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On 2-moment Completeness of Non Pre-emptive, Non Anticipative Work
Conserving Scheduling Policies in Some Single Class Queues
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Abstract— Completeness of some scheduling policies with mean
waiting time performance measure is used quiet extensively in
literature for dynamic control of multi-class queues due to its wide
range of applications in computers, communication networks and
manufacturing systems. For a single class queue, we introduce
the idea of 2-moment completeness of a parametrized class of
policies that also have to be non pre-emptive, non anticipative and
work conserving. Significance of this idea lies in the importance
of variance (or second moment) of waiting time in any queuing
system. Some parametrized classes of policies are identified and
shown to be 2-moment complete for M /M /1 queues. Some well
known queue disciplines viz random order of service (ROS),
Random Assigned Priority (RAP), etc., turn out to be 2-moment
incomplete. We introduce a parametrized priority scheme that
also turns out to be 2-moment incomplete. Further, few pre-
emptive and anticipative scheduling disciplines are shown to have
second moment beyond the achievable region of non pre-emptive,
non anticipative and work conserving scheduling policies. Some
optimal control problems are discussed to illustrate the possible
applications of 2-moment complete parametrized set of policies.

Index Terms— parametrized dynamic priority, scheduling disci-
plines, variance of waiting time, achievable region, optimal control
of queues

I. INTRODUCTION

The mean of stationary waiting time of customers in a single
class single server queue among all non anticipative work
conserving scheduling policies is a constant by Little’s law ([1],
[2] [3], [4] etc.); this is same as that when, say, ‘First come
first serve’ (FCFS) policy is used. However, the distribution of
waiting times among various policies of this class depend on
the particular policy used. As a consequence, the variance of
stationary waiting times of customer depends on the particular
policy used. In particular, it is known that the variance of FCFS
policy is least and that of Last Come First Serve (LCFES) is
highest among all non anticipative work conserving policies
([5] and [6]). However, when we use a policy which allows the
server to know the amount of work a job needs (such policies
are called anticipative, in literature) the distribution of stationary
waiting times can be quite different. For example, Longest
Remaining Processing Time, (LRPT) which is an anticipative
and work conserving policy has mean and variance of stationary
waiting times higher than that of policies offered by non
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anticipative work conserving class [7]. Another example of
anticipative policy could be the Shortest Processing Time (SPT)
which has lower mean than that of FCFS (non anticipative work
conserving) policy.

Mean waiting time in a single class single server queue among
all non-anticipative work-conserving scheduling policies is a
constant if (and only if) the service times are exponential, i.e.,
the M/M/1 queue. For a general M/G/1 queue, the mean waiting
time is constant only if the scheduling policy is additionally
required to be non-preemptive. We would like to explore
the dependence of variance of waiting times on classes of
policies that are parametrized by a single parameter. In fact,
borrowing an idea from [8], we also explore the notion of
completeness of such parametrized class of policies for second
moment (equivalently, variance) of waiting time distributions.
We are interested in investigating if there is a one-to-one
correspondence between the range of the parameter describing
each policy and all possible second moments of waiting times
that are incurred when any non pre-emptive, non anticipative
work conserving policy is used. Roughly speaking, this means
that as the parameter ‘sweeps’ its domain, the second moment
of waiting time also takes all possible values for the class of
polices under consideration and hence such polices are good
enough for optimization purposes.

Various types of queue disciplines are possible for scheduling
in single class queue under the regime of non pre-emptive, non
anticipative and work conserving scheduling disciplines. Some
popular queue disciplines are FCFS, LCFS, random order of
service (ROS), etc. These popular queue disciplines are found
to be 2-moment incomplete and achieve only some part of
achievable region. We identify a parametrized priority scheme,
2-level priority that is 2-momemt incomplete. However, some
parametrized scheduling classes do exist that are 2-moment
complete; see Section 2.

Some pre-emptive queue disciplines are considered and it is
shown that these queue disciplines (processor sharing and pre-
emptive last in first out) achieve the second moment outside the
2-moment completeness range; this is one of the motivation
for focusing on non pre-emptive priority scheduling queue
discipline. We also consider an anticipative and pre-emptive
discipline and the resulting second moment is beyond what
is achieved by work conserving, non pre-emptive and non
anticipative parametrized class of policies.

Queueing models and its optimal control have significant role in
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computer communication systems and communication networks
(See [9], [10], [11] and references therein). See [12] and [13]
for textbook treatment of such important topics. Some recent
surveys with applications focused on wireless communication
can be seen in [14] and [15]. This idea of second moment
completeness is important for the class of optimal control prob-
lems in queueing system where variance (or second moment)
plays significant roll. To further illustrate the implication of the
notion of 2-moment completeness, we develop optimal control
policy by exploiting the 2-moment completeness structure of
a parametrized queue discipline for certain optimal control
problems motivated from various regime.

A. Related literature

We briefly describe related ideas from multi-class queues.
Average waiting time for each class forms a nice geometric
structure (polytope) driven by conservation laws under certain
scheduling assumptions for multi-class single server priority
queue (see [16], [17]). This kind of structure also helps if one
wants to optimize a suitable objective over all scheduling poli-
cies. Researchers in this field have come up with geometrical
structure of achievable region in case of multiple servers and
even for networks of queues ([18], [19]). Unbounded achievable
region for mean waiting time in two class deterministic polling
system (non work conserving) is recently identified in [20].
Note that achievable region described in literature so for is with
respect to mean waiting time.

A parametrized scheduling policy is called complete in [8] if it
achieves all possible vectors of mean waiting time in multi-class
queue. This question of completeness is important in following
aspect. A complete scheduling class can be used to find the
optimal control policy over all scheduling disciplines. This
idea is useful in designing synthesis algorithms where service
provider wants to design a system with certain service level
(mean waiting time) for each class. Federgruen and Groenevelt
[18] came up with a synthesis algorithm using the completeness
of mixed dynamic priority which is based on delay dependent
priority proposed by Kleinrock [21].

Another community of researchers have exploited this notion
of achievable region and completeness to find optimal control
policy in multi-class queue (see [22], [23] and [24]). Optimal
pricing and admission control problem for two classes is solved
by exploiting the completeness structure of delay dependent
priority queue (see [25] and [26]). Optimal control policy in two
class polling system for certain optimization problems using
achievable region approach is recently developed in [20].

This paper introduces the notion of achievable region for
second moment of waiting time in single class queue for non
pre-emptive, non anticipative and work conserving schedul-
ing policies. The idea of 2-moment completeness for second
moment of waiting time for M/G/1 and M/M/1 queues is
discussed. This is done by identifying certain parametrized
queue disciplines from literature and then showing them to be
2-moment complete.

B. Paper organization

This paper is organised as follows: We introduce the notion
of 2-moment completeness in section II. Some parametrized
policies are identified from literature and are shown to be 2-
moment complete in the same section. Various well known
queue disciplines are discussed which are 2-moment incomplete
in section III that puts in perspective the notion of 2-moment
completeness. Few anticipative pre-emptive queue disciplines
are discussed in section IV. Some optimal control problems are
solved to illustrate the application of methodology in section V.
This paper ends with a discussion on some future avenues in
section VI.

II. 2-MOMENT COMPLETENESS

In single class queue, it is a well known fact that queue
discipline does not affect the mean (first moment) waiting time.
But the second moment, hence variance, depends heavily on
queue discipline used. It has been proved that waiting time
variance (or second moment) is minimum with FCFS (see [5])
and maximum with LCFS (see [6]) queue discipline under the
assumption that busy period (time queue takes to empty) is
finite almost surely or ‘null state’ of empty queue is recurrent,
equivalently load factor, p < 1. Let | and u be the second
moment of waiting time associated with FCFS and LCFS
queue discipline respectively. The achievable region for second
moment of waiting time is the interval [l,u]. Let p € T C R
and say class of these policies are denoted by {F}pcr.

Definition 1: A set of parametrized queue discipline policies
{F}per is called non pre-emptive, non anticipative, work
conserving 2-moment complete if these set of policies satisfy
the following conditions.

1) Service is non pre-emptive.

2) Customers are selected for service in a manner that is
independent of their subsequent service time.

3) If the service mechanism is ready to receive (serve) a
customer at a time when the queue is non empty, then
one of the customers present will be immediately served.

4) There exists a one-one mapping Vz(p) : I — [l,u].

The first three conditions ensure the queue discipline to be non
pre-emptive, non anticipative and work conserving. Condition 4
states that all possible second moments of waiting time are
achieved by parametrized queue discipline policy. Note that
this discussion with respect to second moment or variance
of waiting time is equivalent as mean waiting time remains
same for non pre-emptive, non anticipative and work conserving
scheduling policies of {F},c;. We also use the term 2-moment
complete in place of non pre-emptive, non anticipative work
conserving 2-moment complete queueing discipline in further
discussion.

Importance of such 2-moment complete parametrized policies
lie in solving optimal control problems involving higher mo-
ments. Optimization over set of all non pre-emptive, non antic-
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ipative work conserving scheduling policies can be performed
by simply optimizing over a 2-moment complete policy. Some
illustrative examples are discussed in Section V.

We discuss some policies in Section III that do not satisfy some
of the above mentioned conditions for 2-moment completeness.
Hence their second moment of waiting time lies outside the
interval [l,u]. In fact, we observe that some popular policies
have second moment more than u (achieved by LCFS) and less
than [ (achieved by FCFS). Note that such policies need extra
information of the service time of the jobs waiting. We now
identify some parametrized queue disciplines from literature
which are 2-moment complete.

A. Impolite Customer class for M/G/1 queue

Consider the impolite arrival discipline introduced in [27] for
a single class M/G/1 queue. This scheduling discipline is
parametrized by p taking values in [0, 1]. An arriving customer
joins the front of the queue with probability p and joins in the

end of queue with probability (1 — p) as shown in the Figure
1.

Arriving Customer

O probability
\
probability Server
000 [0

Fig. 1.

Impolite arrival discipline

Theorem 1: Impolite customer class proposed in [27] is 2-
moment complete.

Proof: Note that this service discipline is non pre-emptive,
non anticipative and work conserving. So first three conditions
of 2-moment completeness are satisfied. Second moment of
waiting time is given by ([27]):

3 2 2132
1=pp \3(1—-p)  2(1-p)?
where F(S™) denotes the nth moment of service time and
E(W?)|imp is the second moment of waiting time for impolite
class of customers. Let I = [0,1] and {F}; be the impolite
parametrized class of policies. It is clear from queue mechanism
itself that p = 0 and p = 1 correspond to FCFS and LCFS
service disciplines. Hence, p = 0 and p = 1 achieve the end
points of the achievable region [I, u] respectively. The function
E(W?)|imp is proportional to reciprocal of an affine function
of p. Hence E(W?)|imp will have one to one mapping from
I — [l,u]. This implies that the impolite scheduling discipline
(parametrized policy) class is 2-moment complete. ]

B. A parametrized queue discipline for M/M/1 queue

Consider the queue discipline parametrization for M/M/1
setting as proposed in [28]. This queue discipline works as
follows:

o Newly arriving customer joins the queue at its end.

o Whenever the server becomes free it picks first or last
customer with probability § and 1 — § respectively and
0<6< 1

Theorem 2: Queue discipline parametrization proposed in [28]
is 2-moment complete.

Proof: 1t is clear from the above scheduling mechanism of
[28] that first three conditions for 2-moment completeness are
satisfied. Second moment of waiting time is given by ([28]):
2\

POl = Gt =3 o) ®

Taking I = [0,1] and the above the parametrized class of
policies as {F}, note that § = 1 recovers FCFS and ¢ =
0 recovers LCFS. Hence, 6 = 1 and 6 = 0 achieves the end
points of achievable region [I, u] respectively. Again, E(W?)|s
is proportional to reciprocal of an affine function of 4. Hence,
E(W?)|s will have one to one mapping from I — [l,u]. This
means that this parametrization is 2-moment complete. [ |

III. SOME 2-MOMENT INCOMPLETE CLASSES

We now observe below that some queue disciplines that have
been analysed for their waiting time distributions turn out to
be 2-moment incomplete. In a sense the analysis below brings
out the importance of queueing disciplines of Section II as they
are not only 2-moment complete, but, are easy to describe and
implement. First, we show that Random Order of Service and
Random Insertion policies achieve, for any load, a single point
(1/2) of the [0,1] domain of ¢. Then, we show that Random
Assigned Priority policy achieves (0,1) of the [0,1] domain
of 4. Finally, we introduce a simple policy that randomly
segregates the arrivals into two artificial ‘classes’ and this policy
also turns out to be 2-moment incomplete.

A. Random Order of Service

Random order of service (ROS) queue discipline works as
follows. Whenever it is time for customer to enter service
and there are already n > 1 customers in the queue, each
customer will have equal probability % of getting selected
for service. Delay distribution for M/G/1 setting with ROS
queue discipline was first calculated by [29]. A list of second
moments for various queue disciplines is shown in [30]. Second
moment of waiting time in queue with M/M/1 setting for
random order of service discipline and 2-moment complete
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parametrized queue discipline is given by (see [30] and [28]):

1 4p )

— 1z 5 2

(1= A)? (2 —p

1 2X
3
(=) <uA+6A) @
where p is the load factor. E(W?)ros and E(W?)|s represent
the second moment of waiting time with random order of
service and parametrized queue discipline respectively. On
equating above two equations, we get d|ros = 1/2. Hence

ROS queue discipline achieves a single point in interval [, u]
corresponding to 6 = 1/2.

E(W?)gos =

EW?)|s =

B. Random Insertion

Random insertion (RI) queue discipline was introduced in [31].
This works in the following manner. Customers in queue are
ordered from right to left, i.e., right most customer will have the
position 1 and so on. If there are n customers waiting in queue,
a newly arrived customer will be inserted in any of the (n+1)
positions with probability 1/(n + 1). At a service beginning
epoch, customer in position 1 goes in service. It has been proved
in [31] that RI has same waiting time distribution as ROS.
Hence RI queue discipline will also achieve a single point in
interval [[, u] corresponding to 6|gr = 1/2.

C. Random Assigned Priority

Random assigned priority (RAP) queue discipline, also intro-
duced in [31], works as follows. As each customer arrives at
queue, customer is independently assigned a random value that
is uniformly distributed over interval [0, 1]. Customers in queue
are then served according to non pre-emptive priority based on
their assigned values. Smaller values have priority over larger
values. Second moment of waiting time for this discipline is
given by [31]: E(W?)grap =

p(1 = p)(2 = p)E(S)E(S?) + p*(3 — p)[E(S?)]
6(1 = p)*[E(S)]?

“4)

where E(S™) is the nth moment of service time. Note that
for standard M /M /1 case that we are considering, F(S™) =
(n)!/p™. Using these values of E(S™) and solving for § using
Equation (3), we get:
_ (e=NBe—=N _1-pB-p
S|rap = 3 5 = 5 4)
p(2p = A)+ A2 3(2-p)+p

It can be easily verified from the stability of queue (p < 1) that
0 < 8|grap < 1/2. Hence, second moment of RAP is greater
than that of ROS. So, we have following result.

Theorem 3: §|pap < 1/2 and E(W?)gap > E(W?)gos.

Remark 1: Also note that in heavy traffic,ie,p —>1=6§ — 0
hence queue discipline behaves as LCFS and in low traffic, i.e.,
p — 0 = & — 1/2 hence queue discipline behaves as ROS
from variance of waiting time perspective.

Remark 2: If one uses RAP class of policies for optimizing

over set of all non pre-emptive, non anticipative work conserv-
ing scheduling policy (for example problem P1 discussed in
Section V), we will get suboptimal solution.

These are illustrated in Figure 2.

Variance
of Waiting
time

0=1
FCFS

\ 4

1
2 6

Fig. 2. Illustration of variance (or second moment) of waiting time for different
queue disciplines vs parameter §

D. Two Level Priority

This queue discipline is defined as follows: Arriving customers
are divided in higher and lower priority class with probability p
and (1—p) respectively. Higher priority class (class 1) will have
strict static priority. Queue discipline is FCFS within a class.
Note that this is not a multi-class queue. Class discrimination is
just a way of scheduling customers. Second moment of waiting
time for each class is calculated in [32], [33]. Second moment
and mean of waiting time of an arbitrary customer in such
system can be obtained by conditioning on class as follows.

E(W) = E(W|Class 1)P(Class 1)+E(W|Class 2)P(Class 2)

On calculating the mean waiting time for exponential arrivals
and service by using above expression, we get mean waiting
time same as in M /M /1 queue. Hence variance will differ in
terms of second moments only. We calculate the second moment
of system described above by conditioning:

2)p 201 — Np)(1 — p)
p(p—Ap)* — (p—A)*(u— Ap)?
where E(W?)|, is the second moment of waiting time for
system with two level priority. Equating this expression with
that of (3), we have that, p=1=d=1land p=0= 6= 1.
This matches with intuition as 4 = 1 corresponds to FCFS
queue discipline and p = 1 orp = 0 implies that entire
traffic goes in only one queue. Hence it will again give FCFS
queue discipline. It is clear from scheduling mechanism of
two level priority that this policy can never achieve LCFS
queue discipline irrespective of value of p and hence, it is 2-
moment incomplete. On simplifying for § by equating second

EW?), = ©)
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moment from Equation (6) with parametrized second moment
from Equation (3), we get d|2, as

(1=pp)* = (1= p)(p(Q — p)*(1 — pp) + 1 — p)(1 — p°p))
p(1—p)2(1 —pp) + p(1 —p)(1 — p?p) o

We argue that above equation does not achieve &y, = 0 for
feasible range of p and p. Note that denominator is always
positive for 0 <p <land 0 < p < 1.

Parameter d2;, = 0 iff numerator is zero. Numerator simplifies
to following cubic in p.

g(p) =p°p* + (p* —4p* +p—1)p* + (1 +2p)p— 1

g(0) = -1 < 0and g(1) = (p—1)3 < 0 for feasible range of p
and p. Also note that second derivative ¢g”(p) = 2(3pp? + (p —
1)2(p+1)) > 0. This implies g(p) is convex in p over (0, 1) for
any given p. Hence numerator g(p) < 0 for 0 < p < 1. Thus,
d21p 7 0 for any given p and hence the range of dy;, is a strict
subset of [0, 1]. Combining this with Theorem 2, we have:

Theorem 4: The two level priority scheme is 2-moment incom-
plete.

Note that Equation (7) is a highly non linear function of p and
it is difficult to find the exact range of Jloy, for p € [0,1].
However, for p = 1/2, we get

1(1-0) — - -3 2)

p(1=p)*+(3—2p))
Remark 3: p — 1 = §|a;, — 1/2. Hence this simple two level
priority system in heavy traffic can be good approximation for
complex ROS or RI system for second moment or variance of
waiting time.

®)

6‘211) =

IV. SOME PRE-EMPTIVE ANTICIPATIVE WORK CONSERVING
QUEUE DISCIPLINES

In this section, we shift our attention to a couple of queue
disciplines where variance is beyond the range of 2-moment
complete policies, due to either anticipative, pre-emptive or non
work conserving nature of queue discipline. A certain range
of load factor can be found for processor sharing scheduling
discipline where variance is within 2-moment complete range,
while variance is beyond 2-moment complete range for the
other range of load factor. Variance of longest remaining pro-
cessing time (LRPT) and pre-emptive last in first out (PLIFO)
scheduling policy are found beyond 2-moment complete range
for any load factor. This means that the conditions in definition
of 2-moment completeness are indeed necessary, if scheduler
only uses the information of number in the system.

A. Processor Sharing

Processor sharing (PS) queue discipline is often used in com-
puter systems for scheduling of processors. Note that this is a
pre-emptive service queue discipline. Waiting time distribution
with M/M/1 setting was first derived in [34] and that with
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M/G/1 setting in [35]. Conditional (conditioned on service
time 7) mean waiting time (total time), E[T'|7], and conditional
variance, Var[T|7], in M/M/1/PS queue is given by [36]:

E[T|r] = q i > 9)
2p1 2p _ —
T = - 1 — e kr(1=p),
VarlTl7 pT—pp WA pp L ]

(10)

Now, we use the following expressions to derive unconditional
variance of waiting time:

Var(T)=EVar(T|7)) + Var(E(T|7)) (11)
E(Var(T|r)) = / Var(T|7) f(r)dr

where f(7) is service time density. For exponential service
density, we have

E(Var(T|T)) = /VGT(T|T)LL€_MTdT
_ O 2p
p*(1 = p)*(2 = p)
Var(E(T|7)) = m

On simplifying, we get the following unconditional variance for
mean waiting time when processor sharing is used as scheduling
policy.

1 2+p
Var(T = 5 12
ar(@rs p*(l—=p)22—p (12
1 2 ] 1
Var(T)s =2 LL o ] + E(B)

where Var(T);s denotes variance for parametrized queue disci-
pline discussed in Section II-B. On equating the above variances
and solving for §, we have
2
1
g=1- M 90
ABu—A) p(3—p)
Note that § < 1 is trivially true. In heavy traffic, p - 1= § —
1/2. Hence processor sharing behaves like ROS in high traffic
from variance view point.

(14)

Note that on simplifying § > 0, we get the quadratic p> —3p+
1 < 0 or we have

(25 5

This implies § > 0 for p € [3_\/5, 1] (see Figure 3). As p |

2
% = ¢ | 0. Hence processor sharing queue behaves as

LCES for p ~ 3=/5.

15)

For p € (0, 3_2*/5), there is no ¢ in range [0,1]. Hence

variance of PS is beyond 2-moment complete parametrized
queue discipline range. In fact, on simplifying the expression,
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Stability Region
p z 1 g

\< ......................................
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>

Fig. 3. Change in sign of quadratic p> — 3p 4 1 w.rt. p

Var(W)ps > Var(W)rcrs holds iff p2 —3p+1 > 0 which
is true for p € (0, 3_7\/5) So there is a range of load factor
for which variance in processor sharing happens to be beyond
2-moment complete range, i.e., more than that of LCFS.

B. Pre-emptive Last In First Out (PLIFO)

Under this service discipline, server is always working on most
recent arrival to the system. Job at the server is pre-empted
on an arrival and may only resume service once the system is
empty of newer arrivals. Thus, PLCFS acts as a stack where
new jobs are placed on the top of the stack and the server is
always working on the job at the top. Variance of waiting time
for PLCFS is given by [7]:

3
Var(5) | (E(S)> . (6)
A—p® " \1-p
Variance of total time in non preemptive LCFS queue disci-
pline is known. On simplifying the expressions for exponential
service, we have

Var(T)|prcrs =

20
———5 >0
12— A)?
Hence, variance in pre-emptive LCFS is more than that of LCFS
irrespective of value of load factor.

Var(T)prcrs —Var(T)rcrs = (17)

C. Longest Remaining Processing Time (LRPT)

In this queue discipline, the job in the system with the longest
remaining size is given pre-emptive priority. Hence no job
can finish service before the end of a busy period. LRPT
finishes every job at the last moment possible under any
work conserving policy. Note that this is an anticipative queue
discipline. Conditional (conditioned on service time) mean and
variance in LRPT are given by [7]:

E(T|T)LrpT = I i . 22‘1E£Sp;2
CNESY] AESY] 3 [ AE[SY]\?
VarTineeer = 4= 5 Y5 T4 ((1 - ,o)2>

On unconditioning the above mean and variance for exponential
service time similar to processor sharing case (see Equation

(11)), we have

E(T)Lrpr ﬁ > E(T)rcrs (18)

2 2

e — AN 4 6uA

VCLT'(T)LRPT W (19)

On calculating the difference, we have

Var(T)rrpr — Var(T)rers =
23 2\ AMp— A

A A= A) 20)

m(p —A)*

Variance of this anticipative and pre-emptive queue discipline
is more than that of LCFS queue discipline for any load factor.

We summarize the above discussion as:

Theorem 5: Variance of waiting time with Pre-emptive Last
in First Out (PLIFO) or Longest remaining processing time
(LRPT) is more than that with LCFS scheduling policy for any
load factor while variance with processor sharing is beyond 2-

moment complete range for load factor, p € (0, 3_2‘/5).

Remark 4: Variance of waiting time can be beyond 2-moment
complete range if scheduling policy violates any of the condi-
tion on queue discipline being non pre-emptive, non anticipative
and work conserving as described in definition 1 of Section II.

V. SOME APPLICATIONS

In this section, we illustrate the implication of the idea of 2-
moment completeness with the help of some optimal control
problems.

A. Ilustrative example 1

First, we consider the problem, P1, of minimizing variance of
waiting time subject to constraint on lower bound on it over set
of all non pre-emptive, non anticipative and work conserving
scheduling policies in M/M/1 queue. Mathematically, we have

P1: m}i_n Var(W)
Subject to
Var(W) >~

for a given 7, where F is the set of all non pre-emptive, non
anticipative and work conserving scheduling policies for this
M /M /1 queue. Since, parametrized queue discipline discussed
in section II-B is shown to be 2-moment complete, the opti-
mization problem P1 is equivalent to transformed problem T1

T1l: min Var(W)
0<6<1
Subject to
Var(W) >~

Clearly, if v > Var(W)|Lcrs, the problem is infeasible.
When v < Var(W)|pcrs, trivial solution for the above
problem will be FCFS scheduling policy (§ = 1). For the range
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Var(W)|lLecrs > v > Var(W)|pcrs, optimal scheduling
policy can be easily obtained by exploiting monotonic nature
of variance function for 2-moment complete range and hence
by solving Var(W) = . Optimal scheduling policy is pure
dynamic for v € (Var(W)|rcrs, Var(W)|Lcrs)-

B. Illustrative example 2

Consider another unconstrained optimal control problem, P2, of
minimizing the total cost where cost is associated with variance
and unfairness in standard M/M/1 queue. Mathematically, we
have

P2: m}n aVar(W) + cof(W)

where ¢; and co are the costs associated with variance and
unfairness respectively. f (V) represents unfairness of a job and
unfairness is quantified according to [37]. Following ordering
in scheduling policies is identified under this fairness index:
FCFS > ROS > LCFS. FCFS scheduling policy also has
minimum variance in F (from 2-moment completeness). Hence
the optimal scheduling policy for problem P2 will be FCFS.

C. Illustrative example 3

Now, we illustrate another application of 2-moment complete-
ness in higher moment optimal control problems. Study of
higher moments is quiet popular in queueing systems as well
as other application areas (see [38], [39], [40]).

This optimal control problem below, P3, is motivated from
Markovitz mean-variance (MV) model (see [41]) where vari-
ance of a portfolio of assets is minimized subject to constraint
on first moment of returns of the portfolio. We consider an
extension of this model and minimize the third moment of
waiting time subject to constraint on second moment over all
non pre-emptive, non anticipative and work conserving schedul-
ing policies which span entire feasible space. Some similar
problems of minimizing skewness (related to 3rd moment)
under mean and variance constraints are solved in finance
literature (See [39]).

P3: min E(W?)
F/
Subject to
E(W?) <8

for a given (3, where F’ is the set of all non pre-emptive,
non anticipative and work conserving scheduling policies for
this M/M/1 queue which span the feasible space. Since,
parametrized queue discipline discussed in section II-B is
shown to be 2-moment complete, the optimization problem P3
is equivalent to transformed problem T3

T3: min E(W?)
0<6<1

Subject to
EW?) <p

By the above result, the parametrized queue discipline discussed
in section II-B is 2-moment complete class and hence spans the
entire feasible space of this optimization problem.

Note that we are not aware if there is a parametrized class of
schedulers that are 3rd moment complete or even if there is a
such a notion. A 3rd moment complete class (if exists) may
contain 2nd moment complete class also. Hence it might be
possible that optimizing over another such 2-moment complete
class may give a minima different from optimal objective of
T3. We assume that the 2-moment complete class identified in
this paper gives the best solution for problem P3 and solve the
problem as below.

We obtain third moment of waiting time for the above opti-
mization problem using characteristic function for parametrized
queue discipline. Expression for characteristic function of wait-
ing time distribution is given by (see [28]):

1SpQ

dw(s) =1+ o) where o =
A= ON—is —{(p+ X=X —is)? — 4 u(l — 6)}1/?
2u(1 — 6) '

Since, the third moment of waiting time is
EW®) = (=)} (0)
we get the following expression after some simplifications:

6A (1 = X) + A = A1 - )
(= 23— A1 - 93))?

Hence optimization problem T3 can be rewritten as

GA(p(p = X) + Ap = A1 —9)))

E(W?) =

T3: Ogléngll (/i — )‘)3(,“ _ )\(1 _ 5))3 = f(é)
Subject to
E(W?) = 2A <8 @1)

(= A)2(p—A+06N)
The above constraint can be rewritten as

2 ILL*)\. ’

d> =0

RNTEPYE ED
Note that if 3 < E(W?)|gcps no feasible solution will exist
to problem P3 and if 8 > E(W?)|.cks, constraint (21) will
become redundant. Derivative of objective f(d) simplifies to
/ 62
5 =

T = Gt
It can be noted that f () < 0 for § € (0,1) and hence f(J)
will be decreasing for 6 € (0, 1).

207 + (X — 3u) — 267?]

Based on above, we have the following lemma describing the
solution of optimization problem P3.

Lemma 1: Under the above assumption, optimal scheduling
policy for problem P3 is given by FCFS queue discipline as
long as P3 is feasible.

Remark 5: If second moment of waiting time is constrained in
[B1, B2] for some suitable and given 8; > 0 and f2, optimal
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queue discipline will be pure dynamic with 6* € (0,1).

VI. DISCUSSION

The idea of 2-moment completeness introduced in this paper is
useful in solving the optimal control problems which involve
second moment (or variance) of waiting time for single class
queues and optimization needs to be done in the class of non
pre-emptive, non anticipative and work conserving scheduling
disciplines. A parametrized policy (2-level priority) is found
to be 2-moment incomplete. Thus, optimization over such
a two moment incomplete policy will give a sub-optimal
solution. This brings out the importance of identifying 2-
moment complete policies as in Theorem 1 and Theorem 2.
It will be interesting to explore the applicability of this idea
in solving various useful optimal control problems motivated
from wireless communication and computer networks. Few
such problems are discussed in this paper. Extending this idea
of 2-moment completeness to multi class queues and queueing
networks will be another fascinating future avenue.
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