lim
in

a
te

d

Transmission Range(Tx)

Deployment Area= 625m X 625m

Analyis,N=100
Simulation,N=100

Analyis,N=300
Simulation,N=300

Analyis,N=500
Simulation,N=500

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 140  160  180  200  220

F
ra

c
ti
o

n
 o

f 
N

o
d

e
s
 E

lim
in

a
te

d

Transmission Range(Tx)

Deployment Area= 625m X 625m

Analyis,N=100
Simulation,N=100

Analyis,N=300
Simulation,N=300

Analyis,N=500
Simulation,N=500

(a) r = 0 (b) r = 1/2 (c) r = 1

Fig. 5. Transmission ranges were varied

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0  0.2  0.4  0.6  0.8  1

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

r

Deployment Area = 625m X 625m Number of Nodes = 100

TX = 225

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0  0.2  0.4  0.6  0.8  1

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

r

Deployment Area = 625m X 625m Number of Nodes = 100

TX = 125

Fig. 6. Effect of r on average node degree

network designer can easily estimate the sparseness, average

node degree and network size for the desired topology, perhaps

prior to the network deployment. In future we plan to extend

the model to accommodate other kind of node distributions.
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APPENDIX

Theorem 1: For any two points U and V separated by

distance ‖UV ‖, the area of r-neighborhood region is:

ANRr(U,V ) = ‖UV ‖2
(

π +
α2

2
δ − 2β +

α2

4
sin(2δ)− sin(2β)

)

where, 0 ≤ r ≤ 1, α =
√
1 + 2r2, δ = sin−1 (3−α2)

2α , and

β = sin−1
(

5−α2

4

)

Proof:

Let us consider Fig. 7. Without loss of generality let us

assume that U and V are located at (0, 0) and (‖UV ‖, 0)
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Fig. 7. area calculation for r-neighborhood graph

respectively. There are three circles in the figure:-(i) the circle

AQV S centered at U(0, 0) with radius ‖UV ‖, (ii) the circle

PERU centered at V (‖UV ‖, 0) with radius ‖UV ‖, and

finally (iii) the circle BPQDSR centered at W
(

‖UV ‖
2 , 0

)

with radius
α‖UV ‖

2 where α =
√
1 + 2r2 and 0 ≤ r ≤ 1. The

coordinate of point D becomes
(

(1+α)‖UV ‖
2 , 0

)

. The shaded

region in Fig. 7 is the r-neighborhood region NRr(U, V )
between node pair U and V . The area of this shaded region

can be expressed as follows:

ANRr(U,V ) = ABPQDSR − 4×AQDV

ANRr(U,V ) = π ‖WD‖2

2 − 4× (AQCD −AQCV )

= π
(

α‖UV ‖
2

)2

− 4× (AQCD −AQCV )

Next, we find the area AQCD which can be derived by

integrating the equation of the circle BPQDSR from C to

D. To find the coordinate of point C, at first we determine

the coordinate of point Q which is the intersecting point of

the two circles AQV S and BPQDSR. The equation of the

circle AQV S with center (0, 0) and radius ‖UV ‖ is:

x2 + y2 = ‖UV ‖2 (17)

Equation of circle BPQDSR with center
(

‖UV ‖
2 , 0

)

and

radius
α‖UV ‖

2 is:

(

x− ‖UV ‖
2

)2

+ y2 =

(

α‖UV ‖
2

)2

(18)

Subtracting Equation 18 from Equation 17 we get,

x =
(5− α2)‖UV ‖

4

As point C and point Q share the same x coordinate and

C lies on the x-axis, the coordinate of point C becomes
(

(5−α2)‖UV ‖
4 , 0

)

.

And the area AQCD is,

AQCD =

∫
(1+α)‖UV ‖

2

(5−α2)‖UV ‖
4





√

‖UV ‖2α2

4
−
(

x− ‖UV ‖
2

)2


 dx

Let us assume that, x− ‖UV ‖
2 = ‖UV ‖α

2 sin θ. Therefore, dx =
‖UV ‖α

2 cos θdθ. For the upper limit x = (1+α)‖UV ‖
2 we get:

(1 + α)‖UV ‖
2

− ‖UV ‖
2

=
α‖UV ‖

2
sin θ

⇔ sin θ = 1 ⇔ θ =
π

2

Similarly, for the lower limit x = (5−α2)‖UV ‖
4 we get:

(5− α2)‖UV ‖
4

− ‖UV ‖
2

=
‖UV ‖α

2
sin θ

⇔ sin θ =

(

3− α2
)

2α
⇒ θ = sin−1 (3 − α2)

2α

Let, sin−1 (3−α2)
2α = δ. After all substitutions we get:

AQCD =

∫ π
2

δ

‖UV ‖2α2

4
cos2 θdθ

=
‖UV ‖2α2

8

[

π

2
− δ − 1

2
sin (2δ)

]

Finally, we derive the area AQCV by integrating the equation

of the circle AQV S from C to V . Therefore:

AQCV =

∫ ‖UV ‖

(5−α2)‖UV ‖
4

(

√

‖UV ‖2 − x2
)

dx

Let, x = ‖UV ‖ sin θ, therefore, dx = ‖UV ‖ cos θdθ. For the
upper limit, x = ‖UV ‖, the angle θ becomes:

‖UV ‖ = ‖UV ‖ sin θ ⇒ θ =
π

2

For the lower limit x = (5−α2)‖UV ‖
4 , the angle θ becomes:

(

5− α2

4

)

‖UV ‖ = ‖UV ‖ sin θ

⇒ θ = sin−1

(

5− α2

4

)

Let, sin−1
(

5−α2

4

)

= β. After all substitutions we get:

AQCV =

∫ π
2

β

‖UV ‖2 cos2 θdθ

=
‖UV ‖2

2

[

π

2
− β − 1

2
sin−1 (2β)

]

ANRr(U,V ) =π

(

α‖UV ‖
2

)2

− 4× (AQCD −AQCV )

=π

(

α‖UV ‖
2

)2

− 4

(‖UV ‖2α2

8

[

π

2
− δ − 1

2
sin (2δ)

])

+4

(‖UV ‖2
2

[

π

2
− β − 1

2
sin−1 (2β)

])

=‖UV ‖2
(

π +
α2

2
δ − 2β +

α2

4
sin(2δ)− sin(2β)

)

Q.E .D.
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