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Abstract—We build upon the clean-slate, holistic ap-
proach to the design of secure protocols for wireless ad-
hoc networks proposed in part one. We consider the case
when the nodes are not synchronized, but instead have local
clocks that are relatively affine. In addition, the network is
open in that nodes can enter at arbitrary times. To account
for this new behavior, we make substantial revisions to
the protocol in part one. We define a game between
protocols for open, unsynchronized nodes and the strategies
of adversarial nodes. We show that the same guarantees
in part one also apply in this game: the protocol not only
achieves the max-min utility, but the min-max utility as
well. That is, there is a saddle point in the game, and
furthermore, the adversarial nodes are effectively limited
to either jamming or conforming with the protocol.

I. INTRODUCTION

The focus of this paper is on secure wireless ad-
hoc networks. Security in this context implies that the
data transfer between legitimate nodes is immune to
the subversive efforts of adversarial nodes. Wireless ad-
hoc networks, as a defining feature, lack a centralized
controller; the nodes themselves are responsible for
discovering neighbors, assigning priorities, determining
schedules for achieving these priorities, identifying po-
tential routes, monitoring the performance of existing
routes, and arriving at a consensus by the end of each
of these operations.

The challenge in securing a network like the one
just described, or complex systems in general, is in
anticipating all of the ways a process can fail and the
effects of the failure on the system as a whole. A
common approach to this task is known as “defense-in-
depth” and mirrors the way one would secure a castle;
by deploying multiple defensive layers, each of which
protects an “exposed variable” (an entry point to the
system) in the event the preceding layer is breached [1].

This approach, however, suffers from an unavoidable
drawback; the possibility that some clever, sophisticated
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attack goes overlooked and/or some undetected struc-
tural vulnerability transcends multiple defensive layers.
As a result, the process amounts to an arms race between
more sophisticated attacks and more complicated fixes,
[2] being such an example; at no point can we defini-
tively claim to have obtained a protocol that is immune
to all possible attacks.

In part one and in [3], we propose a clean-slate,
holistic approach to the security of wireless ad-hoc
networks that enables a collection of distributed nodes
infiltrated with attackers to form a functioning network.
We define a game between protocols and adversarial
strategies, in which the protocol p is chosen first, and
the adversarial strategy qp is chosen in response. We
define a payoff for this game J(p, qp) that depends on
a utility function U(x) of a throughput vector x, and an
execution (p, qp), and describe a protocol that satisfies
the following claims:

(G1) The protocol is near max-min optimal with
respect to the payoff J(p, qp).

It would appear that this payoff is the best any
protocol can achieve, since the protocol is always chosen
before the adversarial strategy. In fact, we do better:

(G2) The protocol is near min-max optimal with
respect to the payoff J(p, qp), where the minimization
occurs over adversarial strategies that are effectively
confined to jamming.

The claim (G2) implies the existence of a saddle-
point in the game between protocols and adversarial
strategies; the adversarial nodes gain no advantage from
knowing the protocol a priori. These guarantees are
made without characterizing the full scope of attacks that
can be deployed by the adversarial nodes, but are instead
contingent on an underlying set of model assumptions;
if the assumptions are violated, the guarantees cease to
be valid.

In this paper, we will further develop the approach
proposed in part one, by removing a model assumption
that simplified the protocol design; the assumption that
the nodes in the wireless network are born or turn on
simultaneously. Instead we assume that the nodes in this
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network are born at arbitrary times, and show that the
guarantees made (G1)-(G2) still hold.

Before moving forward, we will discuss the implica-
tions of allowing nodes to be born at arbitrary times,
and the reasons why this general case deserves more
attention. One reason, concerns clock synchronization.
Whereas in part one we assume the local clocks are
synchronized here we assume the clocks are unsyn-
chronized and relatively affine. Since the protocol relies
on synchronized clocks to ensure the legitimate nodes
can operate according to a common schedule, we will
have to consider the possibility that adversarial nodes
may undermine the process of clock synchronization by
behaving maliciously.

The other reasons concern the challenges of operating
“open networks”; those networks able to absorb nodes
or subnetworks of nodes that were born recently.

First, a subnetwork must be able to detect the exis-
tence of an adjacent node or subnetwork in a timely
fashion, for every moment in which these subnet-
works remain segregated detracts from a utility-optimal
throughput. Since the legitimate nodes in our model are
half-duplex (they cannot transmit and receive messages
simultaneously), such timely detection is not guaranteed.
Each node operates according to its own transmit/receive
schedule, and this schedule may not be orthogonal to that
of an adjacent node in a different subnetwork. We intro-
duce the role of a “sentinel” wherein a node periodically
completely ceases transmission for a prolonged period
of time, to ensure that any adjacent subnetworks will be
detected, but not so frequently that the sentinel activity
significantly reduces the throughput.

A second challenge is managing the timely merge of
a pair of adjacent subnetworks. This process requires a
subnetwork to pause its operations, merge with the out-
lier, and readjust the schedule to support a utility-optimal
throughput for the newly enlarged network, all of which
amounts to significant additional overhead. Since each
merge attempt reduces the effective throughput of the
participants, a legitimate network might be instigated
into making numerous spurious merge attempts with an
adversarial partner.

The third problem is somewhat unusual; at near infi-
nite time, the time-stamps are of near-infinite size. As
a result, any new legitimate node can never know while
listening to an ongoing transmission from a neighbor,
whether to keep listening for more bits or conclude that
an adversarial node is feeding it an unlimited stream
of noise. Hence, the legitimate nodes must operate with
packets of fixed size L. However, this solution introduces
a vulnerability of its own; the need to restart the clock
whenever 2L time units have expired. The reuse of
timing packets allows an adversarial node to replay
messages from a legitimate node that were originally
transmitted in a previous clock iteration. This attack,
appropriately known as the replay attack, is impossible

to stop.
Without further ado, we can conclude that arbitrary

birth times pose significant challenges to the operation
of wireless ad-hoc networks. This paper will be devoted
to resolving them.

II. THE MODEL ASSUMPTIONS

There are n nodes, some of which are legitimate and
the rest adversarial. The legitimate nodes are half-duplex
and do not know which of the other nodes are legitimate
or adversarial. On the other hand, the adversarial nodes
know their identities and can communicate via back
channels of infinite bandwidth.

Each node is given a set of instructions, known as
a protocol p, intended to form a functioning network
operating at a utility-optimal throughput, from the dis-
tributed collective. The legitimate nodes are obligated
to follow the protocol exactly. The adversarial nodes,
on the other hand, devise a response qp designed to
subvert the protocol p. At time t = 0 with respect to
some global reference clock, the first legitimate node
turns on and proceeds to execute p. Subsequently, at
arbitrary times, the remaining nodes both legitimate
and adversarial turn on and begin to execute p and qp
respectively. The protocol p and the adversarial response
qp interact over the entire operating lifetime to form
an effective throughput vector x := f(p, qp) of all
possible n(n − 1) source-destination pairs, where n is
the number of nodes. Since the legitimate nodes are born
at arbitrary times, we need to define the time interval
over which the throughput x is evaluated. In this paper,
we will concern ourselves with the throughput evaluated
from the birth time of the last legitimate node. Each
element of the throughput vector denotes the throughput
of a source-destination pair. The function f , models the
physical properties of the network and reflects the model
assumptions that we will spell out shortly.

First, we will first have to re-introduce some concepts
and definitions that were explained in [3]: A modula-
tion scheme m ∈ Mi specifies a physical mode of
transmission by node i. A legitimate modulation scheme
is associated with a message and a corresponding rate
r(m). An adversarial node also has the option of choos-
ing, in addition to the legitimate modulation schemes,
a jamming scheme that emits random noise at some
specified power level.

The vector of modulation schemes corresponding to
each source in the set of n(n − 1) one-hop, source-
destination pairs is called a concurrent transmission
vector c := {m1, . . . ,mn(n−1)}.

A concurrent transmission vector is feasible by def-
inition if all the messages transmitted by the sources
are received without error at the respective destinations.
There are two factors that determine whether or not a
concurrent transmission vector is feasible. The first is the
physical channel itself. The second is more subtle; the
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ability of the adversarial nodes to exploit the physical
channel and/or the back channel of infinite bandwidth
and relay or transmit messages that would otherwise be
lost. We denote the set of feasible concurrent transmis-
sion vectors by F .

A feasible concurrent transmission vector can be
actively disabled if any of the corresponding messages
are lost when the modulation schemes specified of
adversarial nodes are substituted with other modulation
schemes (such as jamming schemes). The set of concur-
rent transmission vectors that can be actively disabled,
which we denote by D, is independent of the protocol.

A feasible concurrent transmission vector can also
be passively disabled if it is prevented from ever being
deployed by the protocol due to the actions of the adver-
sarial nodes. The type of actions we refer to are protocol
specific, and refer to such strategies as disseminating
false information or sabotaging clock synchronization.
We now state the model assumptions.

(M1) The set of legitimate modulation schemes is
finite.

It follows from (M1) that the set of concurrent trans-
mission vectors is also finite. We denote this set by
C := {cj , j = 1, . . . , N} where each element is indexed
from 1, . . . , N .

(M2) The legitimate nodes are connected. More pre-
cisely, there exists a path connecting the legitimate
nodes, where each edge in the path corresponds to
a modulation scheme of positive rate, and the edge
belongs to a concurrent transmission vector that cannot
be actively disabled by adversarial nodes.

(M3) Each node is able to perfectly encrypt its
messages, and encrypted messages cannot be forged or
altered by an adversarial node. In addition, each node
possesses an identity certificate provided by a trusted
authority.

(M4) Each node is equipped with a local clock, and
the local clocks of the legitimate nodes are unsynchro-
nized and affine.

III. A GAME BETWEEN PROTOCOLS AND
ADVERSARIAL STRATEGIES

We now set up a zero-sum game between protocols
and adversarial strategies. First we choose a protocol
p and announce the protocol to all the nodes, both
adversarial and legitimate. The adversarial nodes, after
observing p, choose a strategy qp in response. We will
need to define the payoff J(p, qp) of the game, as a
function of the effective throughput vector x, where x is
evaluated over the interval [Tl, Tl+T ), and Tl is the birth
time of the last legitimate node. The payoff is a measure
of how effectively the protocol p can maintain data
transfer between legitimate nodes when the adversarial
nodes choose a strategy qp.

Let U(x) denote the utility accrued to the network by
operating at a throughput vector x. We will exploit the

premise of model assumption (M2) to restrict the utility
to the connected component that includes all legitimate
nodes. However, this connected component may also
contain some adversarial nodes that choose to conform
to the protocol, and may change in topology should an
adversarial node change strategies. As in part one, we
will define the payoff as the time-average utility accrued
by all connected components of legitimate nodes over
the execution of the protocol.

Let us denote by qp(t) the set of concurrent trans-
mission vectors disabled by the adversarial strategy at
time t ∈ [Tl, Tl + T ). Let Ft := F \ qp(t) denote the
set of feasible concurrent transmission vectors that have
not been disabled by the adversarial nodes. At any time
instant t, let Ct(p, qp) denote the connected component
formed by positive rate edges in Ft that include the
legitimate nodes. There are at most a finite number of
such connected components over the execution, that we
index from 1, . . . ,M . Let C(j)(p, qp) denote the jth
such component, and αj the fraction of the operating
lifetime [Tl, Tl + T ) over which it was active. Let
xC(j)(p,qp) denote the effective throughput attained by
this component. We define the payoff as follows:

J(p, qp) :=

M∑
j=1

αjU
(
xC(j)(p,qp)

)
. (1)

For brevity, we will not discuss (1) further, but refer the
reader to part one for a detailed exposition.

IV. THE PROTOCOL

We now describe the protocol at the heart of this
paper. The protocol itself, shown in Algorithm 1, is
composed of two iterative processes: the first enables
an existing subnetwork of nodes to operate reliably
at a throughput that yields the optimal payoff within
a bounded time-scale; the second, working on an un-
bounded time-scale enables a group of adjacent subnet-
works to detect each other and merge into a single super-
network. The second process works behind the scenes of
the first process, periodically activating itself and taking
over operations before returning to the background.

The first process is essentially the protocol described
in [3], but the second process includes some new in-
novations; among them, the notion of a “sentinel”, first
mentioned in the introduction.We will briefly summarize
the first process because the main idea also applies to
the second process as well.

A. The Process of Converging to a Utility-Optimal
Throughput

The first process is composed of five phases: the initial
neighbor discovery phase, the initial network discovery
phase, the scheduling phase, the data transfer phase, and
the verification phase.
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Algorithm 1 The Protocol
INITIAL NEIGHBOR DISCOVERY PHASE
INITIAL NETWORK DISCOVERY PHASE
while Count ≤ niter do

if Count mod nb = 0 then
SENTINEL PHASE

end if
RECURRENT NEIGHBOR DISCOVERY PHASE
RECURRENT NETWORK DISCOVERY PHASE
if Successful Merge then

Reset clocks and change encryption;
Count = 0;

else if Adjacent Subnetwork Detected then
Attempt merge if (MR1) and (MR2) are true

else if Failed Merge then
Increment corresponding counter;

else if Time Expired then
COMA PHASE

end if
SCHEDULING PHASE
DATA TRANSFER PHASE
VERIFICATION PHASE
Count← Count + 1

end while

1) The Initial Neighbor Discovery Phase: At time
t = 0 (as measured by its local clock) a legitimate
node, which we will call node nA, turns on and enters
the initial neighbor discovery phase. During this phase,
node nA through a handshake mechanism, establishes
mutually authenticated link certificates with any neigh-
boring nodes. For now we assume that these neighbors
and node nA are born simultaneously and their local
clocks have the same skew; node nA is synchronized
with its neighbors.

2) The Initial Network Discovery Phase: Next, node
nA enters the initial network discovery phase. During
this phase, the connected component of legitimate nodes
containing node nA, executes a consensus algorithm
to obtain a common view of the lists of neighbors
acquired during the preceding phase. As a result, node
nA and the legitimate nodes in its connected component
also arrive at a common topological view. The problem
of achieving consensus in the presence of adversarial
agents is well studied [4]. We will not review the
details of the algorithm except to state that consensus
is guaranteed in synchronized, connected networks with
perfect encryption.

By the end of the network discovery phase, this subset
of legitimate nodes born at the same instant as node nA,
now forms a rudimentary network in the sense that the
legitimate nodes share a common topological view and
a common reference clock. This rudimentary network
then enters the scheduling phase, where the real effort to
arrive at a utility-optimal throughput begins. If no other

nodes were born at the same time as node nA, then node
nA forms a subnetwork of one node. The second process,
which we have yet to describe, enables the merge of two
adjacent subnetworks. So without loss of generality, we
assume that node nA is part of a subnetwork composed
of at least one node.

3) The Scheduling Phase: The rudimentary sub-
network containing node nA, now in the scheduling
phase, determines a utility-optimal schedule of concur-
rent transmission vectors based on the capacity region
of throughput vectors given by the convex hull of
{r(c), c ∈ C}. However, the concurrent transmission
vectors in this designated schedule may not be feasible;
the legitimate nodes do not know F a priori.

4) The Data Transfer Phase: Despite these uncertain-
ties, the subnetwork enters the data transfer phase and
proceeds to execute the schedule in which designated
concurrent transmission vectors are allocated specific
intervals of time. Those concurrent transmission vectors
that are either non-feasible or disabled by adversarial
nodes, will fail to deliver their scheduled messages. The
intended destinations record the indices of all scheduled
packets that failed to arrive.

5) The Verification Phase: Upon completion of the
data transfer phase, the subnetwork enters the verifica-
tion phase. Each destination node releases the list of
packets that failed to arrive to the rest of the network
by way of the same consensus algorithm used in the
network discovery phase. The legitimate nodes in the
network then infer the set of concurrent transmission
vectors, denoted by D(1), to which each of these packets
belonged. Using this information, the legitimate nodes
construct an updated estimate of the feasible set of con-
current transmissions vectors, denoted by F (2), where
F (2) := C \ D(1).

After completion of the verification phase, the second
process is activated and steers the subnetwork potentially
through a sentinel phase, as well as a recurrent neighbor
and network discovery phase. The purpose of these
phases, as we shall see, is to allow adjacent subnetworks
to merge with the subnetwork containing node nA. For
now, let us assume that no merges occur, and that the
composition of the subnetwork remains unchanged. The
first process then takes over, bringing the subnetwork
back into the scheduling phase.

6) Steady State: The sequence of events that we
just described repeats itself, in that the subnetwork
updates its estimate of feasible concurrent transmission
vectors F (k+1) after the kth iteration, and F (k+1) :=
F (k) \D(k). Assuming no merges occur, the subnetwork
chooses a utility-optimal schedule in the k+1th iteration,
based on the capacity region of throughput vectors that
lie in the convex hull of {r(c), c ∈ F (k)}. The punchline
of the entire process is that only a finite number of
iterations are needed before the estimates F (k+1) cor-
rectly describe the set of feasible, non-disabled concur-
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rent transmission vectors. This argument follows from
(M1); there are a finite number of modulation schemes
and a finite number of possible concurrent transmission
vectors. It follows, from arguments laid out in [3], that
the subnetwork operates to within an ε of the locally op-
timal throughput in the max-min sense (local optimality
implies the optimization excludes the legitimate nodes
that don’t belong to the subnetwork).

B. The Merge Process

We now address the second process of the protocol, in
which adjacent subnetworks independently converging
to their own locally optimal throughputs, are able to in-
terrupt their operations and merge into one subnetwork.

There are two obstacles to consider. First, each sub-
network operates independently according to a prede-
termined schedule and estimate of a common reference
clock. The subnetworks are composed of distributed
nodes and do not have a centralized controller; when a
legitimate sentinel node from subnetwork SA detects a
node from another subnetwork SB , the other legitimate
nodes in SA remain unaware of SB until receiving a
physically transmitted message from the sentinel or an
intermediary through the communication medium. Since
the nodes in SA are already following a pre-determined
schedule, the sentinel must wait for an alloted time
interval in which it can even begin to alert its comrades
about SB . As a result, there is a delay between the
time at which a “sentinel” node detects an adjacent
subnetwork and the rest of the nodes are alerted to
the detection. Furthermore, the detected subnetwork also
operates according to a predetermined schedule of its
own. If subnetwork SA, the initiator, wishes to merge
with subnetwork SB , the target, then SA must wait until
SB enters a pre-scheduled interval in which merges are
expected and allowed. Hence, there is also a lag between
the time at which the initiator decides to merge with
the target, and the time at which the merge is actually
attempted.

The scenario we wish to avoid is a “merge chain”, in
which SA attempts to merge with SB while SB attempts
to merge with SC . Each merge requires the initiator, in
this case SA, to both adopt the schedule of the target
SB , and wait until the time interval allocated by the
target’s schedule in which merges can occur. However,
SB may have no idea that it is a target of SA or that SA

even exists; by virtue of being independent SB operates
according to a different schedule than SA. Therefore,
in the interim SB could change its schedule to merge
with SC without directly informing SA and complete
the merge before the sentinels in SA are aware of the
change or have time to inform their comrades.

These types of merge failures are particularly un-
desirable because the victim, in this case SA, cannot
determine, based on the evidence, whether the failure
was due to malice or circumstance. In many ways, this

situation is reminiscent of the failure of a concurrent
transmission vector; post-facto, the network cannot infer
whether the vector was disabled or infeasible. The merge
process will adopt a familiar solution to the problem by
imposing a telescoping window of opportunity in which
these failures can occur.

The other obstacle to a merge between two adjacent
subnetworks is that the operating lifetime of the first
subnetwork, which must be fixed as explained in the
introduction, could expire before the nodes in the second
subnetwork are born. (We say that the nodes are adjacent
in the sense that they share an underlying connected
component of legitimate nodes).

We now describe how the second process overcomes
these obstacles. The process itself is composed of a
recurrent neighbor discovery phase, a recurrent network
discovery phase, a sentinel phase, and a coma phase.
The recurrent neighbor and network discovery phases
correspond to the specially designated intervals in which
the subnetwork can “absorb” an adjacent subnetwork
attempting to merge. The sentinel phase which, to mit-
igate the throughput loss, occurs at a lower periodicity
than the other phases, is the time interval in which the
network ceases transmission and attempts to detect the
probe packets emitted by adjacent subnetworks. Finally,
the coma phase is the phase of undetermined length in
which a network enters after its operating lifetime is
close to expiry and there are legitimate nodes still yet
to be born.

1) The Sentinel Phase: To explain how the merge
process works, we will adopt the viewpoint of some
subnetwork SA. Upon entry, the nodes in SA adopt
the role of a “sentinel” in that they cease transmission
completely and listen and record any probe packets
emitted during the recurrent neighbor discovery phase
of any adjacent network.

A sentinel node that detects probe packets emitted
from an adjacent subnetwork, is also able to measure
the relative skew of the transmitting node from the time-
stamps on the probe packets, by taking the ratio of the
difference in receive times with the difference in send
times. (We assume the probe packets are time-stamped
according to the local reference of the corresponding
subnetwork). The sentinel also estimates the relative
offset of the transmitting node from these time-stamps,
to within 2dmax where dmax is the maximum one-hop
delay. The relative skew and offset of the transmitting
node allow the sentinel to estimate the reference clock
of the adjacent subnetwork, and by extension, predict
when the next phases of the adjacent subnetwork will
occur.

There are two possibilities to consider. One is that
the transmitting node and/or the sentinel itself is ad-
versarial, in which case the estimate of the reference
clock of the adjacent subnetwork will be wrong. The
second, is that the sentinel node is part of an underlying
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connected component of legitimate nodes that includes
the transmitting node in the adjacent subnetwork. In this
case, the estimate of the corresponding reference clock
will be correct. We will show that by using a pruning
strategy similar to the first process, the sentinels are
guaranteed to detect an adjacent subnetwork that shares
an underlying connected component of legitimate nodes,
and correctly estimate the corresponding reference clock,
within a finite number of attempts.

The sentinel phase occurs for a time interval equiva-
lent to the length of a full protocol iteration, so adjacent
subnetworks are guaranteed to be detected.

2) The Recurrent Neighbor Discovery Phase: Next,
the subnetwork SA enters the recurrent neighbor and
network discovery phases. These phases emulate the
initial neighbor and network discovery phases described
earlier; each node in SA advertises the existence of SA

by broadcasting probe packets containing the identity
certificates of all the constituent nodes. Simultaneously,
the nodes from any adjacent subnetworks attempting to
merge with SA also emit corresponding probe packets of
their own. The broadcasts are carried out via orthogonal
MAC codes, such as the Gold code for example, so
that the nodes form either network which may not be
perfectly synchronized, can still communicate despite
the half-duplex constraints.

3) The Recurrent Network Discovery Phase: The
nodes in SA that are adjacent to nodes in any such
external networks, create mutually authenticated link
certificates with their adjacent counterparts, that con-
tain their measured relative offsets. Each node in the
collection of adjacent subnetworks including SA shares
its newly updated list of neighbors with the rest of the
network using a consensus algorithm. By the end of
the recurrent network discovery phase, the underlying
connected component of legitimate nodes shared by the
collection of adjacent subnetworks, obtains a common
view of the topology and the relative clock parameters,
and establishes a common virtual reference clock. If on
the other hand, no subnetworks attempted to merge with
SA, the composition of SA remains the same as before.

4) Completing a Merge: At this point in the merge
process, the subnetwork, now S̃A, there are four out-
comes that dictate the subnetwork’s course of action over
the next protocol iteration.

(O1) First, S̃A, determines whether or not a merge
occurred during the previous recurrent neighbor and net-
work discovery phases. This decision is straightforward;
“yes”, if there are nodes in S̃A that weren’t in SA, “no” if
otherwise. In the event of a “yes” decision, each node in
S̃A changes its encryption by switching to a new private
encryption key and the network S̃A resets the virtual
reference clock to zero. This move provides S̃A with
a full operating lifetime to amortize the throughput loss
incurred in the interval preceding the merge, in which S̃A

was artificially segregated into independent subnetworks.

The encryption change is needed to prevent the replay
attacks described in the introduction. Since the number
of distinct merges is finite in network with a finite
number of nodes, only a finite number of encryption
changes need occur until all the legitimate nodes are
finally included in one “super” network.

(O2) Second, S̃A examines the list of adjacent sub-
networks discovered by the nodes in SA during the
previous sentinel phase. An adjacent subnetwork, call
it SB , is deemed an eligible target for a merge only
if certain conditions, which collectively make up “the
merge rule”, are satisfied. (MR1) The index of SB

is lower than the index of SA. (Prior to the start of
operations, the protocol assigns an index or order to each
of the 2n possible subnetworks that could be possibly
form out of a collection of n nodes, where the index of
a subnetwork is greater than or equal to the number of
nodes it contains.) Let k denote the index of SB and
let e := (i, j) denote the edge that detected SB ; node
i ∈ SA received the probe packet broadcast by node
j ∈ SB . (MR2) The total number of previous merge
attempts between SA and SB instigated by edge e does
not exceed k!. We will show in the proof that (MR1)
and (MR2) prevent adjacent subnetworks from getting
entangled in an endless cycle of spurious merge attempts
with adversarial nodes. The first condition prevents two
subnetworks from targeting each other, and the possi-
bility of merge “cycles”, whereas the second imposes
a ceiling on the maximum number of times a merge
between adjacent subnetworks can fail for innocuous
reasons.

After choosing a target from the eligible list, S̃A

makes an estimate of the schedule of the target (SB)
based on the time-stamps received by node j ∈ SB .
Finally, S̃A changes its schedule to that of the estimate to
ensure that S̃A and the target enter the recurrent neighbor
discovery phase simultaneously.

The next decision is pertinent if the pre-merge net-
work SA was the initiator of a merge that failed to absorb
any of the nodes in the targeted network.

(O3) If S̃A = SA and SA initiated a merge at-
tempt during the previous neighbor discovery phase
(an attempt that must have clearly failed), then S̃A

increments the counter of failed merges corresponding
to (SA, e, SB) by one.

We will show that a utility-optimal super network
must eventually form, so long as each transitory le-
gitimate subnetwork keeps a proper account of failed
merges.

The last outcome concerns the possibility that the
operating lifetime of S̃A expires before some legitimate
nodes are born, leaving S̃A with no avenue through
which the virtual reference clock can be reset (a clock
reset is always accompanied with an encryption change
following a successful merge between two adjacent
subnetworks).
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(O4) If the virtual reference clock of S̃A is about to
expire, then each constituent node disassociates itself
from S̃A (in the sense that the nodes are no longer
obliged by the protocol to participate further in S̃A) and
enters the coma phase.

5) The Coma Phase: Upon entry into the coma phase,
each node freezes its clock and enters a prolonged period
of sentinel duty. A node, call it nA, remains in the coma
phase until it picks up probe packets from an adjacent
network containing previously undetected nodes. After
detecting an adjacent network, SB , node nA unfreezes
(not resets) its clock and attempts to merge with SB

as per the procedure described in (O2) and (O3). If the
merge fails, nA returns to the coma phase and refreezes
its clock. The left over time in nA’s local clock prior
to its first entry into the coma phase be large enough to
accommodate the maximum number of possible failed
merges that could subsequently occur.

C. The Overall Operation

Having described the protocol operation over the
timeline of a single iteration, we now provide a moving
snapshot of the topology of the network over an un-
bounded timeline, from the birth of the first legitimate
node until the expiry of the last.

The network begins as a distributed collection of
legitimate and adversarial nodes, in which the legitimate
nodes are powered off. After the primordial birth of
a subset of the legitimate nodes, the first rudimentary
subnetworks begin to form composed of legitimate and
adversarial nodes. Although the complete set of legit-
imate nodes, when active, form a connected compo-
nent, the legitimate nodes within a subnetwork may
not be connected. Each subnetwork begins to converge
independently on a throughput that is locally optimal
with respect to the max-min payoff. Meanwhile, the
adversarial nodes dispersed throughout the subnetworks
begin to actively disable concurrent transmission vectors
(the protocol effectively prevents concurrent transmis-
sion vectors from being passively disabled). As a result,
some of the subnetworks may fragment into even smaller
subnetworks containing connected subcomponents of
legitimate nodes.

The individual subnetworks continue to operate inde-
pendently until the birth of some legitimate node that
connects an otherwise disconnected pair. As more and
more legitimate nodes enter into the network, discon-
nected subnetworks become adjacent subnetworks, then
detect each other, and begin to attempt to merge. The
subnetworks that share an underlying connected com-
ponent of legitimate nodes eventually merge, possibly
after numerous attempts. After each successful merge,
the newly consolidated subnetwork starts to converge to
its new max-min utility optimal throughput.

The adversarial nodes in the meantime, attempt to
entice the subnetworks into making spurious merge

attempts, by broadcasting false or misleading probe
packets. However, every failed merge attempt reduces
the credibility of the node pair that instigated the attempt.
The adversarial nodes are forced into a telescoping
window of opportunity to disrupt the merging of adjacent
subnetworks. As time progresses, subnetworks emerge,
fragment, reconstitute, merge, freeze altogether, then
restart, but eventually form a “super” network containing
all legitimate nodes. This super network operates at a
min-max optimal throughput, evaluated from the birth
of the last legitimate node.

V. MAIN RESULTS

Let (p∗1, q
∗
1) be the solution to the following optimiza-

tion problem:

max
protocols p

min
attacks qp

J(p, qp). (2)

Let x∗1 := f(p∗, q∗p), where f denotes the physical
properties of the channel as specified in the model
assumptions, and x is the throughput vector evaluated
over the interval [Tl, Tl + T ). The precise relationship
between x and (p, qp) is described in part one. We have
the following result:

Theorem 1. Given any ε > 0, the protocol described
achieves a throughput (1−ε)x∗1, evaluated from the birth
of the last legitimate node.

In fact, we have a stronger result. Suppose we redefine
the game so that the adversarial nodes first choose a
strategy q and the protocol p is chosen with a priori
knowledge of q. Let D̃ denote the set of strategies q
in which the adversarial nodes are limited exclusively
to actively disabling concurrent transmission vectors at
each time instant t. Let (p∗2, q

∗
2) denote the solution to

the following optimization problem:

min
attacks q

max
protocols p

J(p, q). (3)

Let x∗2 = f(p∗2, q
∗
2). We have the following result:

Theorem 2. Given any ε > 0, the protocol achieves a
throughput (1−ε)x∗2, evaluated from the birth of the last
legitimate node.

The significance of Theorem 2 is that the adversarial
nodes gain no advantage from knowing the protocol a
priori. Moreover, the strategies of the adversarial nodes
are effectively limited to actively disabling concurrent
transmission vectors, which in effect, corresponds to
either jamming or conforming with the protocol. Both
theorems were proved in [3] for closed networks.

VI. PROOF OF THEOREM 2

The proof of Theorem 2 is divided into four parts for
ease of presentation. First, we argue that given model
assumptions (M1)-(M4), the protocol described in Sec-
tion IV enables a distributed collection of nodes to form
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a rudimentary subnetwork in which the legitimate nodes
share a common topological view and a virtual reference
clock. Second, we argue that this rudimentary network,
barring merge induced interruptions, will operate at a
min-max optimal throughput x∗2 with respect to the
payoff J(p, qp), evaluated from the birth time of the last
legitimate node in the subnetwork, regardless of what the
adversarial nodes do. Both claims are similar to proofs
in [3] so we do not relieve them here.

Next, we show that the protocol, using a bounded
number of merge attempts, enables a collection of
adjacent subnetworks to merge into one subnetwork
containing the underlying subcomponent of legitimate
nodes. Finally, we show that the throughput loss incurred
from the protocol overhead, failed merge attempts, and
sub-optimal pre-merge operation, is an arbitrarily small
fraction of the operating lifetime, evaluated from the
birth time of the last legitimate node.

Let Si denote the subnetwork of index i. Let
Si1 , . . . , Sim , where i1 < i2 < . . . < im, be the
collection of all subnetworks containing legitimate nodes
that formed during the execution of the protocol p and
adversarial response qp during [0, Tl+T ) (the period of
time, with respect to the global reference clock, from
the birth of the first legitimate node until the expiry of
the last). Let M(p, qp) be the total number of merge
attempts that occurred during [0, Tl + T ).

Lemma 1. The subnetwork Sim contains the underly-
ing connected subcomponent of legitimate nodes, and
M(p, qp) ≤ (im!)3.

Proof. Let Si and Sj denote a pair of adjacent sub-
networks where i > j. Let e be a connecting edge
between Si and Sj where e may or may not have
adversarial endpoints. We will show, (a) that for each
e, the subnetwork Si needs to make at most (j!)3 merge
attempts with Sj . The proof of (a) is by induction. If
j = 1 then Sj does not attempt any merges since there
are no subnetworks of lower index with which it can
merge. Now suppose e has legitimate endpoints; either
Si successfully merges with S1 on the first attempt or
S1 merges with another subnetwork and ceases to exist
as S1. In either case, Si need only attempt one merge
with S1 per edge e. Now we assume the statement
(a) is true for j − 1 and show that (a) also holds for
j. For j > 1, there are subnetworks of lower index
than j with which Sj could attempt to merge. By the
induction hypothesis, Sj needs to make at most (k!)3

merge attempts for each connecting edge with Sk where
j > k. There are at most j2 edges connecting Sj

with any such Sk, since by construction, the index of
a subnetwork is greater than the number of nodes in the
subnetwork. The total number of merge attempts that
Sj will make is

∑k=j−1
k=1 j2(k!)3 < j2

∑k=j−1
k=1 (k!)3 <

j2(j − 1)((j − 1)!)3 < (j!)3. It follows that Si need
only attempt (j!)3 merge attempts with Sj per edge

e. Therefore (a) is proved and the lemma follows as
a consequence.

Finally we show that the total throughput loss, evalu-
ated from the moment of the birth of the last legitimate
node can be made arbitrarily small.

Lemma 2. The throughput achieved by the protocol is
(1− εl)(1− εm)(1− εs)x∗2, where εl, εm, and εs can be
made arbitrarily small.

Proof. The first part of the lemma, the claim that
the subnetwork Sim has an effective throughput of
(1− εl)(1− εm)(1− εs)x∗2, essentially follows from the
arguments in [3]. We will show that εl, εm, and εs can be
made arbitrarily small. The “long-run” throughput loss,
εl is the loss incurred by sub-optimal operation prior to a
merge between two adjacent subnetworks, as well as the
use of disabled concurrent transmission vectors. Let nb
denote the number of blocks of protocol iterations, where
a “block” denotes the number of protocol iterations that
occur between sentinel phases. By Lemma 1 the total
number of merges that occur is at most (im!)3, where
im < 2n. By model assumption (M1) there are at most
N concurrent transmission vectors. Therefore, choose
nb so that εl = max{N,((2n)!)3}

nb
. The “medium-term”

throughput loss εm is the loss incurred by periodically
detouring into the sentinel phase for a protocol iteration.
Let ns be the number of protocol iterations between
each sentinel phase. Choose ns so that εm = 1

ns
. (The

total number of protocol iterations niter in Algorithm
1 is niter := nsnb.) The “short-run” throughput loss,
denoted by εs, is the overhead loss incurred during a
protocol iteration from the phases in which data was not
transfered. We show in [3] that the short-run throughput
loss can be made arbitrarily small.

VII. CONCLUSION

We proposed a protocol with a provable guarantee
of security and performance for open, unsynchronized
networks. We showed that the key idea in part one also
applies here: the adversarial strategies are confined to a
finite set that is successively whittled away after each
protocol iteration. In future work, we would like the
model to include probabilistic packet loss and channel
fading.
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