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Abstract—We consider a multihop wireless network with mul-
tiple users. The channels may experience fading. The power is
consumed only during transmission and is a general monoton-
ically increasing function of rate. We provide low complexity
algorithms for joint routing, scheduling and power control which
ensure stability of the queues, certain minimum rates and/or
upper bound on the end-to-end, mean delays.
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I. INTRODUCTION

A multihop wireless network (MWN) is a collection of
mobile nodes which are connected with each other by wireless
media. A MWN has many applications, mainly in military
services, where there is no pre-existing infrastructure. With
emergering electronics, MWN is not confined to military and
disaster management systems but also widely used in vehicle-
to-vehicle communication systems, home networking and peer-
to-peer networks.

Wide-spread use of a MWN is mainly due to the advantages
that it offers, such as, easy deployment, better coverage at
lower cost (where it is hard to wire) and higher throughput (due
to shorter hops). All these benefits occur at the cost of routing
complexity, path management, additional delay due to passage
of data in multiple hops and limitations in the transmission
range due to wireless channel inherent characteristics such as
fading, path loss, shadowing and interference.

If the transmitting node and the receiving node are far
apart, then the data may need to traverse to the destination
in more than one hop. Here, a real challenge lies in routing
and scheduling of the wireless links, which can become
complicated due to limited battery at intermediate nodes and
half duplex and other interference constraints. Furthermore, the
applications carried may need some quality of service (QoS)
constraints such as mean end-to-end delay, minimum mean
rate guarantee or stability of its queues in the network. Thus,
for limited energy MWN systems (such as sensor networks)
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, minimizing total average power consumed by the network
while providing QoS is an important consideration.

The multihop QoS problem can be solved in either a
distributed or a centralized manner. Pioneering work on joint
routing, scheduling and power control was provided in [5]
which maximizes a utility function under average power
constraint. As this problem is intractable, a heuristic sub-
optimal algorithm was provided. [11] considered the problem
of ensuring a fair utilization of network resources by jointly
optimizing routing, scheduling and power control and obtained
an efficient sub-optimal solution when the nodes may be pow-
ered by energy harvesting sources. [8] extended the solution in
[5] to a multihop network where different nodes have multiple
antennas and presented efficient, fair algorithms.

Back-pressure based algorithms have been used in [7], [9],
[10]. These algorithms are centralized, use channel and queue
length information and ensure stability. Upper bounds on mean
delays are provided in [10] via Lyapunov approach but these
are rather loose and under heavy traffic the mean delays
obtained may violate any given mean delay constraints.

A large survey on multihop networks in general, with
emphasis on QoS is presented in [6].

For this problem one may consider using Markov Decision
Processes (MDP). However due to complex coupled queue
dynamics in multihop networks MDP, or approximate MDP
techniques have a large state space and the computations
become unrealistic even for small networks [6]. Furthermore,
MDP techniques may not provide any insights in the structure
of the optimal policy and require huge signaling overheads.

A. Problem Statement

We consider the problem of joint link scheduling, routing
and power control, so as to ensure certain end-to-end QoS for
individual flows. The QoS may be the upper bound on the
end-to-end mean delays, minimum rate guarantees or just the
stability of the queue. While ensuring the QoS, we would like
to minimize the average power consumed in the network.
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B. Our Contribution

We present computationally efficient algorithms, for routing,
scheduling and power control for a multihop network which
minimizes total average power consumed while providing end-
to-end QoS to individual users. We assume that the transmit
rate is a general monotonically increasing function of the
power invested at each node. Although our algorithms are sub-
optimal in power, these are power-efficient and guarantee end-
to-end QoS.

We also provide conditions for finiteness of stationary queue
length moments, rate of convergence to the stationary distribu-
tion and good approximation to mean end-to-end delays for our
algorithms. We are not aware of any other work that provides
such results for multihop wireless networks.

As against the previous work our algorithms are in closed
form or have very low computational complexity. Our al-
gorithms do not require queue length information or packet
arrival distribution. These algorithms are built on our previous
work in [13], [14] and [15]. These algorithms are optimal in
the class of algorithms requiring only channel gains. In these
works it is shown that these algorithms are overall optimal
or close to optimal via computations on explicit examples.
We are not aware of any other work on multihop wireless
networks that ensures QoS except stability, which again does
not minimize power.

The paper is organised as follows. In Section II, we describe
the system model. Section III results to the single user multi-
hop scenario. Section V extends our results to the multiuser,
multihop system. Section VI develops algorithms to ensure
minimum average rate guarantee and/or upper bounds on the
end-to-end mean delays to all the users for all the above cases.
Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network, modelled as a connected
directed graph G(N, L), where N = {1,...,N} and £ =
{1,..., L} represent the set of nodes and the set of directed
links respectively. A subset of nodes in the network transmits
data to another subset of nodes. Each source has a unique
destination.

We consider a discrete time slotted system. A stream of
packets that are transmitted from a source node to its destina-
tion node is called a flow. We denote the set of user flows as
F :={1,2,...,M}. A flow carries data packets, for which
we may either only need to ensure the stability of all the
queues in the network or need to guarantee that the flow gets a
minimum end-to-end average rate or an upper bound on end-
to-end average delay.

Let A? be the number of packets generated by flow f in
slot ¢ at its source and placed in an infinite buffer queue. We

assume that all packets are of same size. Also, let {At , t>
0} to independent, identically distributed (iid), independent of
streams for the other flows. We assume that all the links in
the network are half- duplex. Also, a node can either transmit
or receive data at a given time instant. This assumption is not
critical for our algorithm. Actually we will only assume that
the set of links £ is divided into independent sets Sy, ..., Sq
such that all links within a set can simultaneously transmit with
negligible interference to each other. However, the links in two
different sets will not be allowed to transmit simultaneously.
A link can belong to multiple sets. This is a commonly made
assumption in multihop wireless networks [4].

Let HY; be the channel gain in a slot ¢ for link (7,) from
node 7 to node j. We assume that instantaneous channel gain
knowledge is available at node ¢ in the beginning of every time
slot and we also assumed that the channel gain is constant in
a time slot. We also assume that the channel gain process
{H{;, t > 0} is iid on all links and independent of the
link channel gain processes of the other links. The channel
gain HY; takes values on a finite set of values. This can
be a good approximation of continuous distributions, (e.g.,
Rayleigh, Rician, Nakagami) if we take the finite set to be
large enough. Let Pfj( f) be the power spent by node i to
transmit Rj;(f) packets to node j in time slot ¢ for flow f.
Then, often,

Rfj(f) = %bgz(l‘*‘Gijpitj(f)Hfj(f)/U?j)v (D

where afj is the receiver noise variance and G; is a constant
that depends on the modulation and coding used. Our polices
will not require fragmentation of packets. Also, instead of (1),
Rﬁj( f) could as well be a general, nonnegative, monotonic
continuous, non-decreasing function g;;(P};(f), H;) of power
P};(f) and H};.

Let qu be the queue length at node i for transmission on
link (4, 7) in the beginning of slot ¢. Then

a7t = (gf; + Al — Rij)T Vi g, >0, @)

where Aj; is the amount of data arriving at node i in the
beginning of slot ¢ and Rfj is the data transmitted on link
(i, ).

Our objective is to minimize the total average power con-
sumed by the system such that the QoS of different flows
is met. Our challenges lie in scheduling the links, routing the
flows and allocating the transmit power on each link. We trans-
mit the data from a flow on a single path instead of splitting
it on multiple paths. This will avoid unnecessary delays while
splitting and merging (re-ordering) at the destination.

We consider a centralized setup, i.e., system has all the
information, including channel gain statistics and average
external arrival rates. This will be needed only for developing
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the algorithms for routing, scheduling and power control. The
actual implementation will require little information.

III. OPTIMAL POLICIES: STABILITY

In this section, we consider joint routing, scheduling and
power allocation policies which minimize,

n—1 M
lim su E 3
(i,5) t=0 f=1
such that the long term average queue length
Elgij] < oo, Y(i,j) € L. 4)

We provide efficient sub-optimal solutions of this problem. For
computational tractability we limit ourselves to policies which
do not exploit queue length information. We first consider
a single flow case and later on generalize to the multiuser
system.

A. Single User, Single Hop

We first study the single user, single hop case and provide
optimal polices. We then extend these polices to the single user,
multihop case. Now we keep the notation of Section II but omit
the sub/super scripts f, (i, 7). Let E[A] and E[A%],a > 1 be
the mean and the ath moment of the number of a arrivals
from the source node in one slot. In the absence of fading,
an average power optimal policy (which does not consider the
queue length) which provides the stability of the queue is,

ot JTEAI+91, wp. p, s
| E[A] 4+ 6], otherwise,
where w.p. p denotes with probability p, § > 0, is a

small positive quantity and p is chosen such that E[R]
[E[A]+0]p + |F[A] +J](1 —p) = E[A] + ¢ and € is a
small positive quantity. Also, for positive real z, [x] (|z]) is
the smallest (largest) integer > (<) z. Policy (5) ensures that
an integer number of packets are transmitted in a slot. The
policies obtained by us will be close to optimal (depending on
the small ¢, d chosen) but we will ignore this point.

Since (2) is the usual Lindley equation [1], with this
policy, the queue length process {gi} has a unique stationary
distribution. Furthermore, if E[A{"!] < oo for a > 1, then
E[q7] under stationarity is also finite.

For (5), the average power consumption is

P([E[A] +61)p + o(|E[A] +6])(1 (©)

Now we consider the channel with fading. To ensure stabil-
ity we take F[R] = E[A]+¢, where € > 0 is a small constant.
Let h*,1 < u < L be the channel gain with probability of
occurrence p! and h* < h**t! for u,u +1 € {1,...,L}. Let
the power consumption when a packets are transmitted and

B[P] = ).

10

the channel gain is h be ¢(a, h). We assume that ¢(a,h) <
¢(a+1,h) and ¢(a, h) > ¢(a,h’) for K’ > h.

Optimizing (3) is a discrete optimization problem. A simple
iterative algorithm to obtain the optimal solution is as follows.
Let R = [R(1),..., R(L)] be the rate vector at some point
in the computation of the algorithm, where R(u) is the
number of packets that are transmitted when the channel
gain is h%. If 25:1 R(u)p* < E[A] + € then we up-
date the rate vector by increasing one of the components
of the rate vector by one while the rest of the compo-
nents remain same. The component chosen to increase is
argmin Dif f(u) = ¢(R(u) + 1, h") — ¢(R(u),h"). We re-
peat this till E[R] > E[A] + €. Then we stop. At the end,
if E[R] = E[A] + € we take that policy. If E[R] > E[A] + ¢
then we increase the last rate only with a certain probability
so that the average service rate F[R] = E[A] + e.

Often the optimal solution is even simpler. For example, let
R = Lllog,(1+ Z—Z) where o2 is the noise power. Let the
packet size be n bits. If h < 22" then the optimal solution
has the following simple structure. Find an integer m such that

S pt T <P = BlA] - [B[A)) < T pM Let
p =D —> i pr+1—i. Then the optimal policy is,
[BIA]], if H' = hi, i>L+1-m
i JTELATL A = 0w (1),
|E[A]], if H' = hE=™=1 wp. p/,
|E[A]], if H' =h', i <L—m—1.

.. L . . .
The condition 2—1 < 227 is quite a reasonable assumption
and is satisfied for most practical systems.

IV. SINGLE USER, MULTIHOP

Now we extend the optimal policy of Section III to the
case where a single flow traverses multiple hops to reach the
destination, where every link in the network may experience
fading.

A. Single User, Multihop: No Fading

Initially, we consider the case, when the network experi-
ences no fading. Let us assume that the route for the flow
has been fixed. We will comment on it later. We replace
the stability constraint of all the queues on the route with

Let Sy, ..., Sgq be the independent sets of links [8]. We need
restrict this set to the links on the route selected. We schedule
the independent sets such that each Sy is active for v, > 0
fraction of time and 25:1 v, = 1. The allocation of slots to
the different links will be done as follows. A central authority
generates iid random variables Y; in the beginning of each slot
t with probability P[Y; = k] =, k=1,...,d. fY; = k
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4
then slot ¢ is assigned to the independent set Sy. If in a slot ~ we optimize over 5" and ~;. Over the links on the route,
a link has channel gain H;; ¢ and the link is active in that slot “) o
then it will transmit Rlt packets from its queue in that slot, mln(z: Z Zd) & h” pijBis Tij (10)
t i,j) u
which is a function of s and H;;. ) subject to,
]?eﬁne for link (z,7), T = Zk:(i,j)esk Y& To get the UZZCPZ cu > BlA] + e, (11)
optimal power, we solve the optimization problem,
0< B <1, 250“<1 (12)
min Y ¢;,(
ZJ:) Ty S k=1, 0<y <1, V. (13)

subject to, This is a non-convex optimization problem. However, if we

22:1 e =1, 0 < <1, Vk, fix )’s, it becomes a Linear Program (LP) in 5%, We iterate
greedily over ~;’s and solve LPs to obtain a better solution.

where ¢;;(a) is the power needed to transmit a packets on On the other hand, if 57" are (approximately) known (e.g.(7)),

link (i, j). If ¢;; are convex, then it is a convex optimization then it is an LP in ;’s.
problem. The corresponding optimal rates are Considering the example (7), a good route can be selected
by obtaining the least cost algorithm via Dijkstra algorithm

(A]+6 [2], by taking the link cost for link (i,;) as E[7— ]

Rt = {[ [A]+51 WP Pijs ) Let Alt be the number of packets arriving to queue 1 for

| EEE2 | otherwise link (%, j) in slot ¢. The sequence { R}, } provided by the above

algorithm is iid for each (i,j). However {Af;,¢ > 0} is not

where p;; is such that E[R] = E[A] + ¢ = |—E[A]+6-|pw n necessarily iid if ¢ is not the source node. In the fo.llowing we

E[A]+5 study the process {qﬁj, t > 0} for the above queueing system.

| =-—1(1 — pi;). The total average power consumed by the P -

twork on the given route, can be made close to Let ¢' = (¢'(1),0 = 1,...., L1) be the queue length process

ne & ’ along the given route. Also let P*(l) be the distribution of ¢}
and P = (PY(1),l =1,...,Ly).

Z(b” Dpij + (b”(L%J)(l —Pij)- O Theorem 1. For the above policy {q'} process has a unique

(.9) F N stationary distribution w. Starting from any initial conditions,

q' converges in total variation to w. Also, if E[A“*!] < oo

Thus, we should select the route which minimizes (9). But 4., Ex[q*(l)] < 0o for 1 =1,..., L. _

this involves searching in an exponential number of routes. || < 5152—a—1 where 0 < Bs < 1, By is a positive constant
One sub-optimal solution is to give each link (i,j) the cost - II.|| denotes the total variation norm.

¢ij(%) and use Dijkstra’s (say) algorithm to obtain the
optimal route. In particular, this will be a good solution for
(7), especially at large E[A]. One can further improve over
it by using greedy iterative algorithms over the cost function
(9). In such algorithms, a link consuming one of the highest
powers from the currently considered route is selected (say link
(4,7)) and removed from the network. Then the least cost path
from the source to destination is computed again via Dijkstra’s
algorithm. If this provides lower (9) then it is kept otherwise
we go back to the previous path. Again the process is repeated.

Proof: If i is the source node and link (7,j) is the first
link on the path, then A}, = A’ is an iid sequence and we
have ensured that E[R},] > E[A] + . Thus from the usual
results on GI/GI/1 queues ([1]), ¢f; = ¢'(1) has a unique
stationary distribution and ¢(1) converges in total variation
to the stationary distribution. Also if E[A*"!] < oo for an
a > 1, then E[(g};)*] < oo under stationarity.

For the second queue ¢'(2) on the route, let the input
process be {A’(2)} and the transmission rate process be
{R!(2)}, which is given by the optimal policy. From the
first queue result, we also have that { A*(2)}, which is output
process of the first queue, also has a stationary distribution.
B. Single User, Multihop: With Fading Furthermore, although it is not iid, it is a regenerative process

with regeneration epochs the time slots when the first queue

Next we consider the case when the channels experience is empty. Let its regeneration length be 7(1). Under the above
fading. Let P[H/; = hi;] = p}; and {}* be the probability that ~ assumptions we also have E[(7(1))%] < oo if E[A%] < oo
link (i, j) will transmit ¢ packets when it is allowed to transmit ~ for a > 1 [1]. Since {R!(2)} is iid, {(A(2), R*(2))} is also
in channel state 1}/;. Then, for a fixed route, to minimize power, regenerative with the same regeneration epochs. Also, 7(1) is

11
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aperiodic. Then, from [16], if

7(1)

E|Y A'(2)| <E[(1)E[R'(2)], (14)

the process { A, q'(1),4¢*(2)} is also regenerative with regen-
eration length 7(2) with finite mean. Since at regeneration
epochs, the first queue is empty and 7(1) is a stopping time,

(1)

=E ZAt
t=1

and hence (14) is satisfied if E[A] < E[R'(2)], which has
been ensured by our algorithm. Also, from [16], if for o > 1,

(1)
=E|[> A
t=1

then E[(q(2))"] < oo. But, (15) holds when E [A*T!] <
oco. Under the same conditions, from [16] we also get
E[r(2)*"1] < 0o (see also [16]).

This argument extends directly to the queues ¢*(l),l > 3.
Thus we get that E[q"(1)*] < oo for I = 1,...,L; and the
regeneration length 7 of the {q'} process satisfies E[r*"1] <
00. Then the rate of convergence |P!—7|| < 8185, * " follows
from the results on regenerative processes [16]. [ ]

It is useful to compute the mean queue length E[q(1)],
under stationarity. Since { A%, ¢ > 0} is iid and {R*(1)} are iid,
E[q(1)] can be directly approximated from the approximations
for GI/GI/1 queues ([12], [3])

_ PAE[A|(C] + CF)

E[r(1)] E[A]

(1)
E ) A2
t=1

a+1 a—+1

< oo, (15)

7(1)
E|[> A2
t=1

where
_ E[A 5 Var[A] ,  Var(R(1))
7= ERO) AT E@ap " EBrop 7
- 0-CR
i expl——5 CZ+ (% hifCr <1, (18)
- c% -1 )
exp[—(1 — p))éM], if C% > 1.

For Er[q(1)],1 > 1,{A%(l),t > 0} is not iid. However
At(l) < R'(1—1) for all t > 0. Thus, if we consider a discrete
queue with {R*(l — 1)} arrival process and {R!(l),l > 0} as
the service process, assuming stability, using approximation
(16) provides an approximate upper bound. We will see from
simulations that this can be a good upper bound. This is
especially so since minimizing power ensures that we have
some what heavy trafiic situation at each queue. Thus, we
will use these bounds in Section VI to obtain policies which
guarantee mean end-to-end delays for individual flows.

12

Ls 7 L7 9 Lo 10 Lio,12 total
q 30.10 49.58 49.37 49.33 178.38
q 30.81 41.38 43.67 41.68 157.54
p 556.37 556.37 963.08 556.37 2632.19
p 487.41 508.56 878.51 507.53 2382.01
TABLE 1. SINGLE USER: AVERAGE QUEUE LENGTHS AND AVERAGE
POWERS
C. Example

For simulations, we consider a multihop network of 20

nodes. Node ¢ and node j are connected, if |i — j| < 2,
and ¢ # j; otherwise the channel gains are so bad that we
ignore those channels. If ¢ > j then link (7, j) takes channel
gains from the set ¢;_;, and if ¢ < j then the link (7, j) takes
channel gain from the set co;_;, where, ¢; ={1,2,3,4,5,6
}oeo=1{1,3.03,5.79,9.18,13.13, 17.58 }, ¢5 = { 1, 2.46,
4.17, 6.06, 8.1, 10.27 }, ¢y = { 1, 3.48, 7.22, 12.12, 18.11,
25.15 }. Channel gains from set ¢; hold with the probabilities
P1=4{0.2,0.1,0.15, 0.25, 0.2, 0.1 }, Po = { 0.15, 0.1, 0.25,
0.2,0.1,0.2 }, P3 ={0.1, 0.2,0.3,0.2,0.1, 0.1 }, Py = {
0.2, 0.2, 0.1, 0.1, 0.2, 0.2 } respectively.
The power required for given rate r and channel gain h
22:;1 for all channels. We consider the cost of link (i, 7)
as E[HLJ} By using Dijkstra algorithm, we find the shortest
cost path from source node 5 to destination node 12, which
isb - 7 =9 — 10 — 12. We take the independent
sets by half-duplex constraints. The two independent sets
are {(5,7),(9,10)} and {(7,9),(10,12)}. The input process
generated at source node 5 has Binomial distribution with
mean 3. We have provided service rate E[R] 3.2 on
all links. We take 73 = 72 = % and minimize the total
average power on all the links in the network by substituting
in (10)-(13) and solving the LP. Also, we have simulated
the system for 10° slots. In Table 1 we provide the results,
where ¢ and P are the theoretical average queue lengths from
(16) and the corresponding powers, while ¢ and P are the
respective simulated values. We observe that (16) provides an
approximation for the first queue but an upper bound for the
other queues. These approximations/bounds are generally quite
good. Also, the theortical power is an upper bound on the
actual value since these provide service rates which are a little
higher than the actual rate E[A].

We have also solved the full nonconvex optimization prob-
lem (10)-(13) for local minima starting with 15 different initial
conditions. The total simulated average power consumption
in the network for the best local minima is 2198 and the
theoretical value is 2448. The total simulated mean end-to-
end queue lengths of the network via simulation is 162 and
via the approximation (16) is 176. We see that solving the
much simpler LP for v; = 74 % provides a reasonably
good solution for this example.

I
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We also used iterative greedy algorithm to improve the
route. Link (5,7) was removed from the network. Then the
least cost path obtained was 5 — 6 — 8 — 10 — 12. This
path was used with 71 = v = % and the optimization LP
reduced the total power by 30. However removing link (9, 10)
and getting a new lowest cost link from 5 to 12 led to increase
in the total power consumed.

V. MULTIUSER, MULTIHOP

In this section, we consider the case where multiple source-
destination pairs exist in the multihop network. Our objective
is to stabilize all the queues in the network. The channels may
experience fading. Let the average arrival rate of flow f be
E[Ay]. We consider the policies which minimize (3) subject
to (4).

Let the routes for the M users be fixed. For stability of
the queues we require E[R;;] > >, E[Af] + ¢, for each link
(i,7) where the summation is over the flows passing through
the link (4, 7).

The notation remains as in Section II. Also, as before v, is
the probability with which independent set Sy, will transmit in
a slot and T';; is the probability with which link (¢, j) will be
allowed to transmit. Also, let 3{}' be the probability that node
i will transmit ¢ packets on link (¢, j) when its channel gain is
hi; and it is allowed to transmit. We consider the optimization
problem,

mlnz qus ¢, K )Pl BErT i (19)
(i,5) w
subject to,

ZZ% BTy > E[Al +€ V(i,j),  (20)
0<BC“<1 V(i, ), ¢, u, 2D
Z@w < 1,Y(i,7),u (22)
d
> =17 >0, Vk. (23)
k=1

The objective function and the constraints are non-convex but
given all the ~s it becomes an LP for which we can easily
get the optimal solution. Then we iterate greedily to improve
over to better ~ys. Similarly, if all Bf;‘ are known, then it is
an LP in ~;s and this takes care of the important example of
().

For given fixed routes, for each of the source-destination
pairs, the above policy provides us with a network of feed-
forward queues. For each link (i, j) its queue gets serviced at
rate RZ s which forms an iid sequence. Using results from [16],
Theorem 1 extends to this setup also. Let ¢* = (qj;, (i,7) € £)

13

and P* = (P}

1, (i,7) € L) the corresponding (i, j) distribu-
tions.

Theorem 2. For the given policy, {q'} has a unique stationary
distribution . Starting from any initial distribution, Pt con-
verges in total variation to its stationary distribution m. Also, if
forana>1, FE [(Af)a"_l} for each f then E [(q;;)"] < oo
for each (i,j). Furthermore, |P* — 7| < 838, °~
0 < B4 < 1 and B3 a positive constant.

L for some
O

Approximations for mean queue lengths E.[g;;] are ob-
tained as in the last section where we need to consider the
statistics of the input process Aj; at link (i,7). To get the
upper bound system, this process is replaced by the iid input

E(k,i)eﬁ Rfcz

A. Example

We consider the network example of Section IV with 3
users. We consider Binomial arrivals with mean 1 for the
first user, Poisson arrivals with mean 1.05 for the second
user and a discrete distribution with values {0, 1,2,3} taken
with probabilities {0.35,0.35,0.2,0.1} for the third user. The
objective is to provide stability of all queues. Service rate at
each link is taken 0.1 more than the respective mean values.
We simulated the system for 10° slots.

We used Dijkstra’s algorithm to get the least cost paths.
The route for the first user is 13 — 11 — 9 — 7, for
the second user is 5 — 7 — 9 — 10 — 12 and for
the third user is 15 — 17 — 19. In this example, we get
4 independent sets S; = {(5,7), (10,12), (11,9), (15,17)},
Sy = {(7,9), (13,11), (17,19), (10,12)}, S5 = {(9,10), (5,7),
(13,11), (15,17}, S4 = {(9,7), (10,12), (13,11), (17,19)}. We
solved the optimization problem (19)-(23) by taking v; = i,
for all 7. We have tabulated the simulated and theoretical
average queue lengths and average powers in Tables II, III,
IV for the three flows. In Tables II and III, links (13,11)
and (10,12) appear in three of the four independent sets.
Thus, their T';; are %, resulting in substantially lower power
consumption on these links.

We also solved the optimization problem (19) fully for
local optima, starting with 15 different initial conditions. For
the best local optimum, the total simulated and theoretical
powers consumed by the three flows is 657.41 and 731.56.
The end-to-end simulated mean delays for the three flows
are 38.17,614.82,4.42 and the respective theoretical end-to-
end mean delays are 45.42,680.57,5.57. From Tables II-
IV the total simulated and theoretical powers consumed by
the three flows is 34.24,697.52,3.01 and 39.37,768.02, 3.38
The end-to-end simulated mean delays for the three flows
areb8.11,157.28,24.12 and respective theoretical values are
61.40,185.43,26.36. Again we see that the much simpler
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optimization LP with 7; = 1,7 = 1,...,4 provides a solution
which is very close to the best local optimum obtained. From

L1311 L1190 Lo 7 total
q 8.33 19.05 34.02 61.40
q 8.42 22.39 27.30 58.11
P 0.81 19.27 19.29 39.37
P 0.72 16.47 17.05 34.24
TABLE II. MULTIUSER : FLOW 1
Ls,7 L79 Lo 10 Lio,12 total
q 19.95 47.88 72.88 44.72 185.43
q 18.32 46.36 57.20 35.40 157.28
P | 6.42 278 481.54 2.06 768.02
P 5.82 249 440.77 1.93 697.52
TABLE III. MULTIUSER: FLOW 2
Lis7 | Li7o total
g 11.48 14.88 | 26.36
It 12.14 11.98 | 24.12
P 1.69 1.69 3.38
P 1.51 1.50 3.01
TABLE IV. MULTIUSER: FLOW 3

Table II-1V, we see that node 9 transmits on 4 links, resulting
in 4 independent sets. This is caused by traffic from source
nodes 5,13 passing through node 9. Consequently all the
links passing through node 9 consuming high power. Thus we
removed link (7,9) and recomputed least cost route for source
node 5. This resulted in new path 5 — 6 — 8 — 10 — 12.
Consequently, the routes became disjoint, resulting in drastic
reduction in power. The total theoretical powers on the 2 routes
is 30.27,5.04.

VI. RATE GUARANTEES, MINIMUM DELAY

CONSTRAINTS

In this section, we first consider flows which always have
data to transmit, e.g., TCP connections carrying long files. The
QoS requirement is to provide certain minimum rate to each
flow. Subject to this, we want to minimize the total network
average power (3).

If we replace ¢ and § by zero in Sections III, IV, V, we
get optimal polices that guarantee minimum rates which also
minimize the total average power consumption in the system.
Stability of intermediate queues may still be of concern. This
is because, even with TCP connections, we do not want the
queueing delays to tend to infinity. Thus, we can make €, = 0
at the source node but keep them positive at all intermediate
nodes.

Now we consider flows which require an upper bound on
mean end-to-end delay. This can be a first level QoS for real
time traffic and can also be useful for data traffic.

First consider a single flow with iid input {A%, ¢ > 0}.
Suppose its route has been fixed. We desire that its mean
end-to-end delay be < D. By Little’s law, it provides an
upper bound E[A¢]D on the mean end-to-end queue length on
the fixed route (assuming all other deterministic processing,
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propagation delays etc. have been taken into account). We
split this mean end-to-end queue length bound on the given

route into individual mean queue length bounds qy,...,qr,
Ly

such that Z@ = E[Af]D (which we can optimize over).

=1
Now we solve the optimization problem (10) subjected to (11)-

(13) and the additional constraints corresponding to the E[q(1)]
upper bounds (16) corresponding to Gy, ..., qy,,. The resulting
problem is non-convex and hence one obtains local minima
(since it is a smooth optimization problem) using standard
algorithms. Starting from random initial conditions and taking
the best local minimum can provide a good solution.

The above scheme can be made to provide an upper bound
on end-to-end mean delays on the intermediate nodes for TCP
flows also (thus providing minimum rate guarantee as well as
an upper bound on the end-to-end mean delay in the network).

The extension to multiuser case is obvious. In fact we can
consider the system where some flows have only stability
requirements, some minimum rate guarantees and some end-
to-end mean delay requirement in the system and formulate a
single optimization problem).

We can reduce the total power requirement if we give
priority to the delay sensitive traffic on any given link over
the other traffic. In that case the mean delay requirement gets
relaxed compared to the case when it is not given priority.

A. Example

We demonstrate the above algorithm on the network of 20
nodes with the specifications in Section IV-C. There are three
users. The first user requires only the stability of its queue,
second user requires its end-to-end mean delay < 30 slots and
the third user requires the minimum rate guarantee of 1.05
packets/slot. The respective routes are 5 — 7 — 9 — 10;
6 —+7—9—=11and 19 — 17 — 16 — 19.

We have 3 independent sets, S1 = {(7,9), (19,17)}, Sy =
{(5,7), (9,10), (17,16)} and S5 = {(6,7), (9,11), (19,17) }.

The arrival distribution for first and the second user are
Poisson and Binomial with means 1, 1.5. While the third user
always has data to transmit.

We split the end-to-end mean of 45 into three parts 10, 20, 15
along the route (optimization over this split should also be
done, but is being ignored here; we only want to show that
any split is acheivable by our algorithm). Stability for user
1 is attained by serving it at more than the arrival rate at
each link. We took ~; % for ¢+ = 1,2,3 and solved the
optimization problem. The mean queue lengths for user 2 are
provided in Table V. The average powers on the corresponding
links are also provided. We see that the simulation end-to-end

mean queue lengths satisfy the upper bound specified. From
simulations, we saw that user 3 gets the rate 1.05 packets/sec
and all the queues are stable.



Required ¢ Simulated ¢ Sim. Power Th. Power
10,20, 15 11.9,4.23,10.5 112, 12600, 147 156, 56000, 183
7,30,8 8.95,24.35,6.1 157, 5450, 182 247,6790, 312
5,35,5 7.28,28.89,4.3 241,4547,172 442, 5485, 365
2.5,40,2.5 4.65,27.79,4.71 865, 4353, 835 2851,5177,2728
3.75,37.5,3.75 5.82,27.7,5.96 438, 4463, 267 972, 5352, 601

TABLE V. MULTIUSER WITH QOS: FLOW 2

The flows 1 and 2 are passing via the common link (7,9).
If, we give priority to the real time data of user 2 over user
1 on link (7,9), the simulated power at link (7,9) reduces to
8.1 x 10% while the theoretical power is 10.2 x 103. The power
consumed at the other links stays same.

We observe that link (7,9) consumes much more power than
the other two links. Thus, we increase the mean queue length
requirement of link (7,9) to 30 and that of link (6,7) and
(9,11) to 7 and 8 respectively. This reduced the power of link
(7,9) substantially. Next we further increased the mean queue
length required at link (7,9) to 35 leading to further reduction
in power at (7,9) and also of the total power. Further increase
in mean queue length at (7,9) to 37.5 led to an increase in
the total power. These details are provided in Table V. One
can do similar optimization of splitting the end-to-end mean
queue length for the case when the dealy sensitive traffic is
given priority.

VII. CONCLUSIONS

We have considered the problem of joint routing, scheduling
and power control in a multihop network. Our main objective
is to minimize the total average power while providing end-to-
end QoS to all users. QoS can be the stability of the queues, a
minimum rate guarantee per or an upper bound on the end-to-
end mean delay for a flow. Power is consumed only during the
transmission of data. We have considered the case when the
power is a general non-decreasing function of transmission
rate. Our (sub)optimal polices are easy to implement and
computationally very efficient.
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