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Abstract—The problem of finding an optimal sensing schedule
for a mobile device that encounters an intermittent WiFi access
opportunity is considered. At any given time, the WiFi is in any
of the two modes, ON or OFF, and the mobile’s incentive is
to connect to the WiFi in the ON mode as soon as possible,
while spending as little sensing energy. We introduce a dynamic
programming framework which enables the characterization of
an explicit solution for several models, particularly suitable when
the OFF periods are exponentially distributed.

While the problem for non-exponential OFF periods is ill-
posed in general, a usual workaround in literature is to make
the mobile device aware if one ON period is completely missed. In
this restricted setting, using the DP framework, the deterministic
nature of the optimal sensing policy is established, and value
iterations are shown to converge to the optimal solution. Finally,
we address the blind situation where the distributions of ON
and OFF periods are unknown. A continuous bandit based
learning algorithm that has vanishing regret (loss compared to the
optimal strategy with the knowledge of distributions) is presented,
and comparisons with the optimal schemes are provided for
exponential ON and OFF periods.

I. INTRODUCTION

The available WiFi connectivity in mobile environments can
be intermittent. In an effort to maximize WiFi connectivity
time, current smartphones keep scanning/sensing for WiFi con-
nection quite frequently, however, they loose precious battery
life in this process. The sensing schedule clearly depends on
the distributions of the ON and OFF periods of the WiFi access
points (AP). This paper is an effort in finding the optimal
sensing periods given the knowledge of the ON and OFF
period distributions.

Given a geographical area with a fixed number of WiFi APs
and a roaming mobile, the WiFi connection opportunity can be
modeled as a two-state Markov chain with {ON, OFF} states.
This assumption is reasonable for moving users either while
driving or walking, where each user moves in an and out of
AP coverage areas. In dense areas, the ON-OFF cycles could
be periodic, while in semi-urban or rural areas, ON-OFF could
follow a certain distribution. In [1], it is shown that the ON
and OFF periods can be well approximated by exponential
distributions, via analyzing WLAN trace data available from
Crawdad [2]. In this paper, we consider general ON-OFF
period distributions, and try to find optimal mobile sensing
schedules to maximize throughput with minimum sensing cost.

Clearly, there is an inherent tradeoff between sensing cost
and WiFi connectivity time: more frequent sensing leads to

faster WiFi connectivity however incurs larger cost. Thus,
to find the optimal sensing durations, a natural problem is
to minimize the sum of the expected length of the missed
ON periods and the expected sensing cost as first proposed
in [3]. Even though [3] proposed this metric, however, for
analysis, the metric was simplified, for example by replacing
some of the random variables with their expectations. Optimal
solutions to these approximations for general ON and OFF
distributions were presented in [3].

In prior work, without explicitly counting for the sensing
cost, [1] also found the optimal sensing durations that mini-
mize the rate of missed ON periods. The analysis, however, is
not completely rigorous, for example, the missed ON period in
a given time period does not depend on the length of the time
period, which is anomalous. Some heuristic solutions [1], [4]
have also been found that modulate the sensing durations given
the frequency of failure of detection. Some other practical
smart sensing protocols for WiFi sensing can be found in [5],
[6]. Sensing in cognitive radio is also similar to this work [7],
however there, the unlicensed users sense to maximize their
throughput without harming the licensed users. The cognitive
radio setting also leads to a partially observed Markov decision
process.

In this paper, we consider the metric as the sum of the
expected length of the missed ON periods and the expected
sensing cost similar to [3]. Unlike [3], [1], our approach
relies on a dynamic programming (DP) formulation. We first
solve for the problem when the OFF period is exponentially
distributed, while the ON periods are IID with any arbitrary
distribution. We give explicit answers in terms of the ON
period distribution and the mean of the exponential OFF
periods. The DP framework also allows us to rectify the
anomalies in the past work concerning exponential ONs and
OFFs [1].

For non-exponentially distributed OFF periods, we consider
the restriction of one OFF and ON period similar to [3], since
otherwise the problem becomes ill-posed, see Remark 1 for a
detailed explanation. More importantly, we do not change the
metric to suit analysis as done in [3], i.e. the sum of expected
length of the missed ON periods and the expected sensing cost
is still the metric that we minimize. Again posing the problem
as a dynamic program, we obtain structural results to show that
the optimal policy is deterministic, and can be found via value
iteration that converges to the optimal solution. The restricted
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problem can be seen as a generalization of [8], where the ON
period never expires.

Almost all prior work on smart WiFi sensing assumes the
knowledge of the distribution of the OFF and ON period
distributions. In practice, these can be obtained only via
training, which however, is costly in terms of resources. To
overcome this, we propose a blind learning framework, where
the learning algorithm adapts the optimal sensing duration iter-
atively, without any explicit training. The proposed algorithm
is inspired by algorithms for continuous bandit problems [9],
[10], where each agent has a continuum of strategies to choose
and its objective is to maximize a reward function, however,
it does not know the reward distribution conditioned on its
choice. We show that the proposed algorithm (following [10])
for finding the optimum sensing durations has a vanishing
regret as a function of time, where regret is defined as
the difference between the respective rewards of an optimal
algorithm with the knowledge of the distribution, and the blind
learning algorithm. For ease of exposition, we illustrate the
vanishing regret result only when the underlying ON-OFF
period distribution is exponential, but as will be readily seen
it applies for any other ON-OFF period distributions. To the
best of our knowledge this is the first such result in the area
of Wi-Fi sensing, and is expected not only to be very useful in
practice, but also helpful in the analysis more complex models.

We highlight the main contributions of the paper by listing
them below.
• We propose a dynamic programming framework to iden-

tify the optimal sensing duration in intermittent WiFi
access. The framework applies to arbitrary ON period
distributions and exponential OFF period distributions,
see Section IV.

• A restricted DP framework gives structural results on
optimal policies for the non-exponential OFF periods
(Section V).

• We propose a blind learning framework in Section VI,
which iteratively identifies the optimal sensing duration,
even in the absence of statistical knowledge of the ON-
OFF periods.

II. ORGANIZATION

The rest of the paper is organized as follows. We discuss
the system model, together with the problem formulation in
Section III. In Section IV, we present our results when the OFF
periods are exponentially distributed. The non-exponential
OFF periods case is discussed in Section V, where we obtain
some structural results. In Section VI, we discuss the learning
algorithm which is blind to the ON-OFF period distributions,
and is shown to have a vanishing regret. Finally, in Section VII,
we present some simulation results for the learning algorithm’s
regret function, and the achieved WiFi connectivity time.

III. SYSTEM MODEL

Consider a mobile device that is moving in and out of WiFi
APs’ transmission radii, and encounters intermittent WiFi
access opportunities in time, as shown in Fig. 1. We assume

that at time t, AP state is OFF if the mobile device is not in any
AP’s transmission radius, and ON otherwise. Thus, as shown
in Fig. 1, the mobile sees alternating ON and OFF periods,
where it can possibly receive data only during the ON periods.
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Fig. 1. System model description

To detect ON periods, the mobile device employs sensing.
On sensing at time t, if the AP state is found ON, the device
gets connected to the AP till the end of that ON period. We
assume that the device learns about the disconnection as soon
as the ON period is over, by using either the rapid increase in
error probability or no useful data transmission. Otherwise, if
the AP state is OFF when sensing at time t, then the mobile
decides to sleep for the duration till the next sensing epoch
t+ b(t), as shown in Fig. 1.

To save energy, the mobile senses intermittently, and con-
sequently loses out on connecting to the AP as soon as the
ON period starts. In particular, the shaded region (missed data)
in Fig. 1 represents the lost opportunity because of intermit-
tent sensing. Longer sleep periods incur less sensing power
consumption but decrease the WiFi connectivity time utilized,
while shorter sleep periods increase the WiFi connectivity time
at the cost of increasing the sensing power consumption.

To strike a balance between the lost ON period time and
the sensing power consumption, we consider the problem of
finding the sensing intervals so as to minimize the sum of
expected lost opportunity for data reception and the expected
power for sensing. Let us now make this formal.

Let the duration of the ith, i ≥ 1 OFF and ON period be
denoted by Xi and Yi, respectively, see Fig. 1. We assume
that both Xi and Yi are independent for i ≥ 1. The PDF of
X and Y is denoted by fd(x) and fc(y), where the subscript
d and c represent disconnection and connection, respectively.

If a sensing reveals the AP state to be ON, there is no
decision to make, and the mobile device stays connected
from there till the end of the current ON period, then gets
disconnected, and the system restarts. The non-trivial decision
problem is encountered when the current sense reveals the AP
state to be OFF. We define an ON period to be a discovered
ON period, if a sensing epoch lies in that ON period. In a
discovered ON period, useful ON period is the time between
the sensing epoch and the end of the discovered ON period.
An illustration is provided in Fig. 2. Time period between the
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end of two consecutive discovered ON periods is defined to
be a session. Recall that system resets at the the end of each
discovered ON period, thus we focus on any one particular
session from here onwards.
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Fig. 2. Illustration of sessions for learning algorithm

Let 1on(t) (1off(t)) denote the event that the AP is in ON
(OFF) state at time t. Let Poff(t) be the probability (density)
that the AP is in OFF state at time t, and Poff(t+x|t ∈ ∗) be
the probability that the AP is in OFF state at time t+x given
that AP is in state ∗ ∈ {OFF, ON} at time t. We define the
cost between two sensing epochs at t and t+ b(t) in a session
as

c(t, b(t)) = cs +M(t, b(t)), (1)

where cs is a fixed sensing cost, and M(t, b(t)) is the
missed/lost ON periods (possibly multiple periods are missed
because of lack of sensing) between time t and t+ b(t). Now,
the sensing problem can be cast as a dynamic program (DP),

V (t) = max
b(t)≥0

[E{c(t, b(t))}+Poff(t+b(t)|t ∈ off)V (t+b(t))],

(2)
where we have assumed that b(t) is selected as the next sensing
duration at time instant t. In this case, the running cost is
E{c(t, b(t))}, and the process restarts if the AP is in OFF state
at time t + b(t), this event happens with probability Poff(t +
b(t)|t ∈ off).

Given that an OFF period is in progress at time t, we define
a random variable rt which represents the residual OFF period
(time of the completion of OFF period) at time t. The PDF of
rt is denoted as frt(·), and the corresponding CDF is Frt(x) =
P (X > x|X > t), where X represents the duration of the OFF
period. Note that Poff(t+ b(t)|t ∈ off) = frt(b(t)) in (2).

Remark 1: If the distribution of the OFF periods is not
exponential, then (2) is not well-defined. To see this, consider
that if for two consecutive sensing times t and t + b(t), the
AP state is OFF, the distribution of the residual OFF period
starting from t+b(t) (i.e.rt+b(t)) is not well-defined since we
do not know when the current OFF period started. To handle
the non-exponential distribution of the OFF periods, we will
follow the approach of [3] in Section V, where it is assumed
that as soon as any one complete ON interval is lost/missed
because of no sensing epoch lying in that ON period, the
system is reset, and the mobile device is notified that an OFF
period has begun.

IV. EXP-OFF PERIOD

In light of Remark 1, in this section, we restrict our attention
to exponential distribution for the OFF period, while the ON
period is allowed to have an arbitrary distribution. Under this
assumption, we show that the optimal control b(t) does not
depend on t.

Lemma 2: The optimal control b(t) that solves (2) does not
depend on t, when OFF periods are exponentially distributed.

Proof: At time t, the next sensing duration b(t) is decided
only if t ∈ off. However, because of the memoryless property
of the OFF periods, the event that t ∈ off gives no information
about the future length of OFF and ON periods, the optimal
sensing duration b(t) does not depend on t.

With arbitrary ON period distribution, we need the fol-
lowing notation. Let Poff(y|z ↑) be the probability that the
AP is in OFF state at time y, y ≥ z given that a transition
from OFF to ON period happens at time z. Because of
memoryless property of the OFF period distribution,we do not
need such notation for transition from ON to OFF period, since
Poff(y|z ↓) = Poff(y|z ∈ off). To further the analysis, we next
find an expression for Poff(·).

Lemma 3:

Poff(t+ x|t ∈ off) =

P (rt ≥ x) +

∫ x

0

fd(z)Poff(t+ x|z ↑)dz, z ≥ t (3)

Poff(t+x|t ↑) =

∫ x

0

fc(w)Poff(t+x|w ∈ off)dw,w ≥ t.

(4)

Proof: The first expression is obtained by counting the
two exclusive events, i) the residual time rt of the present (at
time t) OFF period exceeds x, and ii) the present OFF period
expires at time z (i.e. OFF to ON transition happens at z),
and taking the expectation of Poff(t + x|z ↑) with respect to
t ≤ z ≤ x. The second expression follows similarly.

Corollary 4: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), for x ≥ 0,

Poff(t+ x|t ∈ off) =
λc

λc + λd
+

λd
λc + λd

exp(−(λd + λc)x).

Note that Poff(t + x|t ∈ off) does not depend on the starting
time t as expected, because of the memoryless property of the
exponential distribution.

Proof: We use the Laplace transforms of (3) and (4) to
solve for Poff(t + x|t ∈ off). With OFF period ∼ EXP (λd)
and ON period ∼ EXP (λc), fd(w) = λd exp(−λdw) and
fc(w) = λc exp(−λcw). Denoting the Laplace transform of
fd(w) as f∗d (s), fc(w) as f∗c (s), Poff(t+x|t ∈ off) as P̂ of0 (s)
and Poff(t+ x|t ↑) as P of1 (s), we have from (3) and (4),

P̂ of0 (s) =
1

s+ λd
+ f∗d (s)P̂ of1 (s),

P̂ of1 (s) = f∗c (s)P̂ of0 (s).
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Note that f∗c (s) = λc
s+λc

and f∗d (s) = λd
s+λd

. Hence

P̂ of0 (s) =
1

s+ λd

1

1− f∗d (s)f∗c (s)
, (5)

=
1

λd + λc

(
λc
s

+
λd

s+ λd + λc

)
. (6)

Taking the inverse transform, for x ≥ 0

Poff(t+ x|t ∈ off) =
λc

λc + λd
+

λd
λc + λd

exp(−(λd + λc)x).

Next, we find the expected running cost E{M(t, b(t))}
to compute the expected cost E{c(t, b(t)}. Again appealing
to the memoryless property of the exponential distribution,
E{M(t, b(t))} = E{M(b)} where we have shifted the starting
time to 0. We will use recursions similar to (3) and (4) and
Laplace transforms to find E{M(t)}.

Let Md(t) = E{M(t)} be the average missed ON period
time between times τ to t + τ , when τ ∈ off. Moreover,
let M↑(t) = E{M(τ, τ + t)} be the average missed ON
period time between times τ to t + τ given that the OFF
to ON transition happens at time τ , and similarly let M↓(t) =
E{M(τ, τ + t)} given that the ON to OFF transition happens
at time τ . The quantities M↑(t) and M↓(t) have no dependence
on τ because of the Markov property of ON and OFF periods.
So without loss of generality, we take τ = 0. Note that because
of memoryless property of OFF periods Md(t) = M↓(t).

Lemma 5:

M↑(t) = t

∫ ∞
t

fc(x)dx+

∫ t

0

fc(x)(x+ M↓(t− x))dx, (7)

and

M↓(t) =

∫ t

0

fd(x)M↑(t− x)dx. (8)

Proof: To derive (7), we have broken the expectation
M↑(t) into two terms, where in the first we count the expected
length of the ON period that starts at time τ = 0 and continues
beyond time t, and in the second, we consider the case when
the ON period that starts at time τ = 0 finishes at some
time x < t and count for the expected loss with ON to OFF
transition happening at x. The second expression (8) follows
similarly.

Theorem 6: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), the expected loss Md(t) is given by

Md(t) =
λd

λd + λc

(
t− 1− e−(λd+λc)t

λc + λd

)
. (9)

Proof: We take the Laplace transforms of (7) and (8) to
get

M∗↑(s) =
(f∗c (0)− f∗c (s))

s2
+ f∗c (s)M∗↓(s),

and M∗↓(s) = f∗d (s)M∗↑(s). So we have

M∗d(s) = M∗↓(s) = f∗d (s)
(f∗c (0)− f∗c (s))

s2(1− f∗c (s)f∗d (s))
.

Substituting for f∗c (s) = λc
s+λc

and f∗d (s) = λd
s+λd

, and taking
the inverse Laplace transform we obtain the result.

Remark 7: It is important to note that a similar derivation
for Md(t) has been attempted in [1], however, contains glaring
miscalculations. For example, in [1] the ON period cost Md(t)
incurred in time t does not depend on t, and is always less
than 1.

Finally, we have all the intermediate results to solve for the
DP (2) when the OFF periods are exponentially distributed.
With b(t) = b, the DP simplifies to

V (b) = max
b≥0

[E{c(b)}+ Poff(b)V (b)]. (10)

Theorem 8: The optimal sensing duration b satisfies the
following equation

d

db
V =

d

db

(
cs + Md(b)

1− Poff(b)

)
= 0, (11)

where M↓(b) = Md(b) can be found by substituting for
fc(x) and fd(x) in (7) and (8) and Poff(b) can be found by
substituting for fc(x) and fd(x) in (3) and (4).

Proof: Follows by rewriting (10), and taking the V terms
common, and equating the derivative of V with respect to b
to zero.

Corollary 9: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), the optimal sensing duration b satisfies

e−(λc+λd)b
(

1 +
cs
λd

(λc + λd)
2 + b(λc + λd)

)
= 1. (12)

Proof: From Corollary 4 and Theorem 6, substituting for
Poff(b) and M↑(b) in (10), we get

V (b) =
cs + λd

λd+λc

(
b− 1−e−(λd+λc)b

λc+λd

)
λd

λc+λd

(
1− e−(λd+λc)b

) . (13)

Equating d
dbV = 0, we get (12). While this is a trascendental

equation, the numerical solution is easy, see Figure 4. It is
also easy to check that the second derivative of V is ≥ 0 and
hence the above solution is indeed the global minimum.
In Figs. 4 and 5, we solve for (13) and plot the optimal cost V
and the optimal sensing duration b. These are then compared
against the values obtained by the blind learning algorithm
proposed in Section VI.

Remark 10: We can find the optimal sensing duration b
for other ON period distributions as long as the OFF period
distribution is exponential via solving (11), after plugging in
the ON period distribution.
Note that the use of dynamic programming framework helps
in solving the problem using only the Laplace transform of the
ON-period distribution. After considering the specific case of
exponential distribution for the OFF periods, we generalize the
results in next section, where general OFF period distribution
is considered.
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V. NON EXP-OFF PERIOD

Recall from Remark 1 that in the framework of Section
III, we cannot solve for the optimal sensing durations when
the OFF period distribution is not exponential. To circumvent
this restriction, in this section we make an extra assumption
following [3], where if any complete ON period is missed
because of no sensing in that ON period, the mobile device
is made aware of that and the system is reset. Thus, the
problem (2) is now restricted to one OFF (X) and one ON
(Y ) period, and we want to choose the sensing durations so as
to minimize the sum of the expected missed ON period time
and the expected sensing cost.

Under this model, the DP in (2) becomes,

V (t) = max
b(t)≥0

[E{c(t, b(t))}+P (rt > b(t))V (t+ b(t))], (14)

where the cost function c(t, b(t)) is simplified and given
by c(t, b(t)) = cs + E{(b(t) − rt)1b(t)≥rt,Y >b(t)−rt} +
E{Y 1(Y≤b(t)−rt)}, where cs is the fixed sensing cost. The
lost ON period is written as two terms, either one complete
missed ON period Y if b(t) is larger than rt + Y , otherwise,
the missed ON period is (b(t)− rt).

Problem (14) is a generalization of problem considered in
[8], where the length of the ON period is infinite (not a
random variable) and the problem is to minimize the sum of
the expected time lost in detecting ON period and the expected
sensing cost. Note that in our setup, since the ON period
expires in finite expected time, the solution of [8] does not
apply.

We use a state space approach to derive results when the
ON and OFF periods have a general distribution. The state
space we consider is the set of non-negative real numbers. An
action b(t) is the duration of the next sleep period. We assume
that b(t) can take values only in a finite set (which is clearly
true in practice). Thus, the set of t reachable (with positive
probability) by any policy is countable and hence without loss
of generality we assume that the state space is discrete. Then
we have the following result.

Theorem 11: To solve (14), for any ON and OFF period
distribution, the following statements hold.

1) There exists an optimal deterministic stationary policy.

2) Let V 0 = 0, V k+1 = LV k, where
LV (t) = minb(t)[c(t, b(t)) + P (rt > b(t))V (t + b(t))]
and c(t, b(t)) is the per stage/running cost. Then V k

converges monotonically to the optimal value V ∗.

3) V ∗ is the smallest nonnegative solution of V ∗ = LV ∗. A
stationary policy that chooses at state (time) t an action
that achieves the minimum of LV ∗ is optimal.

Proof: 1) follows from the [ [11], Thm 7.3.6] that states
that if the state space is discrete (finite or countable) and the
action set for any state is finite, then there exists an optimal
deterministic stationary policy. These conditions are satisfied
in this case since the set of all actions (b’s) is assumed to be
finite, and the state space is countable. Similarly, 2) follows

from the [ [11], Thm 7.3.10] that states that if reward w for
action a at state s, w(s, a) ≥ 0, and state space is countable
and action space is finite for each state, then if V 0 = 0,
V n+1 = LV n converges monotonically to V ∗ and 3) follows
from [ [11], Thm 7.3.3].
Theorem 11 shows that it is sufficient to consider deterministic
policies without losing out on optimality, and randomized
strategies are not needed. Moreover, part 2) and 3) tell us that
the value iteration policy converges to the optimal solution for
any ON and OFF period distributions.

We now consider the special case when the OFF period
depends on the time at which it starts, but in the limit of very
large time t, it loses that dependence.

Theorem 12: Assume that the residual OFF period rt con-
verges in distribution to r, and define v(b) = c?(b)

1−P (r>b) . Then

1) limt→∞ V ∗(t) = minb v(b).

2) Assume that there is a unique b that achieves the
minimum of v(b) and denote it by b?. Then there is
some stationary optimal policy b(t) such that for all t
large enough, b(t) = b?.

Proof: Let V 0 = 0, and assume that V̄ k = limt→∞ V k(t)
exists for some k. Then from definitions used in Theorem 11,
we have

V̄ k+1 = lim
t→∞

LV k(t),

= lim
t→∞

min
b(t)

[c(t, b(t)) + P (rt > b(t))V k(t+ b)],

= min
b

[c?(b) + P (r > b)V̄ k],

where the last equality follows since rt converges in distribu-
tion to r, and from the bounded convergence theorem

lim
t→∞

c(t, b(t))→ c?(b).

Essentially, since rt converges in distribution to r, the per-
stage/running cost c(t, b(t)) becomes independent of t as t→
∞ (similar to the case when OFF periods are exponentially
distributed). Hence by convergence of V k to V ∗ by Theorem
11, the limit V̄ = limt→∞ V ∗(t) exists. Thus, there exists a
constant deterministic policy as t → ∞ which we denote by
b?. This gives V̄ = c?(b) + P (r > b)V̄ which on rearranging
gives (i). (ii) can be obtained by noting that b? performs better
than any other policy so the optimal solution b(t) must tend
to b? as t→∞
Therefore, if the residual OFF period distribution converges in
time, then the optimal sensing duration converges to a constant
after sufficiently long time.

Remark 13: The condition in Theorem 12 is trivially true
for exponentially distributed OFF period. A more non-trivial
example is when the OFF period has hyper-exponential dis-
tribution, for which the residual OFF period rt converges in
distribution to some r.

Remark 14: Theorem 11 and Theorem 12 are similar to
Propositions III.2 and III.3 in [8].
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A. Example

Next, we consider an example where both the OFF and ON
periods are uniformly distributed between [0, Lf ] and [0, Lo],
respectively. To use Theorem 11, with sensing duration b(t),
we write down the sensing cost c(t, b(t)) and the probability
P (rt > b(t)) that at the next sensing epoch we again encounter
an OFF period.

For OFF period distributed uniformly between [0, Lf ], the
residual OFF period distribution

Frt(x) = P (rt > x) = P (X > x|X > t) =
Lf − x
Lf − t

, (15)

for t ≤ x ≤ Lf . Thus, P (rt > b(t)) =
Lf−b(t)
Lf−t , and to

compute cost c(t, b(t)), we calculate

E{(b(t)− rt)1b(t)≥rt,Y >b(t)−rt} =
L2
o

6 + (1− b(t))Lo2
Lf − t

,

and

E{Y 1(Y≤b(t)−rt)} =
b(t)2 − b(t)(Lf − t) +

L2
f+Lf t+t

2

3

2Lo
,

where the total cost c(t, b(t)) = cs + E{(b(t) −
rt)1b(t)≥rt,Y >b(t)−rt}+ E{Y 1(Y≤b(t)−rt)}.

Hence to solve for the optimal sensing durations b(t) via
the value iteration method, we start with V = 0, and write
V k+1 = LV k, where

LV (t) = min
b(t)

[c(t, b(t)) + P (rt > b)V (t+ b(t))],

where we substitute for c(t, b(t)) from above. From Theorem
11, these iterations converge to the optimal policy.

In this section, we considered the general ON-OFF period
distributions, and derived some important structural results.
Our results say that the optimal policy is deterministic, which
is useful for practical purposes. Moreover, we also show that
an optimal policy can be found via value iteration which is
guaranteed to converge to the optimal solution. In the next
section, we consider a more general regime, where we present
a learning framework, in which the algorithm has no prior
information about the ON-OFF period distributions, and the
algorithms objective is to minimize the loss between itself
and the optimal algorithm which has the knowledge of the
two distributions.

VI. LEARNING FRAMEWORK

In Sections IV and V, we have derived the optimal sensing
duration assuming the knowledge of the distribution of the
OFF and ON periods. In practice, learning these distributions
is a problem in its own right. To obviate the need for exactly
learning the distribution (might take a long training time), in
this section, under the general model of Section III, we present
a continuous-armed bandit problem type formulation [9], [10],
where the algorithm learns the best sensing duration without
explicitly knowing the underlying OFF and ON period distri-
bution. For ease of exposition, we will assume that the OFF
and ON periods are exponentially distributed with unknown

parameters. The analysis carries over to all distributions for
which the cost V has continuous second derivatives.

An online learning algorithm chooses one possible sensing
duration b for each session (defined earlier), and receives a
reward that counts for the useful ON period and the cost
incurred (lost ON period time and sensing cost). Depending
on past choices of b, the algorithm modulates its choice of b
in future sessions in pursuit of larger rewards.
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Fig. 3. Illustration of sessions for learning algorithm

The reward in session i is Ui = Ỹ − Ṽ , where as shown in
Fig. 3, Ỹ is the length of the useful ON period (or discovered
ON period), and Ṽ is the random variable whose expectation is
cost (13), that counts the sensing cost and missed ON periods
in each session. Note that there could be multiple sensing
epochs in each session, and the sensing cost of each session
is cs times the number of sensing epochs at which an OFF
period is sensed in that session. Let OFF period ∼ EXP (λd)
and ON period ∼ EXP (λc), with unknown parameters λd
and λc, where we assume that λd and λc are such that the
optimal b? ∈ [0, bmax] from Corollary 9.

The online algorithm’s objective is to minimize the expected
regret,

min
b(i),i=1,...,T

E{R(T )},

by choosing action b(i) is session i, and

R(T ) =

T∑
i=1

U?i −
T∑
i=1

Ui, (16)

where U?i is the optimal reward knowing λd and λc, i.e.
playing optimal b from Corollary 9 in each session, and T
is the time horizon.

The learning algorithm called the OnlineLearning [10] to
find the sensing duration b to minimize the expected regret is
given at the top of the page.

Lemma 15: (Theorem 1 [10]) If the expected reward given
a strategy has continuous second derivatives, and finite number
of maximas, then the expected regret obtained by the Online-
Learning algorithm is bounded as follows,

E{R(T )} ≤ O
√
T log T ,

for n =
(

T
log T

)1/4
.
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OnlineLearning
1 Choose n

2 Divide [0, bmax] into n intervals Ik = bmax[
k−1
n

, k
n
], 0 ≤ k ≤ n

3 For each Ik , choose a point (sensing duration b) uniformly at random
4 For i = 1 : T

5 Choose that interval Ik that maximizes Ûk +
√

2 ln i
tk

,

where Ûk is the average (empirical) reward obtained from points
in interval Ik so far, and tk is the number of times interval Ik has
been chosen till session i and i is the overall number of sessions so far

6 Choose a point uniformly at random from the chosen interval Ik .

Thus, the average regret
(

E{R(T )}
T

)
converges to zero with

the OnlineLearning algorithm even without knowing the
underlying distributions.

Theorem 16: Using the OnlineLearning algorithm, the
normalized regret

minb(i),i=1,...,T E{R(T )}
T

goes to zero with increasing number of sessions for finding
the optimal sensing duration without the knowledge of OFF
and ON period parameters λd and λc.

Proof: Note that the expectation V (13) of the cost func-
tion Ṽ has continuous second derivatives and finite number of
maximas for a fixed strategy b, and E{Ỹ } does not depend on
b because of memoryless property of exponential distribution.
Thus, the expected reward E{Ui} given b has continuous
second derivatives and finite number of maximas, and the
result follows from Lemma 15.

VII. SIMULATIONS

In Fig. 4, we demonstrate the performance of the On-
lineLearning via simulation for EXP ON-OFF periods and
compare it with that of the optimal solution (13) that knew
the parameters of the two distributions. We use λd and λc
such that the expected OFF period length and ON period
length is 3 and 2, respectively, and plot the optimal sensing
duration and sensing duration discovered by OnlineLearning
algorithm as function of the sensing cost cs. We see that
the OnlineLearning algorithm closely tracks the theoretical
optimum computed by Corollary 9. Furthermore, the average
cost incurred while connecting to the AP, closely matches for
the two algorithms, as shown in Fig. 5, which is consistent
with our theoretical result on asymptotic zero regret.

VIII. CONCLUSIONS

In this paper, we found optimal sensing durations for mobile
devices when both the lost data transmission opportunity and
sensing cost are at the premium. First we concentrated on
the case when the OFF period durations are exponentially
distributed, which has been confirmed to be accurate using
experimental data in prior work. In this setting, we showed
that the sensing durations are fixed and deterministic, and can
be found via solving a transcendental equation given the rate
of the exponential distribution for the OFF period and the
Laplace transform of the ON period. We also looked at the
more general regime when the OFF period duration is not
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necessarily exponentially distributed, where we again showed
that the optimal sensing duration is deteministic, and can be
found via value iteration of the suitable cost function. We also
derived some limiting results for this case when the residual
OFF period converges in distribution. Similar analysis has
been attempted in past, but either has some inconsistencies
[1] or uses a simplified cost function to facilitate the analysis
[3]. Finally, to completely obviate the need for learning the
OFF and ON period distributions, we considered the learning
framework where the explicit information about the OFF
and ON period is not required. The learning algorithm is
based on continuous bandit learning algorithms, where the
algorithm tries to minimize the regret, and is shown to achieve
zero regret asymptotically. Thus, even without the knowledge
of distribution, the algorithm does as well as the optimal
algorithm that knows the distributions exactly.
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