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Abstract—Delay Tolerant Networks (DTNs) have gained impor-
tance in the recent past, as cost-effective alternative, in scenarios
where delays can be accommodated. They work well in discretely
connected network, where there is no direct connectivity between
some/all components of the system. But the mobility of nodes
creates occasional contact opportunities. The randomly moving
nodes cooperate to help a fixed source, in delivering message to a
far away destination within the given time threshold. The objec-
tive is to optimize the delivery success probability, which turns
out to be a risk sensitive cost. The success probability depends
upon the contact rates, which in turn depend upon the power
used by the nodes to remain visible. The more the power used by
a node, the larger is the radius for which it is visible. However
these nodes are power constrained. This leads to a constrained
finite horizon, Risk sensitive Markov Decision Process (MDP). In
this paper we propose a linear program (LP) based approach to
solve the corresponding dynamic programming equations. This
approach enables us in handling the constraints. We showed using
numerical simulations that, given a hard power constraint, the
solution of the constrained MDP performs significantly superior
in comparison with a solution obtained by optimizing a joint
cost.

DTNs, Power allocation, Risk sensitive cost, Linear pro-
grams, Dynamic programming.

I. INTRODUCTION

We consider a large area with N active and freely moving
mobiles as in [1], wherein connectivity between different
devices is available only occasionally. The aim is to transfer a
message from a static source to a fixed destination within the
prescribed deadline, using the occasional contacts between the
various moving elements. A source transfers the message to
any mobile that comes in contact with it and the message
is delivered to the destination if any one of the mobiles
with message come in contact with it. One relay mobile
cannot transfer the message to another and this is called the
two-hop protocol (e.g., [2]). And these networks are called
Delay Tolerant Networks (DTNs). Alternatively DTNs can
operate using full epidemics, i.e, the relays can transfer the
message to any other relay (see for example [5]). The message
transmission performance with full epidemics is much better;
however, in terms of the power consumed it is inferior. Further
there can be flooding of messages across the network.

DTNs are operated in various configurations and using
different protocols and there is vast literature analyzing these
networks (e.g., [1], [2], [5], etc, and references therein).
One of the common techniques to analyze these networks
is using mean-field dynamics (e.g., [5]). This approach is
valid in scenarios with large population. There are also papers

that consider the random system dynamics which is more
accurate with limited population (e.g., [1]). We also consider
the random dynamics.

An element interested in making a contact transmits beacons
(short pulses) regularly and a contact is established with a
mobile if the later receives one such beacon. The range of
visibility is proportional to the power transmitted. Thus the
more the power used, the better are contact opportunities and
the better is the probability of successful message transmis-
sion. However, the mobiles are power constrained and the main
aim of this paper is to maximize the probability of successful
message delivery, under the given power constraints.

The contact process is modeled by a Poisson process ([2]),
hence the probability of success or equivalently probability
of delivery failure includes terms composed of powers of
exponent, resulting in a Risk sensitive Markov Decision Pro-
cess (MDP) cost. Previously in DTN related literature, such
costs are handled by exchanging the expected value and the
exponent using Jensen’s inequality and the solution is obtained
by optimizing a bound on the objective function (e.g., [3] etc.,)

Recently in [1] authors solved the direct problem, using
risk MDP approach. However, they solved the problem using
soft constraints: a joint cost composed of successful delivery
probability and the power transmitted is proposed, and is
optimized. While in this paper we consider the control problem
with hard constraints on the power.

In [4] we showed that the solution of a risk MDP problem
can be obtained by solving a corresponding Linear Program
(LP). We obtained the solution to the power constrained DTNs
by solving the LPs provided in the technical report [4].

When one is interested in a hard power control problem, the
solution obtained using a joint cost of [1] is obviously inferior
to our direct solution of the constrained problem. More inter-
estingly we noticed a huge improvement in the performance,
because a randomized policy optimizes the hard problem while
the soft problem (joint cost problem) is optimized by a pure
policy. Thus our newly proposed LP based solutions are very
useful in the context of hard power constraints.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A static source has to transfer a message to a static destina-
tion within the given deadline T , and they are sufficiently far
away to have any direct communication. The area surrounding
the two has N cooperative and moving nodes (mobiles) that
assist the source to deliver the message. The source can
transmit only to those mobiles that arrive in its range of
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transmission. Similarly a destination can receive information
from only those mobiles, that arrive within the range of
transmission. And the range depends upon the power used for
transmission. We say a contact occurred whenever a mobile
comes in the communication range of the source/destination.
In large areas with small transmission range, the contacts are
rare. In such scenarios, the contact process can be modeled
by a Poisson process [2], for a variety of mobility models
like random walk, random waypoint, etc. We assume that the
contact time is sufficient to transfer the message.

The source transfers the message to the contacted mobile.
We refer these mobiles as infected mobiles. If there is a contact
between the destination and an infected mobile within deadline
T , then the message delivery is accomplished. Otherwise,
delivery is failed.

The probability of successful delivery depends upon the
power used by the source. The source derives power from a
battery and hence is power constrained. In fact, the source
is provided with a fixed amount of power and it has to
accomplish its goal utilizing the available power leading to
a hard power constraint. The source spends power for two
purposes:

1) for transmitting beacons, to show its presence;
2) to transfer message to the contacted mobiles.

The power spent per transmitting a message could be signif-
icantly larger than the power spent for beaconing. However
beaconing needs to be done at regular instances while the
contacts are rare (in a time frame of few minutes one can at
maximum make one contact), making the second component
negligible.

If the source transmits beacons with higher power, the
contact range increases, which further increases the contact
opportunities. However the power is consumed within a shorter
time. On the other hand if it transmits beacons with lower
power, it can remain active for a longer period, but with
smaller contact range. Thus there is an inherent tradeoff
between remaining active for longer duration and remaining
active with larger contact range. Mobiles contacted during the
earlier stages have better chances of delivery. Hence it might
be advantageous to consider varying powers for transmitting
beacons, across the entire delivery duration.

A. Resource allocation policy

We consider a time slotted system, and beacons are trans-
mitted with constant power in one time slot. Without loss of
generality we assume unit time slots. A policy represents the
decisions of power levels transmitted in each time slot and
the aim of our paper is to obtain a power policy which max-
imizes the probability of successful delivery or equivalently
minimizes the probability of delivery failure.

The rate of source-mobile contact Poisson process is repre-
sented by λ while that of the destination-mobile is given by
ν. In [1], it is shown that the contact rates are proportional to
the power used and hence we consider an equivalent policy in
terms of (source) contact rates. The system has M different
choices of transmit powers that can be used in any time

slot and let Λ = {λ0, ...., λM} represent the corresponding
set of all possible source contact rates. Let Yt represent the
contact rate chosen in time slot t. Vector Π = {π1, · · · , πT−1}
represents a randomized policy, where πt for each t, is a
probability distribution over Λ:

πt(λ) = Prob(Yt = λ) for any λ ∈ Λ.

B. Probability of failure given a policy

The probability of failure Pf (Π) for a given policy Π is
derived in [1] and we briefly summarize the same here. Let
Xt be the number of mobiles infected at the beginning of
time slot t. The sequence Xt is a controlled Markov chain,
controlled by policy Π. The transition probability matrix of
this controlled Markov chain is given by ([1]):

p(s1 + s2|s1, λ) =

 Pλs2(N − s1), if s1 + s2 ≤ N

0, else

with Pλs2(r) :=

(
r

s2

)
(1− e−λ)s2e−λ(r−s2).

Basically the number infected increases by s2 if any s2 among
the non-infected (N − s1) mobiles contact the source and the
above is the probability of precisely this event.

A failure event occurs, when none of the Xt infected
mobiles contact the destination in time slot t and if this is
true for all the time slots. Probability of failure is calculated
by conditioning on Markov chain trajectory {Xt}t≤T and is
given by (see [1] for details):

Pf (Π) = Eα,Π
[
e−ν

∑
tXt
]
. (1)

In the above Eα,Π represents the expectation under policy Π
and when the initial condition X0 is distributed according to
α, written as X0 ∼ α. Here Prob(X0 = s) = α(s).

C. Total power spent given a policy

The contact rate λ is proportional to p−β , where p is
the transmitted power and β is a constant depending upon
propagation characteristics of the area in which the mobiles
are operating (Appendix of [1]). In other words if one chooses
rate λ, the power transmitted is proportional to λβ . Without
loss of generality, let the constant of proportionality be one.
Thus the total (random) power spent over the T time slots
equals:

P(Π) =

T−1∑
t=0

Y βt . (2)

D. Power control problem

The problem is to minimize the probability of failure Pf ,
given a hard constraint B on the average total power, Eα,Π[P],
spent by the source:

min
Π
Eα,Π

[
e−ν

∑T
t=0Xt

]
such that Eα,Π

[
T−1∑
t=0

Y βt

]
≤ B.

(3)
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Alternatively, in [1] the authors consider a joint cost depending
both upon the probability of failure Pf and ehP , a term
proportional to the power spent:

min
Π
Eα,Π

[
e−ν

∑T
t=0Xt+h

∑T−1
t=0 Y βt

]
. (4)

In the above, h defines the weight factor given for total power
term in the joint cost. We refer this as a soft constraint (SC)
problem, because this does not guarantee to operate within a
given hard bound on the power spent.

We showed in the technical report ([4]) that the solution
of a constrained risk MDP problem can be derived using the
solution of an appropriate Linear Program (19) given in the
Appendix. Thus we can directly obtain the solution to the
hard constraint (HC) problem. The details are given below in
section III.

A direct solution would obviously perform better, we
compare the two solutions in section IV to determine the
percentage of improvement obtained.

III. LP BASED APPROACH

The soft constraint (SC) problem (4) can be cast as a
risk sensitive MDP problem of Appendix. The joint cost in
(4), except for the logarithmic function, is similar to the risk
sensitive cost J(α,Π) given as equation (9) of Appendix, with
running and terminal costs given by

rSCt (s, λ) = −νs+ hλβ and rSCT (s) = −νs. (5)

By monotonicity, the optimization of a cost is equivalent to
optimizing the logarithm of the same cost.

The corresponding dynamic programming (DP) equations
of the SC problem are given by (11) after substituting the
running and terminal costs appropriately. One can obtain the
analysis of the optimal policy by solving the dual LP given
by (13) of Appendix.

The hard constrained (HC) problem (3) is similar to the
constrained risk MDP problem (17) of Appendix. The corre-
sponding running and terminal costs are

rHCt (s, λ) = −νs and rHCT (s) = −νs, (6)

while the constraint function

fHCt (s, λ) = λβ for all t. (7)

Its optimal policy can be obtained by solving Dual LP given
by (19).

IV. NUMERICAL ANALYSIS

In [1, Lemma 2], authors obtained structural properties
of the policy, that optimizes the SC problem. Lemma 2
establishes the existence of a switch off threshold soff on
the number infected. The optimal policy switches off (zero
contact rate) the beacon transmission, once the number in-
fected reaches the threshold. It also showed that the contact

rate chosen below the threshold is always non-zero. However
this statement needs a small correction1. For every s < soff ,
there exists a threshold T ∗s (depending upon s) such that

λ∗t (s) ≥ λ1 for all t < T ∗s and λ∗t (s) = 0 for all t ≥ T ∗s .

Thus the difference is that, beyond soff it is always OFF as in
[1]. However below switch off population threshold, the actual
switch off threshold depends upon the number infected s.

A. Verification and comparison of SC, HC problems

We begin with the verification of our solution to SC
problem. We obtain the required solution by solving the LP
(13) with the running and terminal costs as given by (5). For
simulations, we used Matlab and AMPL. We did most of the
coding in Matlab except for LP part. We used AMPL to model
the LP and Gurobi solver to solve the LP. The solution x∗ of
the LP provides the optimal policy Πx∗ as given by equation
(15) of Appendix.

We then verify that the solution satisfies the Lemma 2 of [1],
after the correction. We consider an example with N = 15,
S = {0, 1, . . . 15}, T = 20, h = 20, ν = 0.1, β = 2.1 and
λ = {0, 0.1, . . . , 0.3}. For this example, the soff = 13.411344
as given by [1, Lemma 2]. The simulation results are following
the structure given by the [1, Lemma 2], as seen from the Table
I. For example for all s ≥ soff , T ∗s = 0 and for others it is
non-zero. We have conducted few more examples and verified
the same.

In a similar way we obtain the solution for HC problem,
now solving LP (19) with running and terminal costs given by
(6). We also consider the constraint given by (7). We consider
the following procedure for verification. We first solve SC
problem for some value of weight factor h. We compute the
total power spent by the SC problem using again the additional
state component Ψ of the Appendix. That is, we solve SC
problem also using LP (19) with fSCt ≡ 0 for all t. We
compute the total average power P∗SC spent by the system
under SC optimal policy Π∗SC , once again using the equation
(18) with ft(at) = aβt and x = xΠ∗SC

. We then obtain the
solution of HC problem with bound B set to P∗SC . Note
here that this procedure is only used for computing the power
utilized under the already computed optimal policy Π∗SC , and
not for the purpose of constrained optimization. With this
procedure we noticed that both the policies consume same
power, i.e., P∗SC = P∗HC . But there is a good improvement
in the performance with HC policy (see Tables II-III). In
the limited examples that we conducted, we observed an
improvement as high as 26% . In all these examples we set
M = 1, resulting in a ON-OFF control.

Thus, when the two problems obtain optimal policies with
the same power constraint, the HC solution performs superior,

1In [1, page 9] in the proof of Lemma2, the line after the sentence starting
with ”When n < noff , Qnλ

β
1 < λ1 ...” need not be true always. There

can be scenarios in which fT−1(0) < fT−1(λ1). However the lines after
that are correct. Hence for any n < noff , if there exists a t + 1 such that
λ∗t+1(n) ≥ λ1 then for all τ ≤ t λ∗τ (n) ≥ λ1. Thus we have the above
modification with T ∗n = t, the first t for which λ∗t+1(n) ≥ λ1 .
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States (s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Threshold time (T ∗s ) 19 19 19 19 19 19 18 18 18 17 17 15 13 4 0 0

TABLE I
VERIFICATION OF SC POLICY USING [1, LEMMA 2]

T, N h ν β λ1 P PSf PHf % Improvement
5, 3 10.2 0.70 2.1 0.20 0.034481 0.036870 0.028178 26.72488008854999
5, 3 10.2 0.60 2.1 0.20 0.34481 0.043562 0.034982 21.847626807903842
6, 3 8 0.50 2.1 0.20 0.048897 0.028480 0.024088 16.709785420788315
6, 4 8 0.30 2.1 0.2 0.048073 0.031175 0.025450 20.220750551876382

TABLE II
IMPROVEMENT IN Pf : HC VERSUS SC, WITH EQUALLY LIKELY INITIAL CONDITIONS, α(s) = 1/(|S|) FOR s ∈ S.

T, N h ν β λ1 P PSf PHf % Improvement
5, 3 10 0.50 2.1 0.20 0.081042 0.190186 0.168753 11.942419185432626
5, 3 10.2 0.70 2.1 0.20 0.081042 0.140198 0.112873 21.594730332594403
6, 3 10 0.50 2.1 0.20 0.099265 0.113674 0.096116 16.738643405310077
6, 3 8 0.50 2.1 0.20 0.113148 0.104767 0.089853 15.32627684718939

TABLE III
IMPROVEMENT IN Pf : HC VERSUS SC STARTING WITH ZERO INFECTED MOBILES, α(s) = 1{s=0} FOR s ∈ S.

obviously because it directly solves the constrained problem.
However the more interesting observation is that the improve-
ment gained can be significant.

We would now like to look at the comparison problem with
a different perspective. Say we are given any arbitrary total
average power constraint B. Requirement is an optimal policy
that operates within this power constraint and which minimizes
the failure probability Pf , precisely the HC problem. But if
one approaches this via SC problem, then one needs to solve
the SC problem for various values of weight factors h to
obtain various {PSCf (h)}h and the corresponding total average
powers {P∗SC(h)}h. Consider only those h for which total
average power is less than given threshold, i.e., P∗SC(h) ≤ B.
Among these chose the best failure probability PSCf (h∗) as
the solution. That is, one needs to continue the search among
SC policies, until they hit upon that value of h for which the
total average power is the maximum possible one, which is
still below the given limit B.

The SC solutions are known to be pure policies: πt =1 or
0, for all t. We also observe this to be the case in simulations.
With pure policies, the various choices of total average power
would be discrete. One can have various SC solutions by
considering various values of weight factors h. However the
set of all possible total average powers obtained even after
exhausting the entire range of h, would be finite. On the other
hand HC solution is a randomized policy and achieves the
bound B with equality, as long as it is feasible.

Thus the improvement seen by directly using our LP
based HC solution would be much more significant than that
demonstrated in Tables II and III. This effect is shown in
Figure 1. This figure plots best Pf performance versus power
constraint B, under both HC and SC policies. The curve
with dotted marks, represents the best performance facilitated
by SC solution, as a function of the power constraint B,
obtained by trying all possible values of h. As seen from the
figure, the PSCf performance remains constant over a range
of power constraints B, confirming our earlier discussions.

This is mainly because the optimal policies of SC problem
are always pure. The other curve in Figure 1 represents the Pf
performance under HC policy as a function of power constraint
B. The entries of the Tables II and III correspond to the SC and
HC pair of points, where SC points are precisely the corner
points of the SC curve that are near the HC curve. These
entries already showed an improvement (up to 26%), and we
have much larger gains in the performance at the other points
(see the horizontal portions of the SC curve in Figure1).

Fig. 1. Pf performance as a function of power bound B

B. Structural properties

We noticed from various examples of the simulations that
the SC policies are all pure policies while the HC policies
are randomized. Further, for any given time slot t the policy
suggests complete switch ON for all states less than a threshold
st, a randomized switch ON-OFF at the threshold state s =
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st and a complete switch OFF for all states, s > st. This
threshold depends upon the time slot and of course, the power
constraint B.
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V. CONCLUSIONS

We considered power constrained Delay Tolerant Networks.
We obtained optimal policies for this problem, via the solution
of an appropriate LP, after modeling it as a constrained risk
sensitive MDP. The equivalence of the two is provided in
the technical report. Previously a joint cost comprising of
probability of delivery failure and a term proportional to total
power spent is considered. While in this paper we directly
solve the constrained optimization problem. We compared the
probability of failure performance of the DTNs under the
policy so obtained, with that of the optimal policy obtained
by considering an unconstrained problem with the joint cost.
We observed huge improvement. This improvement is because
of two factors. When the requirement is to operate opti-
mally within a given power constraint our solution provides
the optimal solution while the solution of the unconstrained
problem with joint cost would be sub-optimal. Secondly and
more importantly, the optimization of the unconstrained risk
sensitive cost results in pure policies which provide only finite
choices of total average power spent. While our proposed
constrained risk MDP solution results in optimal policies that
are randomized and hence provide a solution, which satisfies
with equality the constraint defining the power constraint. This
is true as long as the power constraint is achievable. Thus our
solution performs significantly superior and is very useful in
the scenarios that demand for strict power constraints.

APPENDIX: FINITE HORIZON RISK SENSITIVE MDP AND
LINEAR PROGRAMMING

Markov Decision Process (MDP) provides a tool for solving
sequential decision making problems in stochastic situations.
A typical MDP consists of a set S of all possible states, a set
A of all possible actions and an immediate reward function
rt : S × A → R for each time slot t. The terminal cost
rT depends only upon s ∈ S. The set S and A can depend
upon the time slot t, however we consider the same set for
all the time indices. It is further characterized by a transition
function p : S ×A→ S , which defines the action dependent
state transitions. Here p(s′|s, a) gives the probability of the
state transition from s to s′, when action a is chosen.

We consider a finite horizon problem and let {Xt}t≤T ,
{Yt}t≤T−1 respectively represent the trajectories of the state
and the action. In the last time slot T , there is no requirement
for further action and we only have a terminal cost. A policy
Πt = (πt, πt+1 · · ·πT−1) is a sequence of state dependent
and possibly randomized actions, given for time slots between
t and T − 1. Given a policy Πt and initial condition Xt = s̃,

the state and action pair evolve randomly over the time slot
t < n < T , with transitions as governed by the following laws:

qΠt(s′, a′|s, a) =P (Xn = s′, Yn = a′|Xn−1 = s, Yn−1 = a)

= πn(s′, a′)p(s′|s, a) where
p(s′|s, a) = P (Xn = s′|Xn−1 = s, Yn−1 = a) and
πn(s′, a′) = P (Yn = a′|Sn = a′). (8)

Let Es,Π
t

represent the expectation operator with initial
condition Xt = s and when the policy Πt is used. Let
Eα,Π

t

represent the same expectation operator when the initial
condition is distributed according to α, written as Xt ∼ α.
Here α(s) = P (Xt = s). We are interested in optimizing the
following risk sensitive objective:

Jt(α,Π
t) = γ−1 log

(
Eα,Π

t
[
eγ

∑T−1
n=t rn(Xn,Yn)+rT (XT )

])
. (9)

The above represents the cost to go from time slot t to T under
the policy Πt with Xt ∼ α. The value function, a function of
(s, t), is defined as the optimal value of the above risk sensitive
objective given the initial condition Xt = s:

Vt(s) := min
Πt

Jt(s,Π
t) for any s ∈ S. (10)

We are interested in the optimal policy Π0∗ = Π∗ (we discard
0 in superscript when it starts from 0) that optimizes the risk
cost J0(s,Π0), or equivalently a policy that achieves the value
function, i.e., a Π∗ such that

V0(s) = J0(s,Π∗) for all s ∈ S.

Dynamic programming (DP) is a well known technique, that
provides a solution to such control problems, and DP equations
are given by backward induction as below ([6]):

VT (s) = rT (s), and for any 0 ≤ t ≤ T − 1, and s ∈ S

Vt(s) = min
a∈A

{
rt(s, a) + γ−1 log

[∑
s′∈S

p(s′|s, a)eγVt+1(s′)

]}
.

We consider the following translation of the value function:

ut(s) = eγVt(s) for all 0 ≤ t ≤ T − 1, and s ∈ S.

The DP equations can now be rewritten as:

ut(s) = eγrT (s) and for any 0 ≤ t ≤ T − 1, and s ∈ S

ut(s) = min
a

{
eγrt(s,a)

[∑
s′∈S

p(s′|s, a)ut+1(s′)

]}
. (11)

Linear Programming Formulation

The dynamic programming based approach suffers from
the curse of dimension. As we increase the number of states
and/or time epochs, the complexity of the problem increases
significantly. This results in limited applicability of dynamic
programming. In the context of linear MDPs, it is a well
known fact that a DP problem can be reformulated as a Linear
Program (LP), under considerable generality (see for e.g., [7],
[8] in the context of infinite horizon problems). However this
conversion may not solve the problem of dimension. But recent
improvements in LP solvers makes it an attractive alternative.
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Further and more importantly the LP based approach extends
easily and provides solutions for constrained MDPs.

In technical report ([4]), we extend the LP based idea
to a finite horizon risk MDPs. In this appendix we briefly
summarize the corresponding results, while the details and the
proofs are available in ([4]).

We have shown in ([4]) that the solution of the uncon-
strained risk MDP problem (10) can be obtained via the
solution of any one of the two LPs, a primal and a dual. In
all the discussions below, we absorb γ into the running costs
rt(.). The primal LP is given by:

max
{ut(s)}s∈S,t≤T−1}

∑
s∈S

α(s)u0(s) (12)

subject to: uT−1(s) ≤ bs,a for all s, a,

ut(s)− ert(s,a)
∑
s′∈S

p(s′|s, a)ut+1(s′) ≤ 0

for all a, s and t ≤ T − 2

with bs,a := erT−1(s,a)
∑
s′∈S

p(s′|s, a)erT (s′).

In the above {α(s); s ∈ S} is any positive set of weights
satisfying

∑
s∈S α(s) = 1. These can be interpreted as the

probability distribution on initial condition. For example to
solve (10) with t = 0, the problem with initial condition
X0 = s, one needs to set α(s) = 1 and α(s′) = 0 for any
s′ 6= s.

The solution of the primal gives the translated value func-
tions {ut(s)} while the optimal policy is directly obtained
using the Dual LP:

min
∑
a

∑
s∈S

erT−1(s,a)

[∑
s′∈S

p(s′|s, a)erT (s′)

]
x(T −1, s, a) (13)

subject to:∑
a

x(0, s′, a) = α(s′) for all s′ ∈ S∑
a

x(t, s′, a) =
∑
a

∑
s∈S

[
ert−1(s,a)p(s′|s, a)x(t− 1, s, a)

]
for all 1 ≤ t ≤ T − 1 and s′ ∈ S.

Here again α represents the probability distribution on the
initial condition.

We have the following results (details in [4]). We discard the
notation superscript 0 for risk policies in the following. The
bold letters represent the vectors, e.g., x = {x(t, s, a)}t,s,a
represents a feasibility vector of Dual LP (13). While snk
represents the vector snk = [sk, · · · , sn].

Theorem 1: The following results connecting the Dual LP
(13) and the translated risk MDP (11) are true.

1) Feasible region and the set of risk Policies: There is a
one to one correspondence between the two as below:
i) For any policy Π of risk MPD, there exists a vector xΠ

which satisfies all the constraints of Dual LP (13). The feasible
vector is given by the equation (see (8)):

xΠ(0, s0, a0) = α(s0)π0(s0, a0) for all s0 ∈ S, a0 ∈ A,
xΠ(t, st, at)

=
∑

at−1
0 ,st−1

0

α(s0)e
∑t−1
n=0 rn(sn,an) Πt

n=0 q
Π(sn, an|sn−1, an−1)

for all st ∈ S, at ∈ A, and 1 ≤ t < T.

(14)

ii) Given a vector x in the feasibility region of Dual LP, define
a policy Πx using the following rule:

πx,t(s, a) :=
x(t, s, a)∑
a′ x(t, s, a′)

for all s ∈ S, and a ∈ A. (15)

The vector xΠx defined by equation (14) of point (i) is again
in the feasibility region and equals x.

2) Optimal policies and solutions: (a) If x∗ is an optimal
solution of the Dual LP, then Πx∗ defined by (15) is an
optimal policy for risk MDP.

3) Expectation at optimal Policy: For any feasible point
x of Dual LP and for any integrable function f ,∑

st,at

x(t, st, at)f(st, at)

= EΠx

[
e
∑t−1
n=0 rn(Xn,Yn)f(Xt, Yt)

]
. (16)

�

Constrained risk MDP

We now consider a constrained MDP problem (details are
in [4]), with an additional constraint as given below:

min
Π
J0(α,Π) (17)

Subject to:
∑
tE

α,Π [ft(Xt, Yt)] ≤ B,

for some set of integrable function {ft}, initial distribution α
and bound B. The equation (16) of Theorem 1 could have been
useful in obtaining the expectation defining the constraint, but
for the extra factor Ψ−1

t with Ψt := e−
∑t−1
n=0 rn(Xn,Yn), as seen

from the right hand side of the equation (16). We propose to
add Ψt as additional state component to the original Markov
process {Xt} to tackle this problem. We consider a two
component state evolution {(Xt,Ψt)} and the corresponding
probability transition matrix depends explicitly upon time
index as below:

p̃t+1(s′, ψ′t+1|s, ψt, a) = 1{ψ′t+1=ψte−rt(s,a)}p(s
′|s, a).

With the introduction of the new state component, for any
Dual LP feasible point x we have:∑

st,ψt,at

x(t, st, ψt, at)ψt f(st, at) = EΠx [f(Xt, Yt)] . (18)
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Thus one can obtain optimal policy of constrained risk MDP
(17) by considering an additional state component and by
adding an extra constraint to the Dual LP (13) as below:

min
∑
a

∑
s

erT−1(s,a)

[∑
s′∈S

p(s′|s, a)erT (s′)

]
x(T − 1, s, a) (19)

subject to:

x(t, s, a) =
∑
ψt

x(t, s, ψt, a)∑
a

x(0, s, ψ0, a) = α(s)1{ψ0=1} for all s, ψ0∑
a

x(t, s′, ψ′t, a) =∑
a,s,ψt−1

ert−1(s,a)p̃(s′, ψ′t|s, ψt−1, a)x(t− 1, s, ψt−1, a)

for all 1 ≤ t ≤ T − 1 and s′, ψ′t and∑
t

∑
s,ψt,a

x(t, s, ψt, a)ψtft(s, a) ≤ B.

We would like to mention here that ψ0 is always initialized
to one, i.e., ψ0 = 1, ψ1 can take at maximum |S| × |A|
values while ψt for any t can take at maximum |S|t × |A|t
possible values. There will also be considerable deletions if
the concerned mapping

(at0, s
t
0) 7→ e−

∑t
n=0 rn(sn,an)

is not one-one. One needs to consider this time dependent state
space while solving the Dual LP given above and we omit the
discussion of these obvious details.
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