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Abstract—Energy efficiency is one of the most important
issues of Wireless sensor networks (WSN) due to limited battery
capacity. In sink-centric WSN (i.e., sensing data is collected by
the sink node), this issue is particularly challenging due to the
‘funnel effect’ which means high energy consumption of the
nodes near the sink. While clustering can be used to achieve
scalability of WSN, previous works on energy optimal design of
the cluster structure have limitations in the scalability. In this
paper, we propose a scheme to build an energy optimal cluster
structure for a sink-centric WSN. The most important finding
of this paper is that energy optimality depends only the size of
first three clusters from the sink node. Based on this finding, we
design a very scalable clustering algorithm for optimal network
lifetime. The algorithm is highly scalable since its time complexity
is independent of the network size. We verify the correctness of
the algorithm by comparing with the optimal results that are
found by exhaustive search. Numerical evaluations are performed
by modeling the off-the-shelf radio links such as IEEE 802.15.4
and IEEE 802.11.

I. INTRODUCTION

Energy efficiency is one of the most critical issue of WSN
with battery-powered sensor nodes. Extensive studies have
been conducted to achieve energy efficiency from various
viewpoints such as physical layer, MAC protocol, routing,
cross-layer techniques, etc. A survey on these works is given
in [1]. Recently, the advent of Internet of Things (IoT) boosts
the demand of large-scale WSN [2], [3]. As the size of
WSN increases, the energy efficiency becomes even more
challenging because the radio transmission path is extended.
For a large volume of small IoT devices, use of the cellular
link is not always feasible due to high energy consumption and
financial costs. Multi-hop communication using short-range
radio is a more viable solution, in which sensing data generated
by a sensor node is relayed by other sensor nodes to the sink
node. The battery depletion of node in a route results in the
interruption of data relaying, causing ‘network partition’ [4],
[5].

Many WSN applications require periodic continuous data
collection such as video sensing [6], environment tracking [7],
[8], traffic surveillance [9]. In such applications, the traffic
pattern is sink-centric. With sink-centric traffic, the network
becomes more vulnerable to network partition since the energy
consumption is concentrated near the sink node(s), which is
called ‘funnel effect’. This effect is intensified as the network
size increases because the nodes near the sink must deal with
more traffic than those far from the sink node. The energy
consumption of the sensor nodes near the sink should be

carefully optimized. Barring the straight-forward solution of
provisioning large battery to the sensor nodes near the sink
[10], clustering [11]–[13] has been considered as a solution
for network scalability.

With clustering, adjacent sensor nodes are grouped into a
cluster and a node is selected as the cluster head. Each sensor
node forwards its data to the cluster head (i.e., intra-cluster data
transmission) and the cluster head is responsible for the data
delivery from that point. In some early WSN cluster schemes,
direct transmission from each cluster to the sink was proposed
but it is not feasible for large-scale WSN with low power sen-
sor nodes. In typical WSN cluster schemes, data delivery to the
sink is done by the forwarding of other cluster heads (i.e., inter-
cluster data transmission). Inter-cluster data communication is
a dominant factor in energy consumption since it involves
longer distance transmission and larger amount of data than
those of intra-cluster data communication. Thus, rotation of
cluster head within a cluster is necessary. More importantly,
unbalance in energy consumption among clusters can occur
due to the difference of cluster size and the difference of the
volume of relaying traffic. Battery exhaustion of a cluster will
drop the overall routing efficiency by extending the routing
paths (i.e., detouring). Eventually, some sensor traffic will not
be delivered to the sink. We define the lifetime of a WSN
as the duration until any sensor node loses its communication
path to the sink node (i.e. network partition).

For maximizing the lifetime, it is important to balance the
energy consumption of clusters. Note that the size of a cluster
directly affects its energy consumption for both intra-cluster
and inter-cluster transmission. It is because the cluster size
decides the traffic volume of a cluster and the transmission
distance between clusters. In particular, the size of near-sink
clusters is important since they are the main victims of the
funnel effect. In this paper, we propose a method to determine
the size of clusters for optimal network lifetime. Optimal
network lifetime means the longest possible duration until
network partition. Subsequently, optimal cluster size means
the size of cluster that results optimal network lifetime.

There exist previous works that study the network lifetime
issue for sink-centric clustered WSN. For example, in [14]
the lifetime of a cluster is probabilistically analyzed for a
given sink-centric clustered WSN. This work does not address
the issue of designing the optimal cluster structure. In [12] a
clustering algorithm to relieve the funnel effect in sink-centric
clustered WSN is proposed. It aims to extend the network
lifetime by controlling the probability of each node becoming
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Fig. 1. Abstraction of a sink centric cluster structure

a cluster head during CH rotation. In essence, balancing the
energy consumption of each cluster (region) is pursued, but
the optimality is not guaranteed. Lastly, a scheme to decide
the optimal cluster size for optimal lifetime is proposed in
[15]. A key requirement of this scheme is that the number of
clusters must to given. Obviously, knowing the optimal number
of clusters is non-trivial. In contrast, our scheme derives both
the number of clusters and the size of each cluster together.

The most important finding of this paper is that the network
lifetime depends only the size of first three clusters from the
sink node. Based on this finding, we design a very scalable
clustering algorithm for optimal network lifetime. The time
complexity of our scheme is independent of the network size.
The main contributions of our paper are twofold:

1. We prove that the optimal network lifetime is dependent
only on the size of first three clusters from the sink. In
other words, the funnel effect can be analyzed by those three
clusters.

2. We design an algorithm that computes the optimal cluster
size. The algorithm is highly scalable since its time complexity
is independent of the network size. We verify the correctness
of the algorithm by comparing with the optimal results that
are found by exhaustive search.

The rest of this paper is organized as follows. Section 2
describes the network model. Section 3 provides the formu-
lation of energy consumption of clusters. Section 4 describes
main theorem. Section 5 present our algorithm. A performance
evaluation is presented in Section 6. Section 7 concludes the
paper.

II. NETWORK MODEL AND ASSUMPTIONS

We make some simplifying assumptions for the tractability
of mathematical analysis. First of all, we consider a circular
shape of network in which the sink node is at the center.
Each cluster is also assumed to have a circular shape. Similar
assumptions are made in other literature such as [15]. Sensor
nodes are assumed to be uniformly distributed throughout the
network with the density of Δ nodes per square meter. We
assume each sensor node to periodically generate sensing data
in the common rate of λ byte per second. We denote ‘cycle’
as the interval between two successive data generations.

We assume a cluster structure with doughnut-shaped rings
as illustrated in Fig. 1. The inner-most ring with a single cluster
in which the sink node is included is named ‘1st ring’. The

radius of the cluster in the 1st ring is denoted by r1. The sensor
nodes outside the 1st ring form clusters that belong to the ‘2nd
ring’. All the clusters in the 2nd ring have the same radius r2.
The neighboring clusters of the 2nd ring form the ‘3rd ring’. In
this way, the entire network is covered with concentric cluster
rings. Note that all clusters of the same ring have identical
radius, but the clusters belonging to different rings may have
different size.

The complexity of mathematical analysis is considerably
reduced by adopting the cluster ring structure, as we need to
determine only the size for each ring, instead of determining
the size of each cluster. Since sensor nodes are uniformly
distributed and the traffic generation rate is same for all
sensors, the energy consumption pattern should be circular-
symmetric in the optimal solution. Similar assumption is made
in other literature like [15].

Within a cluster, all sensing data is forwarded to the cluster
head. Then, the collected data is forwarded to the sink node via
other cluster heads. We assume that inter-cluster data forward-
ing occurs only between the clusters of adjacent cluster rings.
In other words, the data forwarding occurs from the (i+1)-th
ring to the i-th ring. Similar assumption is adopted in [12]. We
assume that the energy consumption of the sensor nodes in the
same ring is balanced. This can be achieved by load balancing
routing and cluster head rotation. Schemes such as [16], [17]
may be used to this end. We exclude the energy consumption
for intra-cluster data collection from the mathematical analysis,
as the discrepancy in energy consumption by intra-cluster data
collection is negligible in a large-scale WSN.

As stated earlier, we define the network lifetime as the
duration until any sensor node loses its communication path to
the sink, i.e. network partition. Since the energy consumption
is balanced among the nodes in the same ring, our definition
is equivalent to the duration until the batteries of all nodes in
any ring have exhausted.

III. FORMULATION OF ENERGY CONSUMPTION

In this section, we first formulate the energy consumption
of each ring and then define the problem of network lifetime
optimization.

A. Definitions regarding the Cluster Structure

Recall that the ‘1st ring’ contains the sink node, and the
(i+1)-th ring encircles the i-th ring. Let the number of rings
in network be n. For i = 1, . . . , n, let ri be the radius of
cluster in the i-th ring, briefly denoted by the i-th radius.
r = {r1, . . . , rn} represents the set of cluster sizes of the
entire network. ri has a value in the range of [dm, dM ]. dm
and dM are the minimum and the maximum transmission range
respectively. Note that r uniquely represents a cluster ring
structure.

The width of each ring is 2ri. The radius of outer rim of

the i-th ring, Ri = r1 + 2
∑i

j=2 rj (1 ≤ i ≤ n, 1 ≤ n), is
the distance between the sink node to the outer edge of the
i-th ring. When the i-th ring receives data, the transmission
distance between two adjacent rings is dr(i) = ri+ ri+1 (1 ≤
i ≤ n − 1). We also define ds(i) = ri−1 + ri (i ≥ 2) as the
transmission distance when the i-th ring sends data. dr(n) and
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dt(1) is zero since there is no data to deliver. Note that dr(i)
and dt(i) cannot be greater than dM (maximum transmission
range). The area of each ring is A(i) = π(R2

i −R2
i−1) (i ≥ 2).

A(1) is equal to πr2.

B. Energy Consumption Rate of a Ring

The energy consumption rate of a sensor node that belongs
to the i-th ring (E(i)) is computed by the division of total
energy consumption (C(i)) by the number of nodes in the
ring (N(i)). C(i) is the sum of energy consumption by
sending and receiving data between rings. Recall that we
ignore the energy consumption by intra-cluster data collection.
The energy consumption by inter-cluster data transmission is
computed by multiplying the amount of data and the per-bit
energy consumption.

The i-th ring generates ΔλA(i) of data. Recall that λ is
the data generation rate. The i-th ring receives data from all
of its outer rings, and sends those data plus its own generated
data. We define Qr(i) = Δλ

∑n
j=i+1 Aj (1 ≤ i ≤ n− 1) and

Qt(i) = Δλ
∑n

j=i Aj (i ≥ 2) as the total amount of receiving

and sending data for i-th ring, respectively. Qr(n) and Qt(0)
is zero since there is no data to deliver. The per-bit energy
consumption is the amount of energy needed to transmit or
receive a single bit of data, which depends on the transmission
distance. For the given transmission distance d, let Pr(d) and
Pt(d) denote the per-bit energy consumption function when
receiving and sending data, respectively. The path loss model
should be integrated into these functions. In general, Pr(d)
and Pt(d) are monotonically increasing functions.

Now, the total energy consumption of the i-th ring (C(i))
is defined as C(i) = Qr(i) · Pr(dr(i)) + Qt(i) · Pt(dt(i)).
The number of nodes in the i-th ring (N(i)) is ΔA(i). We
define E(i; r) as the energy consumption rate of i-th ring
in r. Note that in computing E(i), the node density Δ in
C(i) is eliminated by Δ in N(i). This means that the energy
consumption rate of each sensor node is independent of the
node density Δ.

C. Problem Definition

The area that experiences the highest energy consumption
by funnel effect will most rapidly exhaust its energy. Thus,
the network lifetime is determined by this area. In our cluster
ring structure, the unit of this area is a cluster ring since
the energy consumption rate of nodes in same ring is iden-
tical. We define the most energy consuming area (MECA)
as the ring that shows the highest energy consumption in
the network. Note that multiple rings can be included in
MECA. More specifically, we define MECA(r) as a set of
rings that are included in MECA for a given r. We define
EM (r) = E(k) (k ∈ r) as the energy consumption rate of
the rings in MECA(r). The radius of network (L) and per-
bit energy consumption functions (Pr(d), Pt(d)) are given.
Therefore, when r is decided, EM (r) and MECA(r) can be
deterministically decided as follows:

EM (r) = max
i∈N

E(i) (1)

MECA(r) = argmax
i∈N

E(i) (2)

TABLE I. LIST OF NOTATIONS

Symbol Description

ri Radius of cluster in the i-th ring (meters)

r Set of the cluster radii

Ri Radius of the outer rim of the i-th ring

L Radius of network

d Transmission distance (meters)

dr(i), dt(i) Transmission distance of the i-th ring (receiving, sending)

dm, dM Minimum, maximum transmission range

A(i) Area of the i-th ring (m2)

Qr(i), Qt(i) Amount of receiving, sending data of the i-th ring (bytes)

Δ Node density (nodes/m2)

λ Data generation rate (bits/sec · node)

q Path loss exponent

Pr(d), Pt(d) Per-bit energy consumption function (receiving, sending) (mW )

C(i) Amount of total energy consumption of the i-th ring

E(i) Average energy consumption rate of the i-th ring (mW/node)

E(i; r) E(i) for a set of cluster radii r

MECA Most energy consuming area

MECA(r) Set of ring indexes of MECA for r

EM (r) Energy consumption rate of MECA of r

g Granularity when searching optimal cluster radii

ω Outermost ring in MECA(r)

ω Set of consecutive rings of ω in MECA(r)

α Innermost ring in ω

ṙ r that rα−1, rα, . . . , rω, rω+1 are modified

r̈ r in stable status: after iteration of r-to-ṙ transition (Lemma 1)

r∗ Set of optimal cluster radii

v (ω + 1)-th ring of the most extended MECA (Section V-A)

The network lifetime is optimized when EM (r) is minimized.
Thus, cluster size optimization problem is defined as follows:

argmin
r

max
i∈N

E(i) (3)

Equation (3) essentially finds r that maximizes the network
lifetime. Let r∗ = {r∗1 , . . . , r∗n} be an ‘optimal’ cluster radii
set that is included in (3). Note that there can exist multiple
sets of cluster radii (r∗) that achieves optimal network lifetime.
Table I summarizes notations used in this paper.

IV. KEY PROPERTY OF THE OPTIMAL NETWORK

LIFETIME

A. Necessary Condition for the Optimality

In this section, we prove the following theorem which
states the necessary condition that the optimal solution (i.e.,
the optimal cluster radii set) must possess.

Theorem 1: For ∀r∗, MECA(r∗) includes the 1st ring or
the 2nd ring. (i.e., argmaxi∈1,2 E(i) ∈ MECA(r∗))

By transposing this theorem into the sufficient condition
for the non-optimality, theorem 1 means that if neither 1st or
2nd ring is included in MECA(r), then r is not r∗ (i.e., non-
optimal). In other words, if r is optimal, there is no ring whose
energy consumption rate exceeds the maximum of E(1) and
E(2). Note that we only need r1, r2, and r3 to calculate E(1)
and E(2). This implies that finding the optimal solution is
equivalent to finding an optimal set of {r1, r2, r3}. We prove
that theorem 1 in the remainder of this section.
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Fig. 2. Transition of the outermost ring of MECA(r)
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Fig. 3. Stable state after iterating r-to-ṙ transition

B. Transition of Cluster Radii Set

To prove theorem 1, we start from the following intuition.
If E(i) < E(i+1) (i ≥ 1) for two adjacent i-th and (i+1)-th
ring in r, this relation can be reversed such as E(i) ≥ E(i+1)
by adjusting some cluster radii in r. We denote this action by
‘job 1’. Now suppose that i-th ring is in MECA, and we try
to perform job 1 while EM (r) (energy consumption rate of
the rings in MECA) does not increase (which is denoted by
‘job 2’). If it is possible to do job 2, MECA will be moved
from the outer ring to the inner ring with equal or better
network lifetime. We prove that it is always possible to do
job 2 in lemma 1. By continuously applying job 2, MECA
will eventually be moved to the center of the network, while
its EM (r) does not increase.

Now let us introduce the notations used in lemma 1. Firstly,
we denote by ω the outmost ring index in MECA. If the
MECA includes other consecutive inner rings, we denote the
set of those consecutive rings in MECA by ω. In particular, the
innermost ring of ω is denoted by α. Note that ω = α if there
is no consecutive ring of ω in MECA. Fig. 2 and Fig. 3 shows
illustrative examples for α and ω. In Fig. 2(a), MECA(r)
includes the 2nd, 5th, and 8th ring, and the 8th ring is ω. The
8th ring has no consecutive inner rings in MECA, thus the
8th ring also becomes α. In Fig. 3(b), MECA(r) includes
the 2nd, 3rd, 4th, and 5th ring. The 5th ring is ω since it is
the outmost ring in MECA. The 5th ring has consecutive inner
rings in MECA that forms ω, and the 2nd ring is the innermost
ring in ω. Thus, the 2nd ring becomes α.

Secondly, we denote by ṙ a cluster radii set which is the
result of so-called r-to-ṙ transition. This transition is applied
to the rings from the (α− 1)-th ring to (ω + 1)-th ring. As a
result, in ṙ, the cluster radii of ṙ,α−1, ṙα, . . ., ṙω , ṙω+1 are
modified. Note that for ∀i ≥ 2, the change of ri affects E(k)
for ∀k ≥ i − 1. This is because Rk for ∀k ≥ i is affected
by the change of ri and the equation for computing E(k) for
∀k ≥ i includes Rk or ri. Thus, by the change of r to ṙ, all
energy consumption rates from (α− 2)-th ring to the last ring
(i.e., E(α− 2), . . . , E(n)) are changed.

Lemma 1 (r-to-ṙ transition): For ∀r, let i be α ≥ 3 of
r. If E(i − 1; r) < E(i; r), then there always exist ṙ such
that E(i; r) > E(x; ṙ) for ∀x ≥ i, and E(i; r) ≥ E(y; ṙ) for
∀y < i.

Due to space limit, we omit the proof of Lemma 1, which is
available in [18].

Lemma 1 means that if (α − 1)-th ring has lower energy
consumption rate than that of α-th ring, we can make one
of the inner ring of α-th ring be a new α of MECA(r),
or we can lower EM (r). Fig. 2 shows examples of applying
lemma 1. In Fig. 2(a), α is moved to the inner ring since all
E(x; ṙ) for ∀x ≥ α is less than E(α; r). If α-th ring is the
only ring in MECA(r) as in Fig. 2(b), the r-to-ṙ transition
lowers MECA(r) to MECA(ṙ) since E(α; r) > E(α; ṙ).
The shaded bars are affected by r-to-ṙ transition.

Based on Lemma 1, we can move the outmost ring of
MECA(r) toward the center of the network or we can
reduce the average energy consumption of MECA(r). If we
continue applying r-to-ṙ transition, the iteration stops when α
becomes less than 3 as a condition of lemma 1. This means
that MECA(r) is placed in the center of network (i.e. the
1st and/or 2nd ring) after the iteration, and no more r-to-ṙ
transition is applicable. We call this status as ‘stable state’ of
r, which is denoted by r̈. Fig. 3 shows examples of stable
states. In both cases, MECA(r) contains at least one of the
1st ring and 2nd ring.

If r is optimal (i.e., r∗), EM (r∗) (the optimal energy
consumption rate) can not be lowered any further by r-to-
ṙ transitions. Via further r-to-ṙ transitions, only the index of
outmost ring (ω) in MECA(r∗) will be lowered, i.e., MECA
is moved toward the network center. We denote by r̈∗ the
stable state of r∗.

By using lemma 1, we prove theorem 1 as follows.

Proof: Suppose that both of the 1st and 2nd ring are not
included in MECA(r∗). Then, α must be equal to or greater
than 3 during the iteration of r-to-ṙ transition until getting the
stable status (r̈∗). However, the stop condition of iteration is
α < 3 and r-to-ṙ transition is still applicable when α = 3.
This results in that α becomes less than 3, and violates the
assumption (i.e., contradiction). Therefore, both of 1st and 2nd
ring cannot be excluded in MECA(r∗), and at least one of
them must be included in MECA(r∗).

The effect of theorem 1 is illustrated in Fig. 4 in which
high energy consumption rate of the nodes around the sink
node can be observed. The experiment setting is as follows.
The network radius is 5000 meters. IEEE 802.11g link is used
and the per-bit energy consumption function follows Equation
(5). The path loss exponent is 2.6.
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Fig. 4. Visual example of the energy consumption rate

V. OBTAINING THE OPTIMAL CLUSTER RADII

A. Determining Cluster Radii within MECA

Thanks to theorem 1, the problem of finding r∗ is signifi-
cantly simplified. Theorem 1 ensures that if neither 1st or 2nd
ring is included in MECA(r), then r is not r∗ (non-optimal).
Note that none of r1, r2, and r3 will be changed by r-to-ṙ
transition, if r is optimal (i.e., r∗). In other words, to qualify
as an optimal solution, r with a certain {r1, r2, r3} must be a
stable state (r̈).

We take an approach of exhaustive search to find the
optimal set of {r1, r2, r3}. Our method checks the validity
of {r1, r2, r3} as a valid candidate of an optimal solution
as follows. At first, we assume that the set of {r1, r2, r3}
is a r̈. We check if the 2nd ring is in MECA, and if true,
we try to ‘extend’ the MECA as far as possible for this
set of {r1, r2, r3}. The extension of MECA is conducted by
sequentially finding r4 and further cluster radii that makes the
3rd ring and further rings have same energy consumption rates
as that of rings in MECA. When no more extension is possible,
we call this status as ‘the most extended MECA’. We denote
by v as the adjacent outer ring of the most extended MECA.
The cluster radii set of {r1, . . . , rv}(v ≥ 3) is composed after
the extension of MECA. If the assumption is true, the v-th ring
will have lower energy consumption rate than that of MECA,
i.e. E(v) < EM (r).

Fig. 5 shows the pseudo code of our optimal cluster radii
decision algorithm for the rings ri (i ≤ v). We generate all
possible combinations of r1, r2, and r3 that do not exceed the
distance limit of transmission. Then, we calculate E(1) and
E(2) for each set of cluster radii {r1, r2, r3}. The greater one
between E(1) and E(2) becomes the energy consumption rate
of the rings in MECA. We denote EM as max (E(1), E(2)).
Note that EM is equal to EM (r) since the 1st ring or 2nd ring
is always included in MECA(r). Now, we extend MECA(r)
as far as possible. Recall that v is an adjacent outer ring of
the outermost ring in the most extended MECA(r). v (v ≥
3) is currently unknown since the most extended MECA is
not decided. Recall that r1, . . ., rv , and rv+1 are needed to
calculate E(v). If we know all rj (j ≤ v) and E(v − 1) =
E(v), then rv+1 can be deterministically calculated. We first
calculate r4 that satisfies EM = E(3), and then sequentially

1: Emax ← ∞ {Min. of EM (r) among all combinations)}
2: r∗ ← ∅

3: for all combinations of {r1, r2, r3} (dm < r1 + r2 < dM ,
dm < r2 + r3 < dM , granularity g) do

4: calculate EM = max (E(1), E(2)) with {r1, r2, r3}
5: if Emax > EM then
6: for rv+1(v ≥ 3) do
7: find rv+1 that satisfies Equation (4)
8: v ← v + 1
9: end for

10: end if
11: if E(v) < EM for ∃rv+1(dm < rv+1 < dM ) then
12: Emax ← EM

13: {r∗1 , r∗2 , . . . , r∗v} in r∗ ← {r1, r2, . . . , rv}
14: end if
15: end for
16: return v, {r∗1 , r∗2 , . . . , r∗v};

Fig. 5. Optimal cluster radii decision algorithm for ri (i ≤ v).

calculate rv+1 that satisfies EM = E(v−1) = E(v) for ∀v ≥
3. If rv+1 is successfully calculated, the v-th ring becomes a
member of MECA. The condition of rv+1 is as follows:

rv+1 = P−1
r (Xv)− rv (4)

P−1
r is an inverse function of the per-bit energy consumption

function for receiving data (Pr). The derivation process of (4)
is described in [18]. We omit the explanation due to the space
limit.

We iteratively find the next cluster radius using (4) until
no applicable rv+1 is found, which satisfies the condition of
E(v) = EM and the distance limit of transmission [dm, dM ]
is not violated. When the iteration ends, we have the cluster
radii of {r1, r2, . . . , rv}. The (v − 1)-th ring is the outmost
ring of the most extended MECA.

If this MECA is valid (i.e. the set of {r1, r2, r3} is the
elements of r̈), the adjacent outer ring of MECA should have
lower energy consumption rate than that of MECA. We search
rv+1 that holds this condition, i.e. E(v) < EM . If there exists
such rv+1, we compare EM with the best ever found EM ,
denoted as Em which has minimum of EM ever found during
this search. If current EM is better (i.e. smaller) than Em,
we save the current EM as a new Em with current cluster
radii set {r1, r2, . . . , rv}. On the other hand, if there exists no
applicable rv+1 that holds the condition, this set of {r1, r2, r3}
is disqualified and we move on to the next combination of
{r1, r2, r3}. By iterating this process for all combinations of
r1, r2, and r3, we can derive a best EM with the optimal
cluster radii of the rings in MECA.

B. Determining Cluster Radii outside MECA

The cluster radii from r1 to rv is decided by the algorithm
of Fig. 5, and now we decide the rest of cluster radii from
rv+1 to the outermost cluster radius. Unlike the cluster radii
within MECA, the optimal solution for the rest of cluster radii
is not unique. In other words, there exists multiple ri (i > v)
that E(i− 1) does not exceed EM .

We only need a particular value of cluster radii among all
feasible ri. We start from the decision of rv+1. We select an

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

217



1: cr ← dM/4 {constant for identical size of radius}
2: for i = v + 1, v + 2, . . . do
3: ri ← cr, ri+1 ← cr, ri+2 ← cr
4: calculate E(i− 1), E(i), E(i+ 1) with {r1, . . . , ri+2}
5: if max (E(i− 1), E(i), E(i+ 1)) ≤ EM then
6: set all r∗j (j ≥ i) in r∗ as cr;
7: return r∗
8: end if
9: for ri = dM − ri−1, dM − ri−1 − g, . . . , dm do

10: if E(i− 1) ≤ EM then
11: r∗i ← ri
12: exit this for
13: end if
14: end for
15: end for

Fig. 6. Optimal cluster radii decision algorithm for ri (i > v).

initial value of rv+1 as (dM − ri−1), which is the maximum
value of rv+1. With that rv+1, we calculate E(i − 1) and
compare it with EM to identify that rv+1 is feasible. If E(i−1)
does not exceed EM , we select that rv+1 as an optimal rv+1

and move on to the search of rv+2. This process is continued
until all cluster radii are decided.

To reduce the time complexity for the decision process, we
utilize the following property of E(i). If the derivative of E(i)
with respect to i is negative from a certain i, we set all the rest
of cluster radii to an identical value. At that stage, if E(i) does
not exceed dM , we set the rest of cluster radii to that value. The
algorithm to decide the cluster radii ri (i > v) is described in
Fig. 6. The complexity of the algorithm in Fig. 6 is O(MN).
M is the number of the rest of cluster radii, and N is the
number of values that a cluster radius can have. The algorithm
iterates M times if appropriate identical size is not found in
worst case. It takes O(N) to decide each cluster radius.

VI. EVALUATIONS

A. Evaluation Settings

In this section, we verify the optimality of our solution. To
this end, we compare the results of the proposed methods with
the optimal solution that are obtained by exhaustively search
for all possible cluster configurations in a brute force manner.

Two common wireless link technologies, IEEE 802.11g and
IEEE 802.15.4, are considered. We utilize the experimental
measurement data of these radio interfaces to decide the
parameters of per-bit energy consumption function. We have
fitted the measurement data of [19], [20] for IEEE 802.11g
and [21] for IEEE 802.15.4 to the polynomial equations. The
following is the resulting per-bit energy consumption function,
where d is the transmission distance.

P (d) = 45 + 1.786 · 10−3 · d2.6 (5)

P (d) = 103.54 + 4.8256 · d1.0 (6)

Equation (5) is for IEEE 802.11g and Equation (6) is
for IEEE 802.15.4. We use P (d) for Pt(d) and Pr(d), i.e.
P (d) = Pt(d) = Pr(d). The path loss exponent q is 2.6 for
both Equations (5) and (6).
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Fig. 7. E(i) by network size (L) with IEEE 802.11g (q = 2.6)
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Fig. 8. E(i) by path loss exponent (q) with IEEE 802.11g (L = 5000m)

For IEEE 802.11g link, Equation (5) is yielded by fitting
the following data: the 14 dBm of transmission power, 1320
mW of energy consumption on radio interface, {−68, −72,
−78, −82, −86, −88, −89, −90} dBm of receiving threshold
for {27, 24, 18, 12, 9, 6, 4.5, 3} Mbps of transmission speed,
respectively. The receiving antenna gain is 1 dBi. The energy
consumption is constant regardless of the transmission speed
for IEEE 802.11g. The transmission distance is determined by
the path loss exponent. We vary the path loss exponent q to
simulate the various path loss environments. P (d) = 45 +
4.464 · 10−4 · d2.3 when q = 2.3, and P (d) = 45 + 4.545 ·
10−2 · d3.3 when q = 3.3.

For IEEE 802.15.4 link, Equation (6) is the fitted function
from the following data: {0, −1, −3, −5, −7, −10, −15,
−25} dBm of transmission power for {30.7, 28.4, 22.1, 21.9,
19.6, 17.5, 15.2} mW of energy consumption, respectively.
The transmission speed is 0.122 Mbps with −90 dBm of
the receiving threshold. The receiving antenna gain is 0 dBi.
IEEE 802.15.4 controls its transmission power according to the
transmission distance. Equation (6) is the resulting power con-
sumption that both the power control of module and the path
loss is considered. The transmission distance is determined by
the path loss exponent q. P (d) = 103.54+4.8256 ·d0.88 when
q = 2.3, and P (d) = 103.54 + 4.8256 · d1.26 when q = 3.3.

In the exhaustive search, the radii sets for all possible
combinations of {r1, r2, r3, . . . , rn} are checked. To avoid

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

218



2 4 6 8 10
10

0

10
2

10
4

10
6

10
8

i, Index of cluster−ring (i−th ring)

A
ve

ra
ge

 e
ne

rg
y 

co
ns

um
pt

io
n 

ra
te

 (
m

W
/n

od
e)

 

 
L = 10000, Energy plateau
L = 10000, Exhaustive search
L = 5000, Energy plateau
L = 5000, Exhaustive search
L = 1000, Energy plateau
L = 1000, Exhaustive search

Fig. 9. E(i) by network size (L) with IEEE 802.15.4 (q = 2.6)
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Fig. 10. E(i) by path loss exponent (q) with IEEE 802.15.4 (L = 5000m)

prohibitively high computation time, we reduce the number of
combinations as follows. We gradually increase the number of
variables from {r1, r2, r3, r4} to {r1, r2, r3, . . . , rk} (k ≥ 4)
while rk is used for the rest of rings. If the result does not
change even if the number of variables is increased, we stop
the search. Since there exists a limit on transmission range, we
check the cluster radius from dm to dM with the granularity
g. Throughout this section, we use the granularity of g = 0.01
meter. The node density Δ is 1 node/m2, and each node
generates 1K bytes of data per cycle. Our scheme is named as
“Energy plateau” while the exhaustive search scheme is named
as “Exhaustive”.

B. Verification of Optimality

1) Network Size: We first vary the size of the network
(L). We calculate the energy consumption rate E(i) of each
ring i for various cases, which are plotted in Fig. 7. The
unit of L is meters. IEEE 802.11g is used for the link, and
the path loss exponent q is set to 2.6. For the exhaustive
search method, we show E(i) of the first two rings (E(1)
and E(2)) with thick lines, since multiple optimal radii set
only shares the size of the 1st and 2nd ring as the highest
energy consumption rates. For the proposed method, the energy
consumption rates of the first ten cluster rings are plotted with
thin lines in Fig. 7. For all sizes of network, the maximum
energy consumption rate of both methods match exactly. Other
observations are as follows. E(i) of the rings in MECA shows
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Fig. 11. E(i) by cluster radii decision strategy with IEEE 802.11g (q = 2.6)

same energy consumption rate while E(i) outside of MECA
does not exceed the maximum energy consumption rate. The
result verifies theorem 1.

2) Path Loss Exponent: Now, we vary the path loss expo-
nent. In Fig. 8, we compare the results of our method with
the optimal solution for various path loss exponents. We can
observe exact match between the results of our method and
optimal solution for all cases of path loss exponent. IEEE
802.11g is used as the link technology, and the network radius
is 5000 meters. As the path loss exponent q increases, the
optimal size of clusters decreases, as expected. The proposed
algorithm properly works in various path loss environments.

3) Radio Interface: We have verified the optimality of the
proposed method by using IEEE 802.15.4 link. Fig. 9 show the
results for various network sizes. Fig. 10 show the results for
various path loss exponents. The general trends are the same
as the case of IEEE 802.11g. As the case of IEEE 802.11g, the
proposed method generates optimal solution in various sizes
of network and path loss environment.

C. Comparison with Heuristics

Next, we compare the energy efficiency of the results of the
proposed method with some heuristic strategies. We use three
heuristic strategies: ‘Identical’, ‘Arithmetic’, and ‘Geometric’.
‘Identical’ sets all radii as the same value, i.e. ri (i ≥ 1) = r.
‘Arithmetic’ imitates an arithmetic progression. r1 is set to the
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TABLE II. BEST PARAMETERS BY THE STRATEGIES

Strategy L = 1000m L = 10000m

Identical r = 39.27 r = 39.17

Arithmetic c = 65.9, a = −19.9 c = 65.1, a = −19.0

Geometric c = 70.9, a = 0.57 c = 69.8, a = 0.59

initial term c, and the next cluster radius is decided by adding
a common difference a, i.e. r1 = c, ri+1 = ri+a. ‘Geometric’
is imitating a geometric progression. The next cluster radius is
decided by multiplying a common ratio a, i.e. r1 = c, ri+1 =
ri · a.

Fig. 11 compares the performance of the three strategies
with the proposed method. We show only the IEEE 802.11g re-
sults. For the comparison, we have searched the best variables
that maximizes the network lifetime for each heuristic strategy.
Table II summarized the best parameters by the strategies.
In all cases, the proposed method clearly outperforms the
best case of each heuristic strategy. Recall that the lower
the maximum of the average energy consumption rate is, the
longer the network lifetime becomes.

More specifically, in Table II, the optimal parameter of
a for Arithmetic is negative, and that of a for Geometric is
less than 1. These mean that the optimal cluster size gradually
decreases as the ring index increases. The reason is as follows.
Due to the nature of the sink-centric traffic, the center of the
network tends to become the critical area that decides the
network lifetime. If the network is large, the amount of data to
forward is not much different between the rings in the critical
area. Therefore, the important factor is the number of nodes
that share the forwarding burden and the distance between the
clusters. The inner ring needs to have larger radius than the
outer ring so that more nodes share the energy consumption
burden.

VII. CONCLUSION

In this paper, we have presented a method to compute the
optimal cluster sizes for maximizing the network lifetime of
large-scale sink-centric clustered WSNs. The key contribution
of our paper is to mathematically prove that the 1st and/or 2nd
ring is always the most energy consuming points. This property
is utilized to devise a scalable algorithm that produces a cluster
structure for optimal network lifetime. Though our algorithm
is designed with certain assumptions which may not always
hold in practice, it can provide good approximation even in
case such assumptions are not applicable.
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