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Abstract—In this paper, we consider a multihop wireless net-
work, where Femto Base Stations (FBSs) act as relay nodes, and
are incentivized to carry traffic from a Macro Base Station (MBS)
to Macro Users (MUs). We first examine the the global problem of
jointly optimal allocation of traffic flow and transmission power
in the multihop wireless network. We then examine a game in
which selfish and strategic relays submit charging functions to the
source and choose transmission powers over a MAC channel from
the relays to the user. Relay charging functions are considered
which yield efficient allocation at the Nash Equilibrium (NE) of
the game. We observe that for efficiency, relays should be taxed
for the interference it creates to other relays. We also observe
that inefficient equilibria occur when the charging function is a
function only of the traffic flow rate through the relay. Numerical
studies demonstrate the variation of inefficiency with network
structure.

I. INTRODUCTION

Due to their ability to bring about massive spatial reuse

of frequency, small cell base stations such as Femto Base

Stations (FBS) or Pico Base Stations (PBS) are increasingly

important for improving network capacity. At the same time,

FBSs also give better data rate to end users due to short

transmission range and fewer users per cell. FBSs are normally

deployed in indoor home or office environments owned or

rented by second parties other than the service provider, and

are normally underutilized. One way to better utilize the

capacities of FBSs is to employ the FBSs as relays [1]. In

this scenario, FBSs carry traffic from the Macro Base Station

(MBS) to Macro Users (MUs), in addition to serving Femto

Users (FUs). The relaying generates revenue for the owner of

the FBSs. Moreover, the relaying extends the coverage of FBSs

to outdoor environments [2], thereby reducing the burden on

the MBS.

Incentives play a large role in reconciling the objectives

of selfish and strategic nodes to the global objectives of the

network, which may include the efficient allocation of network

resources [3]. In [4], a pricing game is considered within a

multi-hop relay network where link cost functions depend only

on the traffic flow rate. Each relay submits to the Source

a charging function and a demand for a traffic share. The

paper [5] investigates pricing games with both complete and

incomplete information within multihop wireless networks,
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without taking into account the interference coupling between

relays. For the complete information case, it is shown that all

NE’s are efficient and that there exists an efficient NE where

each relay uses a charging function which depends linearly on

the traffic flow rate. In [6], cooperative relaying is considered

where the relays are incentivized to forward packets within a

Stackelberg game framework. A bargaining game with utility

requirements is considered for the same scenario in [7]. In

another relevant work, the authors of [8] proposed, within a

wireless ad hoc network setting, an asynchronous pricing al-

gorithm in which each user cooperatively announces a price to

which all users respond by adjusting their transmission powers.

The price announced by each user reflects its sensitivity to the

interference created by other users.

We consider a wireless network scenario where an MBS

(Source) uses multiple relay nodes owned by some second

parties to give better service to the MUs. A specific instance

of the problem is given in Figure 1, with an MBS, two relays

and an MU. The MU at the cell edge is better served using

the two relays, an FBS and a PBS, which are rewarded by

the MBS for forwarding the traffic to the MU. In this wireless

Fig. 1. A Pico Base Station (PBS) and a Femto Base Station (FBS) acting as
relays for the Macro Base Station (MBS) to give service to user at the cell
edge.

978-3-901882-63-0/2014 - Copyright is with IFIP

Fifth International Workshop on Indoor and Outdoor Small Cells 2014

125



network setting, selfish and strategic relays engage in a game

where each relay strategize on the charging function they

submit to the source, as well as the transmission power to

the end user. The transmissions on different wireless links in

this multihop network interfere with each other, with the link

capacities dependent on the power allocation on all links. Each

relay designs its best response based on its cost, according to

the traffic flow rate and transmission power allocated by the

source, as well as the charging functions and power selections

of the other relays. We examine the Nash Equilibria (NE)

which result from this game, which may not yield an efficient

resource allocation from a social welfare standpoint. We use

the Price of Anarchy (PoA) [9] as the metric to characterize the

inefficiency of the resource allocation at the NE, as compared

with the socially optimal allocation.

Within the game setting discussed above, we introduce the

concept of interference tax which the relays should pay to an

external regulator as compensation for the interference they

create to other relays. We prove that inefficient NE occur when

the price is a function only of the traffic flow rate through

the relays. On the other hand, we prove that there exists at

least one NE which is efficient when the charging function

depends on both the traffic flow rate and the transmission

powers from the relays to the destination. Our result highlights

the importance of interference coupling among the relays

in determining network resource allocation in a selfish and

strategic context.

II. MODEL

We consider a network in which a Source transmits to

a destination through {1, · · · , i, · · ·N} parallel relays. The

model is depicted in Figure 2. The cost on link (s, i) from

Source s to relay i, denoted by Jsi, is the sum of two

components: the congestion cost Dsi and the power cost

αsPsi. The congestion cost Dsi is a function of the capacity

Csi of link (s, i), and the traffic flow rate Fi on link (s, i). The

power cost αsPsi consists of the balancing parameter αs ∈ �+

and the transmission power Psi from Source s to relay i.

Unlike the case for wireline networks, the capacity of a

wireless link is not fixed, but rather depends on the channel

conditions and the transmission powers. The joint power and

rate allocation for the links from the Source to the relays is

carried out by the Source.

For the case of spread spectrum CDMA, the Shannon

capacity Csi is given by

Csi(Ps) =
Rs

2
log

(
1 +

KhsiPsi∑
j �=i hsjPsj + σ

)
,

where Ps ≡ (Ps1, . . . , PsN ), hsi is the channel gain from

Source s to relay i, Rs is the symbol rate, K is the code gain,

and σ is the noise power at the receiver of i. Since the code

gain K is typically high, we assume that the operation is in the

high SINR regime, where the capacity can be approximated
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Fig. 2. Multihop wireless network model with N relays. Fi is the flow rate
on link i; Psi is the transmission power from Source s to relay i; Pi is the
transmission power from relay i to destination d; Dsi is the congestion cost

from s to i; Di is the congestion cost from i to d; B
(1)
i is the payment paid

by s to relay i; Regulator R receives the payments B
(2)
i from the relays.

by

Csi(Ps) ≈ Rs

2
log

(
KhsiPsi∑

j �=i hsjPsj + σ

)
. (1)

This approximation, along with the following assumption,

facilitates the convexification of the optimization problems

arising later in this paper.

Assumption II.1. The congestion cost Dsi(Csi, Fi) is a twice

differentiable, convex and increasing function of Fi, and a

twice differentiable, convex and decreasing function of Csi.

Let the payment paid by the Source to the relay i be Bi.

As discussed below, Bi can be a function of the flow rate Fi

carried by relay i, as well as other variables. Thus, the Source

incurs the total cost

Js(Ps,F) =
N∑
i=1

[Dsi(Csi(Ps), Fi) + αsPsi +Bi] . (2)

We assume that the source-to-relay communication channel

is orthogonal to the relay-to-destination communication chan-

nel. Let P ≡ (P1, . . . , PN ), where Pi is the transmission power

from relay i to the destination. The capacity of the wireless

link from relay i to the destination is approximated by

Ci(P) ≈ Rs

2
log

(
KhiPi∑

j �=i hjPj + σ

)
,

where hi is the channel gain from relay i to the destination, and

σ is the noise power at the destination receiver. Therefore, each
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relay i has a total cost of transmission Ji to the destination,

given by

Ji(P, Fi) = Di(Ci(P), Fi) + αiPi −Bi. (3)

where Di satisfies Assumption II.1 and αi is a balancing

parameter. Note that the total cost over parallel path i is given

by

Dsi(Csi(Ps), Fi) +Di(Ci(P), Fi) + αsPsi + αiPi. (4)

The power allocation from the Source to the relays is

accomplished centrally at the Source, whereas the transmission

powers from the relays to the destination are selected in a

distributed manner by the relays. Each relay i competes with

all other relays by selecting the payment function Bi and

transmission power Pi, in order to maximize its net profit,

which is equal to the revenue generated by forwarding a share

of the traffic from the Source to the destination, minus the

power expense required for forwarding the traffic. This is the

basis of the game among the relays.

All relays should gain positive net utility by participating

in the game, a condition usually known as the Individual

Rationality (IR) property [10]. The IR constraint in the relay

problem is given by: Ji(Pi) ≤ 0 for all i = 1, . . . , N .

The IR constraint is satisfied through the following process.

First, the relays submit charging functions. Then, the source

decides on the optimal flows in response to these payment

functions, without taking into account the IR constraint on

each relay. Given this, some relays may find that they cannot

find a positive finite power which will ensure negative cost,

for the flow given by the source and power chosen by other

relays. This might happen, for instance, if the channel gains

from those relays to the destination are very low compared

to others. In this case, these relays will opt out of the game

and will report this to the source. Subsequently, the source will

reallocate its flows excluding the non-participating relays. This

process continues until a stable subset of relays satisfying the

IR constraint emerges.

A. Joint global optimization of power and flow

The aggregate network cost is the sum of the costs on all

parallel paths. Therefore, the global optimization for obtaining

the socially optimal (efficient) operating point is given by

min
Ps,P,F

N∑
i=1

[Dsi(Csi(Ps), Fi) + αsPsi +Di(Ci(P), Fi) + αiPi]

s.t.
∑
i

Fi = F , Fi ≥ 0, Pi ≥ 0, Psi ≥ 0, for all i

This problem can be shown to be jointly convex in the log

power variables Ss = log(Ps), S = log(P), and the flow vector

F using the high SINR assumption and Assumption II.1. After

the log transformation, the global optimization becomes

min
Ss,S,F

N∑
i=1

[
Dsi(Csi(Ss), Fi) + αse

Ssi +Di(Ci(S), Fi) + αie
Si
]

s.t.
∑
i

Fi = F , Fi ≥ 0 ∀ i.

The above problem leads to the following KKT conditions

for global optimality. For each i = 1, . . . , N ,

∂Dsi

∂Fi
+

∂Di

∂Fi

∣∣∣
F=Fg

= dg if F g
i > 0,

∂Dsi

∂Fi
+

∂Di

∂Fi

∣∣∣
F=Fg

> dg if F g
i = 0, (5)

∂Dsi

∂Ssi
+
∑
j �=i

∂Dsj

∂Ssi
+ αse

Ssi

∣∣∣
Ss=Sg

s

= 0, (6)

∂Di

∂Si
+
∑
j �=i

∂Dj

∂Si
+ αie

Si

∣∣∣
S=Sg

= 0, (7)

where Pg
s ,Pg,Fg are the globally optimal source transmission

power vector, relay transmission power vector, and flow rate

vector, respectively, and dg is a constant which corresponds

to the optimal operating point.

III. PRICING GAME

In this section, we analyze the pricing game in which the

relays compete with each other for the traffic allocation from

the Source by strategizing on the charging function and the

power of transmission to the destination. Each relay sends a

charging function Bi to the Source, which performs the flow

allocation and power allocation to the relays according to the

charging function.

As a first step, as in [5], we assume that the Source is

charged as a function of the flow rates it sends through the

relays, i.e., the charging functions are given by Bi(Fi). The

Source optimization problem is to minimize the cost given by

(2), i.e.,

min
Ps,F

∑
i

(Dsi(Csi(Ps), Fi) + αsPsi +Bi(Fi)), (8)

s.t.
∑
i

Fi = F , Fi ≥ 0 ∀i and Psi ≥ 0 ∀ i

The Source decides on the flow and power vectors on each

link to the relays by solving the above problem for every set

of charging functions given by the relays. This problem can

be shown to be jointly convex in high SINR region, in the log

power variables Ss = log(Ps) and the flow vectors F if the

payment is a convex function of the flow. The Source KKT

conditions are:

∂Dsi

∂Fi
+

∂Bi

∂Fi

∣∣∣
F=F∗

= d∗ if F ∗
i > 0,

∂Dsi

∂Fi
+

∂Bi

∂Fi

∣∣∣
F=F∗

> d∗ if F ∗
i = 0, ∀i (9)

∂Dsi

∂Ssi
+
∑
j �=i

∂Dsj

∂Ssi
+ αse

Ssi

∣∣∣
Ss=S∗

s

= 0, ∀i (10)
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where P∗
s = eS∗

s and F∗ give the solution of the Source opti-

mization and d∗ corresponds to the Source optimal operating

point.

In the associated game, relays strategize using the charging

functions, B, and the transmission power to the end user,

P. The relays are implicitly competing over the transmission

powers due to the interference they cause to each other. The

relays also compete for the traffic flow using the payment they

charge from the Source. Due to the coupling in the cost term

Di(Ci(P),Fi), we can think of the relays as deciding on the

charging function and the transmission powers at the same

time. The strategy space of each relay is infinite dimensional

in general.

The NE of this game can be obtained from the intersection

of the best responses of all relays, given by

(S∗
i ,B∗

i ) ∈ arg min
Si,Bi

Ji(Si, Bi, S−i,B−i), ∀ i. (11)

Definition III.1. A NE is efficient if the flow rate allocation
and power allocation at the NE solves the global optimization.

In the multihop wireless problem we consider, an NE is

efficient when S∗ = Sg,F∗ = Fg, S∗
s = Sg

s , where (S∗
s,F∗)

is the solution to the source optimization problem when the

relays present the NE charging functions B∗ from (11) to the

Source. The following Proposition shows that this situation

cannot obtain when the charging function depends only on

the traffic flow rate.

Proposition III.2. A Nash Equilibrium of the pricing game
cannot be efficient when the relay charging functions depend
only on the traffic flow rate carried by the relays.

Proof: Suppose that there exists an efficient Nash equi-

librium S∗,B∗ with the charging function Bi(Fi). The Source

solves the following optimization problem to find the Source

optimal power and flow

(S∗
s,F∗) = argmin

Ss,F

∑
i

(Dsi(Csi(Ss), Fi) + αse
Ssi +B∗

i (Fi))

s.t.
∑
i

Fi = F , Fi ≥ 0 ∀i

This results in the following KKT conditions.

∂Dsi

∂Fi
+

∂B∗
i

∂Fi

∣∣∣
F=F∗

= d∗ if F ∗
i > 0,

∂Dsi

∂Fi
+

∂B∗
i

∂Fi

∣∣∣
F=F∗

> d∗ if F ∗
i = 0, ∀i (12)

∂Dsi

∂Ssi
+
∑
j �=i

∂Dsj

∂Ssi
+ αse

Ssi

∣∣∣
Ss=S∗

s

= 0, ∀i (13)

Once the relays receive the allocation S∗
s,F∗ from the Source,

they minimizes the relay cost in equation (3) to find the best

response.

S∗
i = argmin

Si

Di(Ci(Si, S∗
−i), F

∗
i ) + αie

Si −B∗
i (F

∗
i ) ∀i.

(14)

The KKT conditions for the relay optimization w.r.t. S which

give the NE S∗ are:

∂Di(Ci(Si, S∗
−i), F

∗
i )

∂Si
+ αie

Si

∣∣∣
S=S∗

= 0, ∀i (15)

From the Definition III.1, for the NE point to be efficient, the

solution of (5) (6) and (7) and the joint solution of (12),(13),

and (15) should be the same. We observe that it is not enough

to set
∂B∗

i

∂Fi

∣∣∣
F=F∗

=
∂Di

∂Fi

∣∣∣
F=Fg

, ∀i

as in [5]. Indeed, we can see from the KKT conditions w.r.t.

S in (7) and (15), that the resulting solutions are different, as

the second (interference) term in (7) is not accounted for in

(15). Therefore, the KKT conditions of the NE solution and

globally optimal solution are not aligned. In general, S∗ 	=
Sg,F∗ 	= Fg, S∗

s 	= Sg
s and the NE cannot be efficient.

A. Pricing Function for Efficient NE

We now consider an alternative approach. Assume that

the charging function depends on both the traffic flow rate

forwarded by the relay and the power the relay spends for the

relaying, i.e. Bi(Fi, Pi). Specifically, we split the charging

function as follows: Bi(Fi, Pi) = B
(1)
i (Fi) − B

(2)
i (Pi). The

payment B
(1)
i (Fi) is paid by the Source to the relay, while

the payment B
(2)
i (Pi) is paid by the relay to a centralized

controller.

Theorem III.3. There exists an efficient NE in the pricing
game where the charging function is given by Bi(Fi, Si) =

B
(1)
i (Fi)−B

(2)
i (Si), satisfying

∂B
(1)∗
i

∂Fi

∣∣∣
F=F∗

=
∂Di(P, Fi)

∂Fi

∣∣∣
F=Fg

, ∀i (16)

and

∂B
(2)∗
i

∂Si

∣∣∣
S=S∗

=
∑
j �=i

∂Dj(P, Fj)

∂Si

∣∣∣
S=Sg

, ∀i. (17)

where (S∗, B(1)∗, B(2)∗,F∗) is the NE and (Sg,Fg) is the
global optimum.

Proof: A standard result in game theory (Theorem 4.4,

p.176, in [11]) for convex cost functions which satisfy As-

sumptions II.1, proves that the game we consider admits a

NE.

Given the payment charge B(1)∗(Fi) from the relays, the

Source cost becomes

Js =
∑
i

(Dsi(Csi(Ss), Fi) + αse
Ssi +B

(1)∗
i (Fi)). (18)
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The KKT conditions for Source optimization are

∂Dsi

∂Fi
+

∂B
(1)∗
i

∂Fi

∣∣∣
F=F∗

= d∗ if F ∗
i > 0,

∂Dsi

∂Fi
+

∂B
(1)∗
i

∂Fi

∣∣∣
F=F∗

> d∗ if F ∗
i = 0, ∀i (19)

∂Dsi

∂Ssi
+
∑
j �=i

∂Dsj

∂Ssi
+ αse

Ssi

∣∣∣
Ss=S∗

s

= 0, ∀i (20)

where F∗, S∗
s is the source-optimal solution. With this alloca-

tion from the Source, the relays carry out their optimizations

S∗
i = argmin

Si

Di(Ci, Fi) + αie
Ssi

− B
(1)∗
i (Fi) +B

(2)∗
i (Si), ∀i (21)

The KKT condition for relay optimization is,

∂Di

∂Si
+ αie

Si +
∂B

(2)∗
i

∂Si

∣∣∣
Si=S∗

i

= 0, ∀i (22)

In order to obtain an efficient NE, from (5) and (19), we

obtain the condition in (16). From (7) and (22), we obtain

the condition in (17).

The relays receive payments from the Source for the traffic

flow they carry, and are charged for the interference they

create to other relays. We introduce an outside regulator which

collects the interference tax payments from the relays. As an

instance of the pricing given in (17), we propose logarithmic

pricing on power for the interference tax. The logarithmic

pricing is also similar to the universal pricing proposed in [12]

for a different setting other than multihop wireless networks

and without flow variables. The authors in [12] show that

logarithmic pricing in power is universal pricing for systems

with certain class of interference coupled utility functions. We

set

Bi(Fi, Pi) = aiFi − bi log(Pi).

According to (16) and (17), the coefficients are given by,

ai =
∂Di

∂Fi

∣∣∣
F=Fg

, ∀ i (23)

and

bi =
∑
j �=i

∂Dj

∂Si

∣∣∣
S=Sg

, ∀ i. (24)

Note that due to the high SINR assumption, Pi > 1 for any

relay i, and the logarithmic power price is positive.

B. PoA When Price is a Function Only of the Flow

We now examine the inefficiency of the NE when the

charging function is a function only of the traffic flow rate

through the link.

Definition III.4. The Price of Anarchy (PoA) for an NE
denoted by (P∗

s,P∗,B∗,F∗) is defined as

PoA =
Jg(P∗

s,P∗,F∗)
Jg(Pg

s ,Pg,Fg)

where Jg denotes the global cost and (Pg
s ,Pg,Fg) is the

globally optimal solution.

For interference coupled systems, we have observed that

efficiency loss results when the charging function is a function

only of the traffic flow rate, as in the case of [5]. We now

consider a two-relay example with charging functions which

depend linearly on the traffic flow rate, i.e. Bi(Fi) = aiFi,

where ai is given by (23). In this case, P ∗
s1, P

∗
s2, F

∗
1 are

obtained from (12) and (13), while P ∗
1 , P

∗
2 result from the

following relay KKT conditions:

∂D1(S, F ∗
1 )

∂S1
+ α1S1

∣∣∣
S1=S∗

1

= 0, (25)

∂D2(S, F ∗
1 )

∂S2
+ α2S2

∣∣∣
S2=S∗

2

= 0. (26)

Since it is not easy to solve these equations analytically, we

solve the equations numerically. The resulting PoA is plotted

in the next section.

IV. NUMERICAL SIMULATION

We numerically simulate the range of values of PoA for

the two-relay example described in previous section. The F
parameter is fixed at 6. First, the values a1 and a2 are selected

as the marginal cost w.r.t. to the flows at the globally optimal

point. Then, the source optimization problem is solved using

a1 and a2 to find the flow and source power vector at the NE

point. At the values of F1 and F2 given by the source optimum,

the NE power vectors are found by the relays individually. The

power vectors are different from the global point and give rise

to PoA values as shown in Figure 3. The channel parameters

hs2 = h2 are set to 5. The parameters h1 and hs1 are varied

from 5 to 180. We stop at h1 = hs1 = 180 since it is observed

that after 180 the link from Relay 2 to the destination cannot

have positive capacity, and due to the IR constraint, Relay 2

opts out from the game. The optimal flow allocation at the NE

is also shown in Figure 3.

As the link to relay 1 has higher channel gain compared

to the link to relay 2, there is more flow allocated to relay

1. We can observe that the PoA increases as the channel

gains become dissimilar. In the asymmetric case, when the

Source finds the optimal flow, it does not take into account the

asymmetry of the channel gains from relays to the destination,

since the price is only a function of the flow. On the other

hand, the global allocation is affected by the asymmetry of the

channel gains from relays to the destination. For this reason,

there is a higher PoA when the channel gains from the relays

to the destination are asymmetric. This is numerically shown

in Figure 3.

Finally, we show the variation of PoA with the number of

relays N in Figure 4. The parameters are selected as above

with hs1 = h1 = 20 and hs2 = h2 = 5, with the number of

relays varying up to 20. We can see that the PoA increases

as the number of relays increases.
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Fig. 3. The PoA and path flows as functions of the channel gain in path 1.

V. CONCLUSION

A multihop wireless network is considered in which FBS

or PBS relays receive payment from the MBS in return for

traffic they forward to the MUs. We first examined the global

problem of jointly optimizing power and rate allocation in the

multihop wireless network. We then analyzed a pricing game

among the relays and studied the efficiency of the NE for

different choices of charging functions. Unlike the wireline

case, the charging function for efficient allocation is seen to

be a function of the transmission power as well as the traffic

flow. We proposed a power price in the form of an interference
tax which should be collected by an external regulator from

the relays. The values of PoA when the charging function

is a function only of the flow are numerically obtained. We

observed, using numerical analysis, that the PoA increases

with a higher number of relays and asymmetry in the network.
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