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Abstract—An infinite number of nodes travel on R2, along
straight lines, with a common speed vn. Any transmission across
a distance d incurs a cost c(d). We devise and study, both by anal-
ysis (using stochastic geometry tools) and simulation, forwarding
rules that transport packets towards a given direction using
combinations of wireless transmissions and physical transfers on
node buffers. The forwarding rules are evaluated in terms of two
metrics: the packet delivery delay and the aggregate transmission
cost, both per unit of distance covered. We explore the tradeoff
between these two metrics in terms of the points on the delay-cost
plane achieved by our forwarding rules.

Index Terms—Poisson Point Processes, Delay-Tolerant Net-
works, Mobile Wireless Networks, Delay/Cost Tradeoffs.

I. INTRODUCTION

A number of routing protocols have recently been proposed,
in various mobile wireless settings, that combine geographic
routing with delay-tolerant routing. Under these protocols,
packets are transported towards their destination using com-
binations of wireless transmissions (to nodes suitably placed
closer to their destination) and physical transfers (along nodes
suitably moving in the direction of their destination) [1], [2],
[3], [4], [5], [6], [7].

Motivated by these works, we develop and study a related
abstract setting using tools from stochastic geometry: The
network comprises an infinite number of mobile nodes; Nodes
move along straight lines, and the mobility model is such
that at any time instant they are distributed according to a
homogeneous spatial Poisson point process; Each transmission
across a distance d comes at the expense of a cost c(d) = d2

and is instantaneous; Packets must travel towards a given di-
rection to a destination located at an infinite distance, through
a combination of wireless transmissions and physical transfers
on node buffers.

We look for feasible combinations (Dp, Cp) of the normal-
ized delay Dp and normalized cost Cp, which are defined as
the time taken and the aggregate transmission cost incurred,
respectively, per unit of distance that a packet progresses
towards the direction of its destination. It is intuitively clear
that a tradeoff must exist between these two metrics: if the
packet increases its use of wireless transmissions as opposed
to physical transfers, the normalized cost Cp should become
higher and the normalized delay should become lower, and
vice versa. We derive feasible (Dp, Cp) combinations both
analytically, using tools from stochastic geometry coupled with
a simplifying approximation, as well as by simulation. These

feasible combinations are achieved by novel forwarding rules
that carefully balance the two transport mechanisms available
to the packet (i.e., wireless transmission and physical transfer),
while continuously taking into account the evolving topology
in its neighborhood.

The rest of this work is organized as follows: in Section II
we discuss related work. In Section III we introduce our
network model and performance metrics Dp, Cp. In Sec-
tion IV we define the two forwarding rules we study, Rules
I and II. In Sections V and VI we calculate analytically,
using a simplifying approximation, the (Dp, Cp) combinations
achieved by Rule I. In Section VII we present simulation
results for both Rules I and II. We conclude in Section VIII.
Some conceptually straightforward but lengthy derivations are
omitted, but appear in [8].

II. RELATED WORK

Tradeoffs involving the packet delivery delay are not limited
to the wireless domain. In [5] a very general formulation,
applicable to all Delay-Tolerant Networks (DTNs), is intro-
duced for quantifying the tradeoff between the delay in the
delivery of a packet and the transport cost, comprised of a term
due to the storage of the packet at intermediate buffers and a
term due to its transmission from node to node. In contrast to
our work, the tradeoff is established for specific instances of
the network evolution, using network optimization tools, and
without utilizing probabilistic analysis.

Under the hybrid geographic/delay-tolerant protocols of [1],
[2], [3], [4], [5], packets are routed using combinations of
transmissions to nodes that are closer to the destination than
their current holder (as in geographic routing), and sojourns on
the buffers of their current holders (as in delay-tolerant rout-
ing). Depending more on transmissions and less on physical
transfers leads to reduced delays but increased transmission
costs (e.g., more bandwidth required, which reduces the end-
to-end throughput in the network). Depending more on phys-
ical transfers and less on transmissions leads to the opposite
effects. The forwarding rules we study in this work follow the
same principle, but we use an idealized stochastic geometry
framework that is amenable to analysis.

Stochastic geometry has been applied to the analysis of
wireless networks with great success, leading to a wealth of
insightful results [9], [10]. However, in such works nodes are
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typically assumed to be immobile, excepting a few notable
cases.

For example, in [11], the authors investigate the maximum
possible speed with which information can propagate in a
wireless DTN with mobile nodes, without placing a constraint
on the paths considered by the packet. This last assumption
is in contrast to our work, and more akin to calculating the
speed with which a packet propagates if it is flooded to the
whole network.

Also, in [7] the authors calculate delay/throughput tradeoffs
under a geographical forwarding rule termed Constrained
Relative Bearing. Differing from our work, the authors derive
results on the relation between the delay and the throughput
that are asymptotic in terms of the number of nodes, in
the sense of [12], [13]. Furthermore, the approach in [7] is
more holistic, calculating bounds on the orders of system-
level parameters, i.e., the aggregate throughput and the packet
delivery delay, whereas our work is more focused on the
precise values of the packet-level parameters Dp and Cp.

We also note that stochastic geometry models with mobile
nodes have also been introduced in the study of single node
isolation times in wireless mobile networks [14], space-time
network percolation [15], and wireless sensor network cover-
age [16]. These topics do not directly involve unicast routing,
and so are tangentially related to this work.

Finally, we mention that an effort preliminary to our work
here has appeared in [6]. There, however, we considered a
very special case of the main forwarding rule we treat here,
the analysis was simpler and with stronger approximations,
and there was no comparison between analysis and simulation
results.

III. NETWORK MODEL AND THE DELAY-COST PLANE

A. Network Model

At time t = 0, an infinite number of nodes are placed on
the infinite plane R2 according to a Poisson distribution with
density λ. Beginning at t = 0, each node moves with a fixed
velocity vector, of magnitude vn common for all nodes, and a
direction chosen uniformly, and independently of the rest. It is
straightforward to show that, under these assumptions, nodes
are Poisson distributed with density λ for all t ≥ 0 (cf. Section
1.3.3 of [9]). Furthermore, by a standard thinning argument,
the nodes whose direction of travel forms an angle with the x
axis within the interval [χ, χ+∆χ] are also Poisson distributed
with density λ∆χ

2π .
Two nodes separated by a distance d can exchange a

packet at a cost c(d) = d2. We select this function of the
distance as it reflects accurately the need of the transmission
to secure a ‘quiet area’ of roughly circular shape around the
receiver for the correct reception of the packet [13]. Other
choices would also be possible with our formulation. For
simplicity, we do not specify an upper bound on the distance
that a transmission can cover. Finally, packet exchanges are
instantaneous, errorless, and not subject to interference and
media access constraints.
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Fig. 1. The i-th stage of a journey.

We focus on a specific packet that must be delivered at a
destination located at an infinite distance which, for simplicity,
is taken to be in the direction of the positive x-axis. The packet
can travel to its destination through a combination of physical
transfers (involving only delay) and wireless transmissions
(involving only cost). There is a clear tradeoff between delay
and cost: the more a packet moves towards its destination using
wireless transmissions instead of physical transfers, the higher
the cost, but the lower the delay, and vice versa.

Without any loss of generality, we assume that the packet is
following a forwarding rule under which the resulting jour-
ney is comprised of stages, which we index by i = 1, 2, . . . .
Each stage i consists of two parts: a sojourn at the buffer of
a node ni, that lasts for a sojourn time Ti, and a wireless
transmission, from node ni to node ni+1. Observe that stage
i lasts from time

∑i−1
k=1 Tk until time

∑i
k=1 Tk. Let Xi be the

direction of travel of node ni. Let XS,i and YS,i be the changes
in the x and y coordinates of the packet due to its i-th sojourn.
Let XT,i and YT,i be the changes in the x and y coordinates
of the packet due to its i-th transmission. Let Ci = X2

T,i+Y
2
T,i

be the transmission cost of the i-th stage. We also define the
total changes in the x and y coordinates during the i-th stage
as Xi = XS,i + XT,i and Yi = YS,i + YT,i respectively. We
refer to Xi as the progress towards the destination made at
stage i. These definitions are summarized in Fig. 1.

Note that some stages will consist only of a transmission,
i.e., a node will retransmit a packet the moment it receives it,
and therefore for these stages XS,i = YS,i = Ti = 0.

B. Normalized Delay and Cost

We define the (normalized packet) delay Dp and the
(normalized packet) cost Cp of the forwarding rule as the
following limits, provided they exist:

Dp , lim
n→∞

∑n
i=1 Ti∑n

i=1(XS,i +XT,i)
, (1)

Cp , lim
n→∞

∑n
i=1 Ci∑n

i=1(XS,i +XT,i)

= lim
n→∞

∑n
i=1(X2

T,i + Y 2
T,i)∑n

i=1(XS,i +XT,i)
. (2)
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The normalized packet delay Dp is the limit, as n→∞, of the
total time it takes for the first n stages to complete divided
by the progress towards the destination during these stages.
The normalized packet cost is the limit, as n → ∞, of the
aggregate cost incurred during the first n stages divided by
the progress made during these stages. They are measured in
seconds per meter and units of cost (i.e., square meters) per
meter respectively.

A few comments are in order. First of all, the two limits may
not exist for some forwarding rules, for example forwarding
rules that vary with time. However, we expect that the limits
will exist for most simple, time-invariant rules. Establishing
general conditions for their existence is outside the scope of
this work. Secondly, the y-coordinates YS,i and YT,i do not
appear in the common denominator of the two fractions that
measures progress towards the destination. This is because
offsets in the direction of the y-axis do not have a positive
effect, as the destination is towards the direction of the positive
x-axis. Thirdly, observe that the normalized packet delay is
simply the inverse of the average speed, which might perhaps
be a more intuitive figure of merit. We opt to use normalized
packet delay for reasons of mathematical convenience.

The pair (Dp, Cp) describes the efficiency of the forwarding
rule, and in this work we mainly calculate the (Dp, Cp) pairs
achieved by two specific forwarding rules, introduced in the
following section, for various choices of their parameters.
The ‘holy grail’ problem coming out of this work is finding
all Pareto optimal combinations (Dp, Cp) and the forwarding
rules that achieve them. Based on the investigation conducted
here, and related works [11], [17], we believe that this task is
formidable, and we leave it for future work.

IV. FORWARDING RULES

A. Rule I

Whenever a packet is created at or relayed to a node A,
node A scans for other nodes that could act as relays for the
packet within an area termed the forwarding region F . F is
a subset of R2 that is defined relative to node A, and moving
with it. We assume that it is closed, bounded, and convex. For
the forwarding rule to perform well, we expect that F must
be placed, with respect to node A, towards the destination of
the packet, i.e., the positive x-axis. We assume, therefore, that
node A is outside F , or at most on its boundary.

Node A surveys the nodes within F and then:
1) Let there be nodes in F whose directions of travel (with

respect to the positive x-axis) are within [−χm, χm],
where χm ∈ (0, π] is a parameter termed the maximum
(angular) deviation. Then, node A immediately trans-
mits the packet to that node B among them with the
smallest quotient C/x of transmission cost (from A to
B) C over instantaneous progress x = xB−xA, where
xA and xB are the current x-coordinates of A and B.

2) Otherwise, A will keep the packet until one such node
B appears on the boundary of F . A will then transmit
the packet to node B.

F
φ

r(φ)
x

y

(0, 0)A = (x0, 0)

Fig. 2. Description of the forwarding region F .

We refer to this rule as Rule I. As the name suggests, the
instantaneous progress x is the distance towards the destination
instantly covered by A sending the packet to B. Also, the
motivation for restraining the direction of travel of a receiving
node in the range [−χm, χm] is clear: we want to avoid using
nodes whose direction of travel is not sufficiently close to
the direction of the destination. Finally, the motivation for
selecting the node with the smallest C/x quotient is also clear:
as we want to minimize the long term quotient of total cost
over total progress, it makes sense to also minimize the cost
over progress quotient of each hop.

Different instances of this forwarding rule differ on the
choices of F and χm. We expect to be able to trade off Dp

with Cp by tuning these two parameters. For example, we
expect that as the area of F becomes larger, Dp becomes
smaller but Cp becomes larger.

As shown in Fig. 2, we describe F in terms of a coordinate
system whose origin (0, 0) lies in the interior of F , and such
that the current packet holder A is located in (x0, 0). Let
the continuous function r(φ) be such that (r(φ), φ) traces the
boundary of F in polar coordinates as φ goes from 0 to 2π.

B. Rule II

Rule I requires that all nodes acting as packet relays have a
direction of travel within [−χm, χm]. However, within this
range some directions are better than others. Also, when
deciding on whether or not to relay a packet to a node, it
is useful to consider the travel direction of the current holder
as well.

Therefore, we create Rule II as follows: Firstly, we select
as F a circular disk of diameter R centered at the location(
R
2 , 0
)
, with the current holder, i.e., node A, placed at the

origin. Secondly, as soon as node A receives the packet, it
starts to scan F until it finds a node B such that

C

x
≤ R

2
×
[
1 +

bvx,B − avx,A
2vn

]
.

While no such node exists, node A carries the packet in its
buffer. If multiple nodes exist that satisfy this condition, the
one with the smallest quotient C/x is selected as the next
relay. In the above, vx,B and vx,A are the x-components of
the velocities of nodes B and A respectively, and vn is the
node speed. The parameters b, a ≥ 0 are used to tune the
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effects that vx,B and vx,A have on the decision, respectively.
The condition that the direction of travel of all relays must be
in [−χm, χm] is not used.

Under Rule II, the larger vx,A is, the smaller is the right
hand side of the new condition, and so the harder it becomes
for B to satisfy it. Similarly, the larger vx,B is, the larger is the
right hand side of the condition, and so the easier it becomes
for B to satisfy it.

Regarding the shape of F , we chose a circular disk due
to its simplicity and because in a related, pure geographic,
non-DTN routing setting [18] it was shown that the circular
disk is the optimal shape for the forwarding region, given that
c(d) = d2. (We stress that we do not have a proof of the
optimality of this shape in our setting.)

V. STATISTICS OF THE FIRST STAGE FOR RULE I

As a preliminary to the approximate calculation of the
(Dp, Cp) pairs achievable by Rule I, which will be given in
Section VI, in this section we focus on the first stage, i.e.,
the period between the creation of the packet and its first
transmission to its first relay. So let a packet be created at
time t = 0, and let A be its source node. According to our
mobility model of Section III, node A, and hence also the
forwarding region F , are moving with speed vn towards a
random direction X1 which is uniformly distributed in [−π, π].

We will calculate the expected values of the random vari-
ables XS,1, XT,1, C1, T1 conditioned on the event X1 = θ, for
θ ∈ [−π, π]. We will calculate these by further conditioning
on the events M and M ′, where M is the event that the
forwarding region F is initially, i.e., at time t = 0, empty of
nodes with a direction of travel within the [−χm, χm] interval.
We have

E(∗|X1 = θ) = E(∗|X1 = θ,M)P (M)

+ E(∗|X1 = θ,M ′)(1− P (M)), (3)

where the asterisk ∗ can be any of XS,1, XT,1, C1, T1. Observe
that

P (M) = exp (−λ′|F|) , (4)

where we define λ′ , χm

π λ and where |F| is the area of the
forwarding region F .

We will also calculate the conditional pdf fX2|X1=θ(χ) of
the direction X2 of the first relay, i.e., the second node to hold
the packet, also using conditioning on the event M , as follows:

fX2|X1=θ(χ) = fX2|X1=θ,M (χ)P (M)

+ fX2|X1=θ,M ′(χ)(1− P (M)). (5)

The aforementioned quantities that are conditional on the
event M ′ are derived in Section V-A, and those conditional
on the event M are derived in Section V-B.

A. F Is Initially Not Empty

In this case, we first note that the direction of travel of
the first relay (i.e., the node that receives the packet from its

holder) is uniformly distributed in the range [−χm, χm], and
independent of the value of X1, therefore

fX2|X1=θ,M ′(χ) =

{
1

2χm
, |χ| ≤ |χm|,

0, |χm| < |χ| ≤ π.
(6)

Furthermore, in the event M ′, XS,1 = T1 = 0, therefore we
have

E(XS,1|X1 = θ,M ′) = E(T1|X1 = θ,M ′) = 0. (7)

To calculate the remaining two expectations needed, i.e.,
E(XT,1|X1 = θ,M ′) and E(C1|X1 = θ,M ′), we first observe
that XT,1 and YT,1, and hence also C1 = X2

T,1 + Y 2
T,1,

are independent of X1 = θ. This significantly simplifies the
calculations.

We will first consider the statistics of the quotient

Q =
C1

XT,1
=
X2
T,1 + Y 2

T,1

XT,1
.

Let A(q) be the area of the subset of the forwarding region
F for which Q ≤ q. Note that the locus of the points on the
plane for which Q ≤ q is a disk with center at

(
q
2 , 0
)

and
radius q

2 . Therefore, A(q) is increasing with q, with A(0) = 0
and A(∞) = limq→∞A(q) = |F|. Note that

P (q ≤ Q ≤ q + dq|M ′) =
P (q ≤ Q ≤ q + dq,M ′)

P (M ′)

=
exp (−λ′A(q))λ′A′(q)dq

1− exp (−λ′|F|)
,

where A′(q) is the derivative of A(q). It follows that the
conditional distribution of Q is

fQ(q) =
λ′A′(q)

1− exp (−λ′|F|)
exp (−λ′A(q)) .

To find the expectations E[XT,1|X1 = θ,M ′, Q = q] and
E[CT,1|X1 = θ,M ′, Q = q] we consider the locus of the
points within F for which we have x2+y2

x = q, which is the
intersection of F with a circle of radius q

2 centered at
(
q
2 , 0
)
.

Let L(q) be the length of the locus, and let x(s) and y(s) be
the parametrized coordinates of the locus where s expresses
distance along the locus, with s ∈ [0, L(q)]. Therefore,

E[XT,1|X1 = θ,M ′, Q = q] =

∫ L(q)

0

x(s)

L(q)
ds,

E[C1|X1 = θ,M ′, Q = q] =

∫ L(q)

0

x2(s) + y2(s)

L(q)
ds.

The required conditional expectations can then be calculated
using

E[XT,1|X1 = θ,M ′]

=

∫ ∞
0

E[XT,1|X1 = θ,M ′, Q = q]fQ(q) dq, (8)

E[C1|X1 = θ,M ′]

=

∫ ∞
0

E[C1|X1 = θ,M ′, Q = q]fQ(q) dq. (9)
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Fig. 3. An empty forwarding region F traveling towards direction X1 = θ.

B. F is Initially Empty

Next, we calculate the expected values of XS,1, XT,1, C1,
T1 and the distribution of X2, subject to X1 = θ and to the
event M that F is initially empty.

Consider the following counting process {Nχ,φ;θ(t), t ≥
0}: there is an arrival whenever a node enters F through the
part of its boundary described by the range of angles [φ, φ+
dφ] and that node has a direction of travel within the range
[χ, χ+dχ], where φ, χ ∈ [−π, π]. All angles appear in Fig. 3.

Observe that arrivals of this process at non-overlapping time
intervals are independent, as they are caused by nodes that at
t = 0 existed in non-overlapping regions of R2. Furthermore,
the number of arrivals in a time interval [t0, t1] is Poisson
distributed, with a rate proportional to the duration of the time
interval [t1 − t0]. Indeed, the number of arrivals equals the
number of nodes that existed at time t0 in a region of space
adjacent to F whose area is proportional to t1 − t0.) The
number of nodes in that region is Poisson distributed, with a
parameter proportional to the area of the region, and therefore
proportional to the duration of the interval t1 − t0.

To conclude, (i) the number of arrivals in a time interval
is Poisson distributed with a rate proportional to the duration
of the time interval, and (ii) arrivals at non-overlapping time
intervals are independent. It follows that the counting process
{Nχ,φ;θ(t), t ≥ 0} is Poisson [19]. Observe that the (yet
unknown) arrival rate is incremental, due to the fact that we
consider an incremental part of the boundary [φ, φ+ dφ], and
an incremental part of the node directions [χ, χ + dχ]. Let
γ(χ, φ; θ)dχdφ be this rate.

Next, consider the counting process {Nχ;θ(t), t ≥ 0}
of all nodes arriving with a direction within [χ, χ + dχ] at
any part of the boundary of F . By the additive property of
Poisson processes (i.e., the summation of independent Poisson
processes is also a Poisson process, with a rate equal to the
sum of the rates of the constituent Poisson processes [19]) it
follows that this process is also Poisson, with a rate γ(χ; θ)dχ
such that

γ(χ; θ) =

∫ π

−π
γ(χ, φ; θ) dφ. (10)

Also consider the counting process {Nφ;θ(t), t ≥ 0}
of all nodes arriving at the boundary [φ, φ + dφ], but with
any direction in [−χm, χm]. By the additive property of

Poisson processes, this process is also Poisson. Let its rate
be γ(φ; θ)dφ. We must have

γ(φ; θ) =

∫ χm

−χm

γ(χ, φ; θ) dχ. (11)

Finally, consider the counting process {Nθ(t), t ≥ 0} of all
nodes arriving at any point of the boundary with any direction
in [−χm, χm]. Again, the new process is also Poisson, with
some rate γ(θ). We must have

γ(θ) =

∫ χm

−χm

γ(χ; θ) dχ =

∫ π

−π
γ(φ; θ) dφ. (12)

We will refer to all rates γ(χ, φ; θ), γ(χ; θ), γ(φ; θ), and
γ(θ) as incidence rates. Observe that, in order to keep the
notation simple, we have used the same symbol, i.e., γ, for all
of them. We will differentiate them by their arguments. The
incidence rates are calculated in [8], and in the following we
will assume they are known.

Having the incidence rates, we can calculate the conditional
expectations E(∗|X1 = θ,M) (where the asterisk ∗ is any
of the random variables XS,1, XT,1, C1, and T1) as well as
fX2|X1=θ,M (χ).

Indeed, let the random angle Φ be defined so that the
location on the boundary of F where the first relay appears
is (r(Φ),Φ). Observe that the density of Φ conditional on
X1 = θ is equal to

fΦ|X1=θ,M (φ) =
γ(φ; θ)

γ(θ)
. (13)

This is because the minimum of a number of exponential
random variables is equal to one of them with probability equal
to its rate over the sum of all rates [19]. Therefore,

E(XT,1|X1 = θ,M) =

∫ 2π

0

[r(φ) cosφ− x0]
γ(φ; θ)

γ(θ)
dφ,

(14)

E(C1|X1 = θ,M)

=

∫ 2π

0

[
(r(φ) cosφ− x0)2 + (r(φ) sinφ)2

] γ(φ; θ)

γ(θ)
dφ.

(15)

Regarding the time T1, observe that, as the counting process
{Nθ(t), t ≥ 0} is Poisson with rate γ(θ), T1 is exponentially
distributed with expectation

E(T1|X1 = θ,M) =
1

γ(θ)
. (16)

Furthermore, since XS,1 = vnT1 cosX1, we have

E(XS,1|X1 = θ,M) = E(vnT1 cosX1|X1 = θ,M)

= vn cos θE(T1|X1 = θ,M) =
vn cos θ

γ(θ)
. (17)

Finally, by an argument similar to that applied for deriving
(13), observe that

fX2|X1=θ,M (χ) =
γ(χ; θ)

γ(θ)
. (18)
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C. Wrap-up

We can now calculate numerically the conditional expecta-
tions E(∗|X1 = θ) of the random variables XS,1, XT,1, C1,
T1, using the Eqns. (3) and (4) and the conditional expectations
calculated in Sections V-A (Eqns. (7), (8), (9)) and V-B (Eqns.
(14), (15), (16), (17)).

We can also calculate the conditional pdf fX2|X1=θ(χ) using
Eqns. (4) and (5) together with Eqns. (6) and (18).

VI. APPROXIMATE (Dp, Cp) CALCULATIONS FOR RULE I

If the random vectors (XS,i, XT,i, Ci, Ti) describing each
stage i were independent and identically distributed, then it
would be straightforward to calculate the normalized packet
delay and cost using their definitions (1) and (2) along with
the Strong Law of Large Numbers (SLLN). Indeed, by the
SLLN it would follow that

lim
n→∞

∑n
i=1 Ti
n

= E(T1), lim
n→∞

∑n
i=1 Ci
n

= E(C1),

lim
n→∞

∑n
i=1(XS,i +XT,i)

n
= E(XS,1) + E(XT,1),

from which we would have

Dp =
E(T1)

E(XS,1) + E(XT,1)
, Cp =

E(C1)

E(XS,1) + E(XT,1)
.

(19)
However, for our forwarding rule, we do not expect these

random vectors to be either independent or identically dis-
tributed. For example, whereas X1 is uniformly distributed
in [−π, π], the distribution of X2 (given by integrating the
conditional distribution (5) over the uniform distribution of
X1) is zero outside [−χm, χm]. Likewise, the distribution of
X3 will not in general be the same as the distribution of X2,
and so on. As the statistics of XS,i, XT,i, Ci and Ti all depend
strongly on the distribution of Xi−1, we expect that the vec-
tors (XS,i, XT,i, Ci, Ti) are not identically distributed. These
vectors are also not independent; for example, a long sequence
of zero sojourn times, i.e., Tk = Tk+1 = · · · = Tk+m = 0
for some k,m > 0 with m large, suggests that there are many
nodes in the vicinity of node nk+m+1, which means that the
conditional expected time E[Tk+m+1|Tk = Tk+1 = · · · =
Tk+m = 0] will be smaller than the unconditional expected
time E[Tk+m+1].

The fact that the vectors (XS,i, XT,i, Ci, Ti) are neither in-
dependent nor identically distributed significantly complicates
the analysis. Intuitively, we expect that for most reasonable
selections of the forwarding region and maximum deviation
χm, the correlation across the stages diminishes fast enough so
that the SLLN approximately holds. Even if this is indeed the
case, we need to find the expected values of the components
(XS,i, XT,i, Ci, Ti), which is also not a simple task.

Motivated by these observations, we introduce the following
approximation:

First Order Approximation: We assume the vectors
(XS,i, XT,i, Ci, Ti) to be iid, and so we use Eqns. (19)
to calculate Dp and Cp. However, these vectors are now

distributed according to the vector (XS,1, XT,1, C1, T1) when
the direction X1 that the first node has is distributed according
to the limiting distribution g(χ) = limi→∞ fXi+1

(χ) arrived
at by the following iteration, provided the limit exists:

fXi+1(χ) =

∫ χm

−χm

fX2|X1=θ(χ)fXi(θ) dθ. (20)

Intuitively, this approximation can be explained as follows:
assume that whenever a hop is made, the process describing
the movement of the nodes restarts, with the exception of a
single piece of information (hence the name of the approxima-
tion), which is the direction of travel of the node that received
the packet. Under this approximation, the distributions fXi(χ)
of the directions of travel Xi will evolve according to the given
formula (20). We use their limit, g(χ) = limi→∞ fXi+1

(χ), to
find the statistics of all other random variables of interest.

As the simulations of the next section show, the First Order
Approximation leads to numerical results for the normalized
packet delay and cost that closely match those results found
by simulating the network. In any case, finding a better ap-
proximation, or avoiding approximations altogether, is clearly
important and is the subject of future work.

VII. RESULTS

In this section we calculate the (Dp, Cp) pairs achieved by
our forwarding rules, using the analysis of Sections V and
VI for Rule I as well as simulations, for both Rules I and
II. It is possible to arrive at analytical results for Rule II, but
the derivations are lengthy, and we omit them due to space
constraints.

For Rule I, we limit ourselves to the case where the
forwarding region F is the one used by Rule II, i.e., a circular
disk of radius R with the current holder of the packet lying
on its circumference opposite to the direction of the packet
destination. Therefore, we have two parameters available for
trading off cost with delay: the radius R of the disk F and
the maximum deviation χm. For each pair of values (R,χm),
there is a corresponding pair (Dp, Cp).

In Fig. 4 the parameters chosen are vn = 1 and λ = 1. The
radius of the forwarding region ranges from R = 0 to R = 5,
and the maximum deviation ranges from χm = 0 to χm = π.
In the plot, we have drawn a total of 30 dotted lines, each line
showing the evolution of the delay-cost pair as χm is fixed
but R increases from R = 0 to R = 5. The values of χm used
are χm = iπ

30 , i = 1, . . . , 30.
As expected, increasing the radius R leads to a decrease of

the normalized packet delay (as sojourns become shorter), and
an increase of the normalized packet cost (as transmissions be-
come more frequent). The effects of increasing the maximum
deviation χm are mixed. When the radius is large, it is best to
use large values of χm. The intuitive explanation is that, since
the packets mostly rely on wireless transmissions, the direction
a node is moving is not so important, and so it makes sense
to use all nodes available, so that the transmission costs are
minimized. On the other hand, when the radius R is small,
it is best that small values of χm are used. Indeed, when R
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Fig. 4. Delay-Cost plots of Rule I for the case of the circular disk.

is small, packets travel to their destination mostly by physical
transfer, spending (on the average) a lot of time at each relay,
so it is best to avoid relays traveling in the wrong direction.

Two points on the delay-cost plane are of particular interest.
The first is the point B = (1, 0) achieved when R → 0 and
χm → 0. In this limiting case, our forwarding rule dictates that
the packet should find a node moving in the exact direction of
the destination, and stay with that node forever, thus traveling
with a cost Cp = 0 and a delay Dp = 1

vn
= 1. The second

point is the one to which the pair (Dp, Cp) converges as the
radius R→∞, for χm = π. It is numerically established that
this point A ' (0, 1.2732). Intuitively, in this limit the packet
aggressively gets transmitted from node to node, without being
physically transferred at all.

An interesting result is that no combination of parameters
R and χm leads to a delay-cost pair below the line connecting
points A and B. This line is also plotted in Fig. 4, and
describes the set of delay-cost pairs achievable by a time
division between the two extreme strategies associated with
each of these points. Therefore, if we limit ourselves to Rule
I, and are only free to select R and χm, it is optimal to use
time division between the two extreme strategies.

In order to measure the effects of the First Order Approxi-
mation, we also evaluated Rule I by simulation. We placed N
nodes in a square torus of side L, moving along straight lines
with speed vn, for time T . At the start of the simulation each
node has a single packet that must travel towards a distinct
direction, different for each packet. We execute Rule I for all
packets, and calculate the resulting average (over all packets)
normalized packet delay and cost.

In Fig. 5 we plot 10 resulting delay-cost curves. We set
N = 1000 and L = 1000, so that λ = 0.001, and also vn = 1,
T = 1000. Each curve is created by keeping χm fixed and
increasing R from R = 5 to R = 100. The values of χm
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Fig. 5. Simulation (continuous lines) vs. analysis (dash-dotted lines), Rule I.

used are π
10 ,

2π
10 , . . . , π. We also plot the delay-cost curves

derived using the analysis, for the same parameters. The two
sets of curves match particularly well in the low-delay regime.
In the high-delay regime, the match is not as good, but we
attribute this mostly to the fact that the simulation results are
based on smaller numbers of hops, and so are not as accurate.
However, the overall match between simulation and analysis
is encouraging.

Finally, we present simulation results for Rule II, and for
the same set of parameters. In Fig. 6 we plot the following,
for the environment of Fig. 5: (i) the Pareto optimal curve of
Rule I, over all combinations of the parameters R,χm using
analysis, (ii) the same Pareto optimal curve using simulations,
and finally (iii) the Pareto optimal curve of Rule II, over all
combinations of the parameters a, b, R, using simulations. The
Pareto optimal curves of each protocol describe all delay-cost
pairs that are achievable for some combination of parameters,
and for which there is no achievable delay-cost pair with
strictly better delay and cost. The Pareto optimal curves
are calculated numerically, by an exhaustive search over the
complete parameter space of each case.

Rule II performs better than Rule I, due to the more refined
manner in which it selects relays. In fact, part of the Pareto
optimal curve of Rule II lies below the time division curve
connecting the points A and B. Therefore, there are choices
for the parameters of Rule II such that this rule performs
better than any time division between the two strategies
corresponding to points A and B.

VIII. CONCLUSIONS AND FUTURE WORK

Our contribution is twofold: Firstly, we introduce a novel,
abstract stochastic geometry setting that is amenable to anal-
ysis and captures the fundamental tradeoff that exists in all
mobile wireless delay-tolerant networks between the packet
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Fig. 6. Pareto optimal curves of Rule I (analysis and simulation) and Rule II
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delivery delay (expressed by the normalized packet delay
Dp) and the aggregate transmission cost (expressed by the
normalized packet cost Cp). This tradeoff has already been
identified in the study of numerous protocols proposed recently
that combine geographic with delay-tolerant routing [1], [2],
[3], [4], [5], [6], [7].

Secondly, we apply this framework to calculate Dp and
Cp for Rule I, by both analysis and simulation, and Rule II,
by simulation. Due to the high complexity of the problem,
an approximation is used in the analysis, but simulations
show that this approximation affects our analytical results
only modestly. As expected, Rule II, which takes into account
the directions of travel of the current packet holder and the
relay candidates, is superior. It is interesting to note, however,
that, although this rule is quite elaborate, it fails to achieve
delay-cost pairs that are significantly better than pairs that
are achieved by a rudimentary time division between two
simplistic strategies, one based only on physical transport and
one based only on wireless transmissions. In light of this result,
designers of related practical protocols should verify that any
elaborate rule they propose will indeed perform better than
time divisions similar to the aforementioned.

Our future work has two, to some extent conflicting direc-
tions. The first one is towards bringing our abstract stochastic
setting closer to reality. For example, it is possible to perform
analysis using (i) alternative cost models that better capture
reality and (ii) more realistic mobility models under which
nodes occasionally change their speed and direction of travel,
selecting them from a (possibly non-uniform) distribution that
is derived from the underlying environment.

The second direction is towards strengthening our analytical
results. For example, calculating analytically, for a wider range
of forwarding rules, the (Dp, Cp) pairs they achieve, either

without approximations (which appears to be a formidable task
unless we consider very specific cases of forwarding rules),
or approximations less strong than the one adopted here. The
ultimate goal is to find all (Dp, Cp) combinations that are
Pareto optimal over all forwarding rules.
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