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Abstract— Conservation laws and the related achievable region
for mean waiting times are important concepts in multi-class
queues. The nice geometric polytope structure of this region
driven by the conservation law is exploited extensively for dynamic
control of multi-class queues. Such control problems have wide
range of applications in computers, communication networks and
manufacturing systems. Tail probability of each class’s waiting
time is another important performance measure in any multi-class
queue. This paper studies an approximate conservation law, the
related achievable region and completeness of the tail probability
of waiting time of each class in two class M/G/1 queues. We use
completeness of the recently introduced relative priority scheme
for mean waiting time vector as well as a suitable partition of
the stability region of the queue to show that this approximate
achievable region for tail probabilities is enclosed in a trapezium.
We also study the tightness of bounds based on this decomposition
of the stability region.

Index Terms— Dynamic priority, tail probability, achievable re-
gion, conservation law, multi class queues, optimal control of
queues, non convex optimization

I. INTRODUCTION

Multi-class queueing systems are an important class of queueing
systems with multiple types of customers which may differ in
their arrival processes and service requirements. Such queues
are used to model complex systems, and hence have several
important applications in telecommunication, computer, trans-
portation and job shop manufacturing systems. There is a huge
literature in analysing their performance (see [1], [2], [3], [4],
[5] and references therein).

Many problems in wireless communication can be studied using
multi-class queueing systems. Examples include a system which
serves both voice and data calls or a cognitive radio type of sce-
nario with primary and secondary class of customers. Optimal
control of such multi-class systems is important for efficient
system design. Different optimal control problems can be posed
depending on the application regime. Many optimal control
problems involving mean waiting time performance measure
are well studied in literature (See [6] and [7]). Some recent
surveys with applications focused on wireless communication
can be seen in [8] and [9]. See [10] and [11] for textbook
treatment of such important topics.
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One of the useful tools to solve such optimal control problems
is the characterization of the achievable region for performance
measure of interest, because one can then use optimization
methods to find the optimal control policy (see [12], [7]).
Researchers in this field have extensively studied the achievable
region for mean waiting time performance measure and related
optimal control problems. Coffman and Mitrani [13] were
the first to identify the achievable region for mean waiting
time in multi-class M/M/1 queue with pre-emptive priority
discipline. Further structure of such achievable region is studied
by many authors under certain scheduling assumptions (See
[12], [14]). Conservations laws proposed by Kleinrock [15]
play an important role in analysing the geometric structure of
achievable region. Achievable region for mean waiting time in
two class non work-conserving queueing (polling) system is
recently explored in [16].

Geometric structure for mean waiting time vector in a work con-
serving multi-class single server priority queue was identified as
polytope ([14], [17]). A set of parametrized scheduling strategy
is called complete [14] if it achieves each point in this polytope
for suitable value of the parameter. So, identifying a complete
parametrized class of policy is quiet useful in solving optimal
control problems as discussed in [18]. Some admission control
problems are solved in two class polling system by exploiting
the unbounded structure of achievable region for mean waiting
time (see [16]).

Despite being such an important topic, there seems to be no
research in exploring conservation law or achievable region
for performance measures other than mean waiting time. Tail
probability is another important performance measure to model
quality of service in communication network (see [19]).

In this paper, we explore the conservation laws and achievable
region for waiting time tail probabilities in two class M/G/1
queue for a given tail value. Unlike Kleinrock’s conservation
law [20] for mean waiting time which is an affine function and
results in a nice geometric structure (polytope) of achievable
region, tail probability conservation laws are non linear in
nature. For a given tail value, we study an approximate conser-
vation law and discuss the idea of completeness with respect to
tail probability performance measure. We introduce the notion
of partially complete parametrized class for tail probability.
Relative priority scheme turns out to be a partially complete
class. We also study the associated approximate achievable
region for probabilities that waiting times exceed the tail value.
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This approximate achievable region, given by a non linear
curve, is bounded by a trapezium in two class queue (See
Figure 2). We study the tightness of the approximation of
this achievable region by the trapezium. For this performance
measure, system has family of conservation laws and achievable
regions parametrized by tail value x.

Waiting time tail probabilities are not known in multi-class
queues with dynamic priority across classes. To the best of our
knowledge, only mean waiting times are known (See [15], [21]).
This motivates us to use the approximation proposed in [19]
for such tail probabilities. Computational experiments given in
[19] show that this approximation is fairly accurate. We also
numerically note that these approximations are good. In view of
space limitations, proofs and many details are given in technical
report [22].

Such ideas will be helpful in solving optimal control problems
related to tail probabilities. Many optimal control problems in-
volving mean waiting time are solved in literature by exploiting
the achievable region for mean waiting time (see [6], [7], [23]).
Constraint on tail probability can be a measure for Quality
of Service, QoS, in many wireless communication problems.
These ideas will be helpful in solving such optimization prob-
lems.

A. Paper organisation

This paper is organised as follows. Section II presents the
system setting and relative priority scheduling. Section III
describes the approximate waiting time tail probability con-
servation law. Section IV discusses the approximate achievable
region and solution of certain optimization problems to find the
bound for tail probability conservation law. Section V describes
the tightness of bounds. Section VI presents the approximation
error via simulation. Section VII ends with discussion on
various interesting future avenues.

II. SYSTEM DESCRIPTION

Consider a multi-class queueing system with ¢ = 1,2,.... N
number of classes and each class has independent Poisson
arrival rate )\; and general service time distribution with mean
1/p;. Let F be the set of all work conserving, non pre-emptive
and non anticipative scheduling policies across classes in multi-
class queueing system. Let 7 be a scheduling policy in F and
W be the mean waiting time of class 4 under scheduling policy
m, 1 =1,2,..., N. Achievable region for mean waiting time can
be mathematically written as following set W.

W={W], W5« \Wg): 7€ F}

Kleinrock’s conservation law [15] is given by

N
- W,

Z piW = P (constant) (1)

i=1 L=p

N N

where p; = \i/pi, p = Y piand Wy = 3 &t (J?Jrﬁ).
i=1 i=1 :

Here o2 is the variance of service time for class 4. Note that the

right hand side of above equation is independent of scheduling
policy. And this helps in characterizing the achievable region.
Achievable region in two class, say W’ as described below,
forms a line segment in case of two classes and a polytope for
more than two classes (see [14]).

W = {(W],WJ) 7€ F}

Achievable region for mean waiting time vector with two
classes is shown in Figure 1. In this figure, Wis and Woy
are two extreme points of line segment corresponding to strict
priorities given to class 1 and class 2 respectively.

Wa

WZ 1

W
Fig. 1.  Achievable performance vectors for mean waiting time driven by
Kleinrock’s conservation law in two class M/G/1 queue

Now, we look for conservation law and achievable region for
waiting time tail probability in two class queue. Tail probability
of waiting time of class 4, W;, is defined as P(W; > z) for a
given tail value x, ¢+ = 1,2. Mathematically, achievable region
for tail probability can be represented by following space 7
for a given tail value z:

Te ={(P(W] > z), P(WS >z)): 7€ F}

We study the approximate conservation law related to the above
set. We also obtain the approximation for it in log transformed
axis.

Consider non pre-emptive work conserving scheduling disci-
pline in multi-class queue where customers within each queue
are served in first come first serve order. Approximation of
waiting time tail probability for class 7 is given by [19]:

PWT > 2) ~ pe P*/Wi i=1,2 2)

We now briefly describe relative priority scheduling which will
be helpful in solving certain optimization problems to obtain
approximate achievable region for tail probability in two class
M/G/1 queue.

A. Relative Priority

This is a dynamic priority scheduling across classes first pro-
posed by Moshe Haviv and Van Der Wal [21]. In this multi-class
priority system, a positive parameter p; is associated with each
class i. Let each class have independent Poisson arrival rate
A;. If there are m; jobs of class j on service completion the
next job to commence service is from class ¢ with following
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robability:
P Y nipPi

=N
> j=175P;

Mean waiting time for class i, W;, in case of two classes is
given by [21]:

1<i<N 3)

I L — ppi
W, =
(1= p1—p2p2)(1 = p1 — p1p1)

Wo, 4
— P1P2p1p2

fori =1, 2; here p = p1+p2andW0fZ)\x where 7?2 is

the second moment of service time of class . Also p1+p2 = 1.
Relative priorities are modified in natural way in [24] so that
it achieves all the mean waiting time vectors in the achievable
region (line segment) shown in Figure 1.

Modified Relative priorities: We consider weights given to class
i, 1 = 1,2, as p; to be non-negative instead of only positive
and this happens for at most one p;. Also when p; = 0 and
n; > 0 = n; V j then class ¢ customer is served, i = 1,2.
Remaining setting is same as relative priority.

Modified relative priority is proved to span entire achievable
region (complete) in two class M/G/1 queue (see [24]).

III. APPROXIMATE CONSERVATION LAW

In this section, we describe approximate conservation law for
tail probability similar to Kleinrock’s mean waiting time conser-
vation law in Equation (1). This is an approximate conservation
law as we use an approximation for tail probability described
in Equation (2).

Approximation given by Equation (2) for two class queueing
system results in following expression:

PIW{ +poWT
WIWI

P(WF > 2)??P(WF > z)P = pp1+p26*P (

®)

On using Kleinrock’s conservation law for two classes from
Equation (1), we have

~os(wrdip=s )
P(WT > )2 P(WJ > x)Pt = pPrtrze wiwia=e

(6)
Theorem 1: Approximate waiting time tail probability conser-
vation law is given by:

p2log POWT > x) + py log P(WS > x)

p*xWo
p) Joo POVT > y)dy [~ P(WF > y)dy
Proof Follows by taking natural logarlthm of Equatlon (6)

and using the fact that mean waiting time, fo wr
y)dy for i =1, 2. l

=plogp (7)

Recall from Equation (1), Kleinrock’s conservation law for
mean waiting time, that right hand side is a constant and
independent of scheduling policy. Equation (7) has similar

interpretation as RHS is a constant and it is independent
of scheduling policy. Hence Equation (7) forms approximate
tail probability conservation law. Interestingly, this constant
(plog p) does not depend on tail value z also.

Completeness of (modified) relative priority for mean waiting
time implies that given a scheduling policy m € F, under
which the mean waiting time vector is (W, W), there is a
(modified) relative priority scheduling policy 7., for which the
mean waiting time vector is exactly (W[, WJ). We refer this
as mean waiting time completeness.

Similarly, one can consider completeness of tail probabilities
of waiting times. It follows from mean completeness of relative
priority that the term plog p— W‘?}fﬂ) can be recovered by
appropriately choosing the relative priority parameter. However,
the tail probabilities for an arbitrary policy w, (P(W] >
x), P(WJ > x)) may not be same as that with chosen relative
priority scheme. Hence, we introduce the notion of partially tail
probability complete class below.

For given tail value x and policy 7, approximate conservation
law is a non-linear curve. A series of such non linear curves
can be obtained by changing scheduling policy 7 for a fixed tail
value x. We discuss the notion of partially complete class of
scheduling policy for space 7, = {(P(WT > z), P(WT
x)) : m € F} in the context of these non linear curves.
A parametrized policy forms a partially complete class if it
achieves all possible curves of tail probability vector driven by
conservation law defined in Theorem 1 for given value of x.

For an arbitrary policy m, a partially complete parametrized
class achieves the same non linear curve by choosing appro-
priate parameter. However, exact tail probability vector with
arbitrary policy «, (P(WT > xz), P(WJ > z)) may not be
achieved by the appropriately chosen parameter from a partially
complete class. Hence, a partially complete parametrized class
may not result in the same tail probability vector even if non
linear curve is same.

By using a (modified) relative scheduling policy in Equation
(7), we have that the approximate tail probability curve (defined
in Theorem 1) under an arbitrary scheduling policy 7w € F is
achieved by using (modified) the relative probability scheduling
policy m,.,. Thus, we have

Theorem 2: For a given tail value x > 0, the (modified) relative
priority class is partially complete class for the approximate tail
probability curves in the space T, = {(P(WT > z), P(W] >
x)):me F}

Remark 1: The above approximate conservation law traces a

continuous non linear curve in P(W{ > z) and P(WJ > z)
plane as W[ WJ is continuous in p.

IV. APPROXIMATE ACHIEVABLE REGION

In this section, we study the approximate achievable region for
tail probability motivated by line segment for mean waiting time
vectors driven by Kleinrock’s conservation law.
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The achievable region for waiting time tail probability, 7., is
a subset in the unit square, [0,1] x [0,1] with a non linear
boundary. We are not aware of any explicit expression for
tail probabilities of waiting times in two class queues under
(pure) dynamic priority policy. We now study the approximate
achievable region by a log transformation of the approximate
conservation law (Equation (6)) which turns out to be included
in a semi open trapezium (See figure 2).

Rewriting Equation (7) as
p2log P(WT > x) + p1log P(W3 > z) =
p*xWo
WIW3(1—p)
For a given x, the RHS of Equation (8) depends on scheduling

log P(WT > x \
4—_ ------

A

plogp— 3)

ub(x) — Ib(x)

log P(W > z)

Fig. 2. Approximate achievable performance vectors for tail probability of
waiting time driven by bounds from Equation (9) in two class M/G/1 queue
(for a given tail value x), 74

policy by mean waiting time expression. A uniform bound,
independent of scheduling policy, can be obtained by solving
following optimization problems P1 and P2 for a given tail
value z.

Pl: max W]WJ P2: min W]WJ
F F
Subject to Subject to
- - W, - - W,
piIWT + poW3 = 1/)_7(;) p1WT + pW3 = f_(;)

Let u* and [* be the optimal objective for optimization problem
P1 and P2 respectively. Lower bound, {b(z), and upper bound,
ub(x), for Equation (8) can be obtained as a function of * and
u* irrespective of scheduling policy. Hence, we have

Ib(z) < palog P(WT > z)+p1 log P(W > ) < ub(z) (9)

where
2
Ib(x) = plogp— % and (10)
22 W,
ub(x) = plogp— ﬁ (11)

Geometric interpretation of mean waiting time conservation law

is that all mean waiting time vectors lie in the hyperplane
defined by conservation law (See Figure 1). Similar geometric
interpretation for tail probability conservation law for a given
x can be given. Equation (9) gives a bounded approximate
achievable region for tail probability in log transformed axis
(see figure 2). ABCD is the approximate achievable region for
tail probability in figure 2 for a given x. Note that line segment
BC and AD are not achievable as corresponding logarithm value
is 0 and hence tail probability has to be 1.

Now, we look for the solution of optimization problems P1 and
P2 to explicitly calculate lower bound, {b(x) and upper bound,
ub(z) for given value of x using modified relative priority
scheduling discipline.

A. Solution of optimization problems Pl and P2

In this subsection, we discuss the solution of optimization
problem P1 and P2. We also explicitly compute the bounds on
tail probability conservation law using Equation (9). We first
look for solution of optimization problem P1.

Modified relative priorities are proved to be complete in case
of two classes (see [24]). This implies that optimizing over set
of all work conserving, non pre-emptive and non anticipative
policies is equivalent to optimize over the range of relative pri-
ority parameter. Hence, optimization problem P1 is equivalent
to following transformed problem T1.

T1: max W/WY
0<p<1
Subject to
_ _ W
p1 WY + pa WY = 1”_‘; (12)

where W is the mean waiting time of class i with p as relative
priority scheduling parameter across classes. Note that p and
1 — p are the parameters associated with class 1 and class 2
respectively in relative priority scheduling mechanism. On using
the expression of mean waiting time in relative priority [21], it is
noted that conservation law (Equation (12)) is trivially satisfied.
Hence the transformed optimization problem T1 reduces to

. (1= pp)(1 = p(1 = p))W¢
0<p<1 (1= p1 — (1 = p)p2)(1 = p2 — pp1) — p(1 = p)p1p2)?

The objective of above unconstrained optimization problem is
a function of p. Let us denote it by f(p). Its derivative is
calculated using Mathematica and further simplified as follows.

df (p) _ Ch + pCs
dp lg(p)]?

(13)

where
C1 = (1—-p)[p*(1 = p2) +2(p1(1 = p1) — p2(1 — p2))] (14)
Co = p*[p1(1 = p1) — p2(1 = p2) — 2(1 = p2)(1 — p)] (15)

and g(p) = [(=1+p)pp1p2+(1—pp1—p2)(1—p1—(1=p)p2)].
The derivative in Equation (13) is zero if p = —% and g(p) #
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0. On simplifying g(p) # 0, we get

(L—p2)(1 — p1 — p2)
p1(L—p1) = p2(1 — p2)
Theorem 3: Pure dynamic policy will be the optimal solution
to problem Pl with p* = —Cy/Cy if A\;, A9 and p are in
following stability region D:

DE{AD )‘27 :u‘:ﬂ1<y<62}
where Y = pi(1 —p1) = pa(1 = p2), B1 = —p*(1 — p2)/2 and

8, = p*(1 = pa)(1—p)

p*+2(1-p)
nature.

p# (16)

. And objective function is concave in

Proof: Stability region D is obtained by looking into range
of A1, Ay and p such that p* lies in (0, 1). Nature of objective
function is obtained by exploring the sign of second derivative
of objective function. More details can be seen in technical
report [22]. [ |

We now look for the solution of optimization problem P2 in
stability region D. Due to concave nature of objective, minima
will lie at either p = 0 or p = 1. Further decomposition of
stability region D is discussed below based on the solution of
optimization problem P2.

Decomposition of stability region: We calculate the difference
in the value of objective function, W1 Ws, at p=0and p =1
to identify global minima. We have

(p2 = p1)(2 = p1 — p2)W§
(L=p)(L=p1)*(1 = p2)?

Sign of above term is decided by (ps — p1). So is the minima
and solution of optimization problem P2.

W1W2|p:0 - W1W2|p:1 = a7

Stability condition for queue is p < 1. Let S be the stability
region defined as S = {A;, A2, p: A + Ay < p}. It follows
from Equation (17) and Theorem 3 that solution of optimization
P2 depends on relative values of p; and p2. Hence, this stability
region D is further decomposed in two parts D; and Dy as
shown below:

D1 =
D2 =

{A1, A2, e B1 <Y < Bz and py > p1} (18)
{)\1, )\2, W ﬂl <Y< ﬁg and p2 < pl} (19)

The difference in Equation (17) is positive for region D;. Hence
global minima will be given at p* = 1, i.e., class 1 should
be given strict priority over class 2. Similarly, this difference
will be negative for region Ds, so p* = 0 will be the global

minimizer. Note that when p; = ps, difference in Equation (17)

)
d

is 0 and derivative = 0 at p = 1/2. Hence global maxima

will be at p* = 1/2 and minima will be at p* = 0 or p* = 1.
A schematic of function, f(p), is shown in Figure 3.

It follows from Theorem 3 that p* = —C7/Cs ¢ (0,1) for the
range beyond stability region D). Hence objective function will
be monotone for p € [0, 1] and strict priority will be optimal for
stability region D¢. Consider further decomposition of stability
region in S7 and S5 depending on relative value of p; and po

Objective

- Objective
function, f(p)

function, f(p)

p=0 p=1

Fig. 3. Left figure captures the behaviour of objective function in stability
region D1 and right one captures the same in Do

as follows.
S1={A1, A2, Y €(B1,52)° and pa > p1}
Sy ={A1, A2, p:Y € (B1,52) and p2 < p1}

By using definition of 31, fB2 and Y, sets S; and S can be
rewritten as:

51 =
SQ =

{M, A2, p:Y € (=00, 1] and p > p1} (20)
{1, Ao, p:Y €[Bs,00) and po < p1}  (21)

P2 > p1

P1 = P2

Gptimality of
d dynamic

Static priority
optimality

Fig. 4. Decomposition of stability region

Decomposition of stability region is shown in Figure 4. The-
orem 4 below discusses the nature of objective function in
stability region S7 and Ss.

Theorem 4: Objective function of optimization problem P1 is
monotonically decreasing in stability region S; while it is
monotonically increasing in stability region Ss.

Proof: Such a nature of objective function is obtained by
exploring the nature of first derivative of objective function in
stability region S; and S5. See technical report [22]. [ |

It is clear from Figure 5 that static priority will be optimal for
both optimization problems P1 and P2 in stability regions S;
and Ss.

Numerical examples for illustration of nature of objective
function in different decomposed stability regions can be seen
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Objective Objective
function, f(p) \\ function, f(p)
p=0 p=1 p=0 p=1
Fig. 5. Left figure captures the behaviour of objective function in stability

region S and right one captures the same in So

in technical report [22]. Same phenomenon as observed by
Theorem 3 and 4 is noted in numerical examples (see [22]).

B. Calculation of bounds, 1b(x) and ub(x)

In this subsection, we explicitly calculate the bounds [b(x)
and ub(z) for various stability region and this completes the
approximation for achievable region shown in Figure 2. Fol-
lowing Achievable Region Bounds, ARB, algorithm determines
the [b(x) and ub(z) for given input parameter setting.

These [b(x) and ub(x) give the bounds on approximate achiev-
able region of tail probability for a given tail value x as shown
in Figure 2.

We summarize the above in following theorem.

Theorem 5: For a given x > 0, approximate achievable region
for tail probability, (P(W; > z),P(Wy > z)), is a semi
open trapezium in 3rd orthand of R? bounded by Ib(z) <
p2log P(Wy > x) + pylog P(Wa > x) < ub(x) where (b(z)
and ub(z) are calculated by ARB algorithm.

V. TIGHTNESS OF BOUNDS

In this section, we discuss the tightness of the bounds obtained
in previous section. We explicitly calculate the tightness as the
difference between upper and lower bound on tail probability
conservation law in different stability regions. Mathematically,

t(z) := ub(x) — Ib(x)

By using the definition of ub(z) and [b(z) from Equation (11)
and (10), we have
2 W * l*
Ha) = 22 o(u” =1")
(I —p)lru*

Remark 2: t(z) is linear in tail value x.

(22)

We obtain closed form expression for ¢(x) when input parame-
ters are in stability region S7, S2 and when load factors of both
classes are equal. We discuss the tightness of bounds with the
help of numerical examples for region D and Ds.

A. Region S1 and S5

It follows from Theorem 4 that lower and upper bounds are
given by p = 0 and p = 1 respectively for stability region S}

Algorithm 1 ARB algorithm to compute {b(x) and ub(x)
Inputs: A\;, Ao, p,

Determine the stability region among Sy, S3, D1, Do for
given input parameters using Equations (18), (19), (20), (21).

if A1, Ao, p € .57 then
I* = WiWa|p—1 and u* = W1 Wa|p—o
else if A\, Ao, p € .S, then
I* = W1Wa|p=1 and u* = W1 Wa|,—o
else if A\, Ao, u € D; then
* = W1W2|p:1 and u* = W1W2|p=—cl/02
else if A\, Ao, © € D5 then
I* = WiWa|p—o and u* = WiWa|p—_c, /0,
else if p; = po then
I* = WiWa|p—o or WiWa|p—1 and u* = Wi Wal,—1/2

Compute W1 W5 as below to calculate {* and u*
wg
p2)?’

Wlﬂwﬂp:o = m

Wlw W; |p:1 =
Wi - Wi
—————— and W[TWJ —_—
(1 =p)(1=p1)? b (1—2p1)?
To compute u* for region D; or Da, calculate p* = —C7/Co
using Equation (14) and (15) and then use mean waiting time
Equation (4).

lp=1 =

2
Output: [b(z) = plogp — % and
2
pexWy
ub(x) = plogp — ————
(z) = plogp w(=p)

while lower and upper bounds are given by p =1 and p =0
respectively for stability region Ss. Due to this symmetry and
Equation (22), tightness t(x) will be same for both stability
regions S7 and Ss.

By using mean waiting time expressions from [21] at p = 0
and p = 1, we get [* and u™* for stability region S; as follows.

* X7 TCYXT T W02
Fo b e
u*_’r’w| _ W02
TR ) (1 )2
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Using Equation (22) and above expressions, we get tightness

o

t(z) = (p2 — p1)(p1 + p2 — 2) W

B. Equal load factors

It follows from analysis in Section IV-A that upper bound is
given by p = 1/2 and lower bound is given by either p = 0 or
p = 1 as objective function value f(p) is same. By using mean
waiting time expressions from [21], we obtain

I = Wi o = WWg |yt = 10
= W1 Walp=0 = W1 W2 lp=1 = (1—p1)2(1 —2p1)
* __ YA/TYA/T — W02
wt = Wi 1o = 7503

Using above expressions, tightness of bounds for equal load
factor is given by:

2
pox
tx) = p2 =2
() = p1 Wo
C. Region D1 and D

It follows from Theorem 3 and analysis in Section IV-A that
lower bound, [*, is given at p = 1 and p = 0 for stability
region D; and D5 respectively while upper bound, u*, is given
atp = — g—; Explicit calculation of upper bound is theoretically
intractable due to highly non linear nature of expressions C
and Cs. So is the tightness of bounds in this stability region.
However, (b(x) can be obtained using Equation (10) for stability
region Dy and Ds.
2

pr 2
Ib(x logp— 221 —
()| p, plogp Wo( p1)
2
P~ 2
Ib(x = plogp— 22—
(@)|p, plogp Wo( p2)

1) Examples: We compute the tightness of bounds, ¢(x), nu-
merically for stability region D, and Ds. As Ib(z) has a closed
form expression as above, ub(x) is computed in these stability
regions by evaluating objective f(p) at p* = —C4/Cs while C;
and C are obtained from Equation (14) and (15). We consider
some instances of A1, A2 and p such that conditions for stability
region D, and D- are satisfied. We report here the results with
two set of service time distributions.

Example 1 Let the service time distribution be deterministic
with rate p. Hence variance will be 0 and second moment will
be 1/u2.

Example 2 We consider a two sided service time distribution
as follows.
g 1, with probability 0.3
|3, with probability 0.7
The tightness of bounds for different parameter setting with tail

value x = 0.1 is tabulated in Table I and II for above examples
in stability region D;.

It is noted that the tightness is larger in heavy traffic. In all
instances, difference is not more than 0.54. Hence bounds are
pretty tight. Similar results are noted for other experiments with
exponential and uniform service time distribution (see technical
report [22]). Same tightness in bounds, t(z), is observed for
stability region Do due to symmetry and pj, turns out to be
1-— p*D1 (See [22)).
TABLE 1
ILLUSTRATION OF t(ac) FOR DETERMINISTIC SERVICE TIME DISTRIBUTION

Al | A2 | p| ph, Tightness of bounds, ¢(x)
r=0.1
1.2 | 35] 5| 02241 0.5389
1 [15]5 0.2 0.3080
0.8 1 8 | 0.0617 0.2877
TABLE II

ILLUSTRATION OF t(x) FOR TWO SIDED SERVICE TIME DISTRIBUTION

A1 Ao I p’,‘:,1 Tightness of bounds
z=0.1
0.15 | 0.2 | 04167 | 0.4014 0.0140
0.1 | 0.15 | 0.4167 | 0.2667 0.0114
0.07 | 0.1 | 0.4167 | 0.1557 0.0110

VI. ERROR IN APPROXIMATION

In this section, we study the error in tail probability approxima-
tion of [19] which is used to obtain approximate tail probability
conservation law and approximate achievable region. Tail prob-
ability approximation is given by [19]:

P(W; > ) ~ pe ?* /Wi =12 (23)

Note that tail probability and mean waiting time in standard
M/M/1 queue is:

P(W > z) = pe #1792 and W = 1P/Mp

It can be easily verified using above equations that approxima-
tion (23) is exact for single class standard M/M/1 queue. Differ-
ent scheduling policies, strict priority, weighted fair queueing
(WFQ) and weighted round robin (WRR) disciplines are simu-
lated with four classes of queues in [19]. Numerical results for
these disciplines are reported in [19]. These results show that
approximation (23) is quiet adequate.

We use simulation to check the error in approximation for
two classes. We build a simulator for two class queue where
relative priority scheduling is implemented across classes as this
scheduling policy is used for obtaining bounds on approximate
achievable region in Section IV. This simulator is build in
SymPy and simulation results are validated from theoretical
known results (mean waiting time from [21]). See technical
report [22] for details. Total run time is 100000 mins. Five
replications with each setting are simulated and average value
is reported in tables.

Now, we compute tail probability using relative priority simu-
lator and check the error in approximation with Equation (23).
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TABLE III
ERROR CALCULATION IN TAIL PROBABILITY VIA SIMULATION FOR x = 0.5

Settings (1 = 10) | Relative Priority Simulation Approximation Absolute Difference
P(W1 > 0.5) | P(W3y > 0.5) | P(W; > 0.5) | P(W5 > 0.5) | Class 1 Class 2

p=20.1 0.00463 0.00217 0.00431 0.00204 0.00063 | 0.00053

A =15 p=04 0.00406 0.00355 0.00382 0.00319 0.00049 | 0.00077
A2 =10.5 p=0.38 0.00353 0.00642 0.00317 0.00532 0.00065 | 0.00144
p=20.1 0.14259 0.03869 0.16041 0.04049 0.01782 | 0.00200

A =2 p=0.4 0.09530 0.06851 0.10022 0.07165 0.00492 | 0.00314
Ao =4 p=0.8 0.03021 0.09542 0.03226 0.10666 0.00204 | 0.01124
p=0.1 0.55027 0.14350 0.62282 0.15435 0.07254 | 0.01084

A1 =6 p=04 0.51010 0.42166 0.57207 0.47912 0.06196 | 0.05746
A2 =3 p=0.38 0.36855 0.58024 0.39582 0.67987 0.02726 | 0.09963

Total run time for simulation is 100000 mins. Five replications
with each setting are performed and average value is reported.
Table III contains simulation results with tail value 0.5. Note
that the maximum error encountered in above experiments is
0.01 except for heavy traffic. Hence approximations are quiet
accurate for low and moderate traffic and so is the bounds on
tail probability conservation law and approximate achievable
region. Experiments with tail value « = 0.1 are also performed
and similar results are noted (See technical report [22]).

VII. DISCUSSION

A conservation law for waiting time tail probabilities in two
class queues is explored in this paper. Notion of partially
complete class is discussed and relative priority is identified as
partially complete scheduling policy. Tail probability complete-
ness of relative priority is yet to be discovered. Bounds on the
related approximate achievable region for these probabilities are
obtained by solving certain optimization problems. Tightness
of these bounds is discussed. Error in approximation of tail
probability is explored via simulation. It will be interesting
to explore optimal control problems where quality of service
is in terms of tail probabilities by exploiting this approximate
achievable region. Further, expanding these ideas in multi-class
queue and queueing networks will be another fascinating future
avenue.
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