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Abstract— Many device to device communication networks can be
modelled by multi-class tandem queues. In many applications, it
is desired to have different quality of service for various classes.
This can be achieved by implementing dynamic priority across
classes. Performance analysis is an important aspect in such
multi-class tandem queueing models for resource allocation. In
this paper, we analyse two important, relatively complex and
analytically intractable performance measures, tail probability
and switching frequency, for two class queueing system with two
different (relative and earliest due date based) dynamic priority
schemes across classes. Such a two class queueing system can be
used to model voice and data calls in communication networks. A
simulator is built to analyse such queueing systems and various
observations are made. Based on computational evidence, it is
conjectured that two stage exponential queueing network with
two classes of customers is decomposable as far as mean waiting
times are concerned when relative priority is used across classes
to schedule the customers. Based on further experiments, it
is conjectured that departure processes with relative dynamic
priority are indeed Poisson in two class exponential queue. We also
conduct relevant statistical analysis in support of the conjectures.

Index Terms— Dynamic priority, simulation, tandem queues,
multi-class queues, queuing network, tail probability, switching
frequency, optimal control

I. INTRODUCTION

Device to device (D2D) communication in cellular networks
is defined as direct communication between two mobile users
without traversing the Base Station (BS) or core network. D2D
communication was first introduced in [1] to enable multihop
relays in cellular network. Huge literature has evolved since
then with other potential D2D use cases such as multi-casting,
peer-to-peer communication, video dissemination, machine-to-
machine (M2M) communication and so on (See [2], [3], [4]
and [5]). A recent survey on such an important topics can be
found in [6].

Many D2D communication problems can be modelled by multi-
class tandem queueing network (See [7]). For example, packets
can be either transmitted via the one-hop route or two-hop
route and the resulting system can be formulated as a two
stage tandem queueing model. In particular, two class tandem
queueing network is useful to model voice and data calls in
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communication network. Performance analysis of such models
is of significant interest in designing, implementation and
resource allocation of these systems. In this paper, we analyse
some relatively complex but important performance measures
of such systems.

Quality of service is another important aspect in D2D commu-
nication problems. When quality of service has to be differen-
tiated among customers, multi class queueing system appears
to be the natural choice for modelling, where customers are
arriving over time. By quality of service differentiation, we
mean that one type of customers have preferential treatment
over others. A well known queue discipline to provide service
discrimination is to give strict priority. Strict priority discipline
has a drawback as it does not provide enough degree of freedom
for service discrimination to lower priority customers which
may starve for service. There are different types of dynamic
priorities proposed in literature to avoid such starvation. There
are dynamic priorities based on delay [8], on numbers in each
class [9], on due date [10] (see [11], [12] also). A two class
discrete time queuing system with priority jumps is studied
in [13]. These dynamic priorities can alleviate the starvation
problem of one class of customers relative to the other by
suitably choosing the dynamic priority parameter.

Mean waiting time expressions are known in the form of recur-
sion for different types of dynamic priority. Other performance
measures (tail probability, switching frequency, etc.) of such an
important queueing system are not known analytically. It will be
interesting to pursue research in analysing various other perfor-
mance measures for such multi-class dynamic priority queueing
system. Simulation is one of the important tool significantly
used in literature to analyse complex dynamic random systems
(see [14] and references therein). In this paper, we analyse tail
probability and switching frequency for certain dynamic priority
systems using simulation in case of two classes, single stage,
single server queue.

Note that above discussion on service discrimination is with
respect to single server queue. A natural extension of above
problem will be a tandem queueing network which is more
suitable for D2D communication. Some decomposition results
for mean waiting time are known in single class exponential
queueing network. These networks are called Jackson network
in literature (see [15]). Some results with multi-class queues are
also explored in literature (see Kelly network in [16]). In this
paper, we conjecture (based on computations) a decomposition
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result for mean waiting time in a two stage queueing network
when relative dynamic priority is implemented to schedule
customers across classes.

Another community of researchers focused on dynamic control
over multi-class queueing systems due to its various applica-
tions in computers, communication networks, and manufactur-
ing systems. One of the main tools for such control problems is
to characterize the achievable region for performance measure
of interest, then use optimization methods to find optimal
control policy (see [17], [18], [19]). Optimal control policy
for certain non linear optimization problems for two class
work conserving queueing systems is derived in [20]. In this
paper, we solve certain optimal control problem with linear cost
objective in two stage tandem queueing network assuming that
the conjecture is true.

Departure process has attracted significant attention of re-
searchers due to its applications in analysis of queueing net-
works. Earliest results are due to Burke [21] who showed that
departure process of M/M/1 queue is Poisson. Results on
departure process of multi class queues with strict priority are
explored in literature (see [22]). Based on simulation, we further
conjecture that the departure process of two class exponential
queue is Poisson when relative dynamic priority is implemented
across classes. Relevant statistical analysis (histograms and Q-Q
plots) is performed to strengthen the conjecture.

This paper is organised as follows. Section II describes mech-
anism of relative priority and earliest due date based dynamic
priority scheme. Section III presents performance analysis of
tail probability and switching frequency. Section IV conjec-
tures a decomposition result on mean waiting time for two
stage exponential queueing network based on computations.
An application of this decomposition result along with another
conjecture on departure process is presented in same section.
Conclusions and future avenues are discussed in Section V.

II. DYNAMIC PRIORITY SCHEMES

A. Relative priority

This type of dynamic priority was first proposed by Moshe
Haviv and Van Der Wal [9]. In this multi-class priority system,
a positive parameter pi is associated with each class i. Arrivals
are assumed to be independent Poisson with rate λi. Service
times can have any general distribution. If there are nj jobs
of class j on service completion, the next job to commence
service is from class i with following probability:

nipi
N∑
j=1

njpj

, 1 ≤ i ≤ N (1)

Here N is the number of customer classes.

Mean waiting time expression for class i, E(Wi), under this

discipline is given by following recursion [9]:

E(Wi) = W0+
∑
j

E(Wj)ρj
pj

pi + pj
+τiE(Wi), 1 ≤ i ≤ N.

(2)

where τi =

N∑
j=1

ρj
pj

pi + pj
, 1 ≤ i ≤ N , ρi is the load factor

of class i and W0 =
N∑
i=1

λix̄
2
i /2. x̄2i is the second moment of

service time of class i. In particular for N = 2 and (without
loss of generality) p1 + p2 = 1,

E(Wi) =
1− ρpi

(1− ρ1 − p2ρ2)(1− ρ1 − p1ρ1)− p1p2ρ1ρ2
W0,

(3)
for i = 1, 2 where ρ = ρ1 + ρ2.

B. Earliest Due Date (EDD) Dynamic Priority

This type of dynamic priority across multiple classes was first
proposed by Henry M. Goldberg [10]. Consider a single server
queueing system with N number of classes similar to relative
priorities. Each class i has a constant urgency number ui
(weights) associated with it. Without loss of generality, classes
are numbered so that u1 ≤ u2 ≤ · · · ≤ uN . If a customer
from class i arrives at the system at time ti, he is assigned
a real number ti + ui. Server chooses the next customer to
go into service out of those present in the queue as the one
with minimum value of {ti + ui}. The server is busy so long
as customers are present in the system. Let Wr denotes the
waiting time of a class r jobs. In steady state, E(Wr) is given
by [10]:

E(Wr) = E(W ) +

r−1∑
i=1

ρi

∫ ur−ui

0

P (Wr > t)dt

−
k∑

i=r+1

ρi

∫ ui−ur

0

P (Wi > t)dt (4)

for r = 1, . . . , N . Here E(W ) =
W0

(1− ρ)
and ρi is the traffic

due to class i. In case of two classes, expected waiting time is
given by Theorem 2 in [10]:

E(Wh) = E(W )− ρl
∫ u

0

P (Th[W ] > y)dy (5)

E(Wl) = E(W ) + ρh

∫ u

0

P (Th[W ] > y)dy (6)

where index h and l are for higher and lower class priority. ul
and uh are the weights associated with lower and higher classes,
where u = ul−uh ≥ 0. Th[W ] is the limit of Th[W (t)] as t→
∞ which is defined below. Let W (t) be the total uncompleted
service time of all customers present in the system at time t,
regardless of priority. W (t)→W as t→∞.

Th[W (t)] = inf{t
′
≥ 0; Ŵh(t+ t

′
: W (t)) = 0}

where Ŵh(t+ t
′

: W (t)) is the residual workload of the server
at time t+ t

′
given an initial workload of W (t) at time t and
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considering input workload from class h only after time t.

III. PERFORMANCE ANALYSIS

In this section, we discuss the performance analysis of some
relatively complex performance measures for two class single
server queue when dynamic priority is implemented across
classes. Note that only mean waiting time expressions are
known analytically for dynamic priorities discussed in previous
section. Other performance measures are also important for
such multi-class queueing systems. We present the analysis of
tail probability and switching frequency using simulation.

We built a simulator in SimPy for single server queue with
two classes of customers. Relative priority or earliest due date
based dynamic priority is implemented across classes. SimPy
is process-based discrete-event simulation framework based on
standard Python language. Logic of the simulator, simulation
code and validation of simulator can be seen in technical report
(See [23]). All simulation results presented in this section are
for exponential service time and Poisson arrivals.

Simulation run time: Total simulation run time for relative
priority and earliest due date based dynamic priority simulator
is 11,000 time units with warm up period of 1,000 time units
in all the experiments of this section.

A. Tail probability of waiting time

Tail probability of waiting time is one of the important per-
formance measure for any queueing system. Tail probability
of waiting time is the probability that the waiting time Wi is
greater than some given tail value t, P (Wi > t) ∀ i ∈{1, 2}.
This performance measure is often used for defining quality of
service in various optimal control problems. We calculate the
tail probability for waiting time of class 1 and class 2.

We use the random seed to be 1 in our simulators for all the
analysis related to tail probability.

1) Relative priority: We study the change in tail probability
while varying three different input parameters (tail value, arrival
rate and dynamic priority parameter). Change in tail probability
of waiting time for class 1 and class 2 customers with different
tail values is shown in Figure 1. We consider parameter setting
λ1 = 6, λ2 = 8, µ = 15, p1 = 0.3 and p2 = 0.7 = 1 − p1
and t is varying from 0.3 to 3. It is noted that tail probability
of waiting time decreases monotonically as t increases.

Change in tail probability of waiting time of class 1 and class 2
customers by varying dynamic priority parameter can be seen
in Figure 2. We consider the parameter setting t = 0.8, λ1 =
6, λ2 = 8, µ = 15 and p1 is varied from 0.1 to 0.9. It is noted
that tail probability for class 1 customers decreases while it
increases for class 2 customers. Tail probabilities of class 1
and class 2 customers are equal at p1 = 0.5.

This phenomenon is intuitive. Increasing the dynamic priority
parameter for class 1, will lead to lesser waiting time for class
1 and hence smaller tail probability. Similar comments can be
made for class 2.

Fig. 1. Change in P (W1 > t) and P (W2 > t) by varying t

Fig. 2. Change in P (W1 > t) and P (W2 > t) by varying p1

Change in tail probability of class 1 and class 2 customers by
varying arrival rate of class 1 customers can be seen in Figure
3. We consider the parameter setting t = 0.5, λ2 = 8, µ =
15, p1 = 0.3 p2 = 0.7 and λ1 is varied from 1 to 6. It is noted
that tail probability increases with λ1. Tail probability for both
classes increases with higher rate for higher values of λ1.

Fig. 3. Change in P (W1 > t) and P (W2 > t) by varying λ1

2) EDD dynamic priority: In this section, we study the change
in tail probability while varying the various parameters dis-
cussed in previous section for EDD based dynamic priority.

Figure 4, 5 and 6 show the variation in tail probability of
waiting time with change in t, u1 and λ1 respectively. All
the experiments are performed with λ1 = 6, λ2 = 8, u1 =
2, u2 = 5, t = 0.2 and µ = 15. Tail value t, λ1 and u1 are
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Fig. 4. Change in P (W1 > t) and P (W2 > t) by varying t

Fig. 5. Change in P (W1 > t)) and class 2 P (W2 > t) by varying u1

Fig. 6. Change in P (W1 > t) and class 2 P (W2 > t) by varying λ1

varied appropriately as shown in different figures. Observations
similar to the case of relative priority about tail probability can
be noted. One of the interesting observation in Figure 5 is tail
probability remains constant for certain range of u1. Figure 4
and 6 show the monotonic behaviour of tail probability with
change in tail value t and λ1 respectively.

B. Switching frequency

An important aspect of multi-class queueing system is switching
frequency. This performance measure is important when there
is cost associated with each switch. Hence we investigate the
switching frequency of relative and earliest due date based
dynamic priority. Switching frequency is defined as the ratio of

number of service switches among different classes the server
undergoes divided by the total number of customers served.
Thus switching frequency always lies in [0, 1]. We kept the
random seed to be 1 for all the analysis concerning switching
frequency in our simulators.

1) Relative priority: We study the change in switching fre-
quency while varying dynamic priority parameter p1. We
consider parameter setting λ1 = 4, λ2 = 8, µ = 15. It
is noted in Figure 7 that switching frequency poses a nice
geometric structure (concave function) for relative dynamic
priority. Switching frequency is maximum at p1 = 0.5.

Fig. 7. Switching frequency Vs p1

2) Earliest Due Date: We study the change in switching
frequency while varying early due date parameter u1 and
keeping u2 = 50 (constant). We consider parameter setting
λ1 = 4, λ2 = 8, µ = 15. Switching frequency initially remains
constant as u1 increases, after a certain threshold value (less
than u2) switching frequency starts monotonically increasing.
Switching frequency is maximum at u1 = u2 (global first
come first serve), then it starts monotonically decreasing till
a threshold value after which it remains constant (see Figure
8).

Fig. 8. Switching frequency Vs u1

IV. A DECOMPOSITION RESULT

In this section, we describe a decomposition result for mean
waiting time in two stage exponential queueing network based
on simulation. We discuss applicability of this decomposition
result in certain optimal control problems. Analytical results of
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departure process are known only for static priority in multi
class queues, to the best of our knowledge. Based on compu-
tations, we further conjecture a result on departure process of
two class queueing system when relative dynamic priority is
implemented across classes.

Consider a two stage queueing network with two classes of
customers. Let λ1 and λ2 be the independent Poisson arrival
rates for class 1 and class 2. Let µ1 and µ2 be the exponential
service rates at stage 1 and stage 2 respectively as shown in
Figure 9. Note that service rate is same for both the classes
in each stage. Consider the relative priority parameter as pij
for i = 1, 2 and j = 1, 2. Here index i and j represent the
class and stage respectively in a two class two stage queueing
network. It follows from definition of relative priority that p1j+
p2j = 1 for j = 1, 2.

µ1 µ2

λ1 p11

p21

p12

p22
λ2

Fig. 9. A two class two stage queueing network

A simulator for two stage queueing network described above
is build in SimPy (simulation package in python) [24]. SimPy
code and logic for simulator can be seen in technical report (see
[23]). Simulation run time is taken as 11,000 time units with a
warmup period of 1,000 time units in all the experiments except
for the heavy traffic in Table VI. It is noted in experiments that
performance measures do not change significantly if one in-
creases the run length. Hence this fixed run length is enough to
produce accurate results. Five replications of each experimental
setting are performed to capture the effect of random numbers
used in simulator. Half width is calculated using t-distribution
at 95% level of confidence in all experiments.

Simulator is validated using following observations for two
stage tandem queueing network. Details are available in tech-
nical report [23].

• We compare simulated mean waiting time with theoretical
mean waiting time (see [9]) in the first stage and note that
the difference is not statistically significant.

• Arrival and departure rates are same in any stable queueing
system. This phenomenon is observed in simulation and it
is a necessary condition for the validation of two stage
queueing network simulator.

A. Main result

We conjecture the following result based on our computation.
We did experiments with low, moderate and heavy traffic rate
with different relative dynamic priority parameters.

Conjecture 1: A two class two stage queueing network with
Poisson arrivals is decomposable in terms of mean waiting time

when relative priority is used across classes in both stages for
exponential service time distribution at first stage.

Above decomposability result implies that the mean waiting
time at second stage is independent of relative priority parame-
ters (p11, p21) and service rate at first stage (µ1). Mean waiting
time of the second stage is the mean time customer spends in
the second stage queue after finishing service from first stage.
Mean waiting time at the second stage can be calculated by
using theoretical mean waiting time expression (see Equation
(3)) while using the parameters (p12, p22 and λ1, λ2) at second
stage only. Note that theoretical mean waiting time value at
second stage is calculated without knowing if the arrival process
at second stage is Poisson which is necessary for using Equation
(3). It turns out that simulated mean waiting time matches
with the theoretical mean waiting time at second stage (see
simulation results in this section). We further conjecture in
Section IV-B that the departure process from stage 1 is Poisson.

First of all, we present some simulation results in the support
of above conjecture. In these results, we compute the difference
between simulated and theoretical mean waiting at both stages
and for class 1 and class 2.

We vary the relative priority parameter while keeping moderate
traffic intensity. Input parameter setting is as: λ1 = 4, λ2 =
8, µ1 = 15 and µ2 = 16 (see Table I, II and III).

We further did the experiment by varying arrival rates λ1 and λ2
while keeping the dynamic priority parameters fixed at p11 =
0.5, p12 = 0.4 and service rates fixed at µ1 = 15, µ2 = 16
(See Table IV and V).

We also did some experiments with heavy traffic with parame-
ters as p11 = 0.8, p12 = 0.9, µ1 = 15, µ2 = 14.5, λ1 = 6 and
λ2 = 8. Simulation run time is increased from 11000 to 100000
with a warmup period of 20000 (See Table VI). Some more
simulation experiments are performed with different parameter
settings and similar phenomenon as in Table I-V is noted (see
technical report [23]).

TABLE I
RESULTS WITH DYNAMIC PRIORITY PARAMETERS p11 = 0.1 AND

p12 = 0.8

Replication Differences at stage 1 Differences at stage 2
Class 1 Class 2 Class 1 Class 2

1 0.0057 0.0006 0.0159 -0.0139
2 -0.0172 -0.0003 0.0121 -0.0145
3 0.0031 0.0018 0.0147 -0.0077
4 -0.0016 -0.0003 0.0174 -0.0054
5 0.0299 0.0059 0.0160 -0.0039

mean 0.0040 0.0016 0.01527 -0.0063
halfwidth 0.0212 0.0032 0.00246 0.0119

It is noted that zero lies in the confidence interval (mean ±
half width) of the difference between simulated and theoretical
mean waiting time in all tables except Table III. However, all
simulated mean waiting times are very close to theoretical mean
waiting time and the maximum difference between simulated
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TABLE II
RESULTS WITH DYNAMIC PRIORITY PARAMETERS p11 = 0.3 AND

p12 = 0.6

Replication Differences at stage 1 Differences at stage 2
Class 1 Class 2 Class 1 Class 2

1 0.0078 0.0064 0.0014 -0.0112
2 -0.0073 -0.0002 0.0088 -0.0009
3 0.0068 0.0051 0.0082 -0.0003
4 -0.0046 -0.0003 -0.0025 -0.0139
5 -0.0058 -0.0014 0.0155 0.0065

mean -0.0006 0.0019 0.0063 -0.0040
halfwidth 0.0091 0.0045 0.0088 0.0105

TABLE III
RESULTS WITH DYNAMIC PRIORITY PARAMETERS p11 = 0.8 AND

p12 = 0.9

Replication Differences at stage 1 Differences at stage 2
Class 1 Class 2 Class 1 Class 2

1 0.0056 0.0217 -0.0049 0.0037
2 0.0007 0.0045 -0.0056 0.0117
3 0.0023 0.0050 -0.0045 0.0010
4 -0.0002 0.0065 -0.0039 -0.0039
5 -0.0015 -0.0027 -0.0026 0.0079

mean 0.0014 0.0070 -0.0044 0.0041
halfwidth 0.0035 0.0112 0.0014 0.0075

TABLE IV
RESULTS WITH ARRIVAL RATES λ1 = 1 AND λ2 = 1

Replication Differences at stage 1 Differences at stage 2
Class 1 Class 2 Class 1 Class 2

1 0.00026 0.00009 0.00039 0.0002
2 -0.00029 -0.00053 -0.00045 -0.0001
3 0.00043 0.00067 0.00025 0.0010
4 0.00053 0.00071 0.00002 -0.0039
5 0.0002 -0.00042 -0.00038 0.0079

mean 0.000229 .000105 -0.000034 0.000147
halfwidth 0.000400 0.000729 0.000469 0.000216

TABLE V
RESULTS WITH ARRIVAL RATES λ1 = 4 AND λ2 = 1

Replication Differences at stage 1 Differences at stage 2
Class 1 Class 2 Class 1 Class 2

1 -0.0015 0.0002 0.0004 -0.0003
2 0.0012 -0.0006 0.0011 0.0009
3 0.0009 0.0013 0.0002 -0.0003
4 -0.0009 -0.0009 -0.0001 -0.0012
5 0.0014 0.0016 0.0016 0.0019

mean 0.00019 0.00056 0.00066 0.00020
halfwidth 0.00162 0.00124 0.00087 0.00147

and theoretical waiting time is of the order 10−1 with respect
to theoretical waiting time. Hence the difference between the-
oretical and simulated waiting time is statistically insignificant
in all table except Table III. We conclude that such a two stage

TABLE VI
RESULTS WITH p11 = 0.8, p12 = 0.9, µ1 = 15, µ2 = 14.5, λ1 = 6 AND

λ2 = 8 (HEAVY TRAFFIC)

Replication Differences at Stage 1 Differences at Stage 2
Class 1 Class 2 Class 1 Class 2

1 -0.0033 -0.0265 -0.0207 -0.0894
2 -0.0053 -0.0133 -0.0403 -0.2671
3 -0.0046 -0.0193 -0.0020 0.0547
4 0.0008 0.0048 0.0175 0.2585
5 -0.0106 -0.0448 -0.0252 -0.1466

mean -0.0046 -.0198 -0.0141 -0.0380
halfwidth 0.0050 0.0225 0.0277 0.2510

tandem queueing network is decomposable with mean waiting
time as described in conjecture (except for moderate traffic
cases similar to the example in table III in which one particular
customer class has high priority across both stages).

1) An application: In this section, we discuss an application
of above decomposition result in solving an optimal control
problem for two stage queueing network. Consider the linear
waiting time cost minimization problem as follows:

P1: min
F

c1W̄1 + c2W̄2

where W̄1 and W̄2 are mean waiting time of class 1 and
class 2 respectively. Let c1 and c2 be the cost associated with
class 1 and class 2 respectively and F be the set of all non
pre-emptive, non anticipative and work conserving scheduling
policies. It is proved in [25] that relative dynamic priority is
complete for single stage and two class queues. In other words,
optimizing over relative priority is equivalent to optimizing over
set of all non pre-emptive, non anticipative and work conserving
scheduling policies. Hence optimizing over F is equivalent to
optimizing over relative priority and equivalently problem P1
can be rewritten as:

min
p11, p12

c1W̄1 + c2W̄2

Note that W̄1 and W̄2 are functions of p11 and p12. By using
above decomposition result and assuming that the conjecture 1
is true, we have

W̄1(p11, p12) = W̄11(p11) + W̄12(p12)

W̄2(p11, p12) = W̄21(p11) + W̄22(p12)

Here W̄ij for i, j = 1, 2 is mean waiting time for class i in
stage j. Above optimization problem can be rewritten as:

min
p11, p12

c1(W̄11(p11)+W̄12(p12))+c2(W̄21(p11)+W̄22(p12))

which can be simplified as

min
p11, p12

c1W̄11(p11)+c2W̄21(p11)+c1W̄12(p12)+c2W̄22(p12)

or
min
p11

c1W̄11(p11) + c2W̄21(p11)+
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min
p12

c1W̄12(p12) + c2W̄22(p12)

It is clear that the original optimization problem P1 can be
decomposed in above simpler optimization problem. Also note
that solution of above two decomposed optimization problems
is well known as cµ rule in literature (see [26]). Hence optimal
control policy for optimization problem P1 can be simply
obtained.

B. Departure process of relative priority queue

We perform some more experiments with inter departure time
and further conjecture a result on departure process which is
stronger variant of the Conjecture 1. We did experiments with
low, moderate and heavy traffic.

Conjecture 2: A two class single stage exponential queueing
system has Poisson departure process when relative dynamic
priority is implemented across classes.

Histograms: We present some simulation results in the support
of above conjecture in Figure 10 and 11. We plot the histograms
of inter-departure time at first stage for both classes. Histograms
are plotted for a bin width of 0.01 time units. We consider
the parameter setting as λ1 = 6, λ2 = 8, µ1 = 15, µ2 =
16, p11 = 0.8, p12 = 0.9 It can be seen from these figures
that inter departure times are exponentially distributed. Also
it is know that departure rate is same as arrival rate for any
stable queueing system. Hence the departure process will be
Poisson with parameters λ1, λ2 for classes 1 and 2 respectively
as conjectured.

Fig. 10. Estimated density of interdeparture time for class1 customers

Q-Q plot: We use Q-Q plot to further strengthen this conjecture.
In a Q-Q plot, we order the data points and plot them against
the theoretical data quantiles of the distribution. If the two
distributions being compared are similar, the points in the Q-Q
plot will approximately lie on the line y = x. We sketch Q-
Q plot for the parameter setting λ1 = 4.0, λ2 = 8.0, µ1 =
15.0, µ2 = 16.0, p11 = 0.8, p12 = 0.9 for both class 1 and
class 2 customers (See Figure 12 and 13). We also sketch Q-
Q plot for the parameter setting λ1 = 1.0, λ2 = 2.0, µ1 =

Fig. 11. Estimated density of interdeparture time for class2 customers

15.0, µ2 = 16.0, p11 = 0.6, p12 = 0.8 for both class 1 and
class 2 customers (See Figure 14 and 15). It is noted from Q-Q
plots that points approximately lie in line y = x . Hence results
of conjecture 2 are accurate.

We also did experiments with different arrival rates and similar
phenomenon is noted for both histograms and Q-Q plots (see
[23] for details).

Fig. 12. Q-Q plot for class 1 inter-departure time distribution.

Fig. 13. Q-Q plot for class 2 inter-departure time distribution.
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Fig. 14. Q-Q plot for class 1 inter-departure time distribution.

Fig. 15. Q-Q plot for class 2 inter-departure time distribution.

V. CONCLUSIONS AND FUTURE WORK

Simulations of relative priority and earliest due date dynamic
priority provide an insight into the behaviour of complex
performance measures such as tail probability and switching
frequency. It is noted that switching frequency poses a nice
geometric shape (concave) with change in relative priority
parameter. The decomposition result of mean waiting times
for a two stage relative priority queuing network is useful in
solving optimal control problems for queuing network, which
often arise in D2D communication network design.

It will be interesting to analyse the other complex performance
measure for example variance of waiting time. Extending the
results obtained here for N classes is another interesting future
avenue. Validity of conjectures 1 and 2 for other dynamic
priority queuing systems can also be studied. Proving these
conjectures analytically remains an open problem.
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