[go: up one dir, main page]

Logo des Repositoriums
 
Konferenzbeitrag

Personenwiedererkennung mittels maschineller Lernverfahren für öffentliche Einsatzumgebungen

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Die erscheinungsbasierte Personenwiedererkennung in öffentlichen Einsatzumgebungen ist eines der schwierigsten, noch ungelösten Probleme der Bildverarbeitung. Viele Teilprobleme können nur gelöst werden, wenn Methoden des maschinellen Lernens mit Methoden der Bildverarbeitung kombiniert werden. Das entwickelte Verfahren zur erscheinungsbasierten Personenwiedererkennung wird exemplarisch anhand zweier Einsatzszenarien — Videoüberwachung und Robotik — evaluiert. Die Qualität des umgesetzten Verfahrens wird anhand von zwölf Kriterien charakterisiert, die einen Vergleich mit biometrischen Verfahren ermöglichen. Durch den Einsatz maschineller Lernverfahren für alle Abarbeitungsschritte der erscheinungsbasierten Personenwiedererkennung wird in den betrachteten unüberwachten, öffentlichen Einsatzfeldern eine Erkennungsleistung erzielt, die sich mit biometrischen Verfahren messen kann.

Beschreibung

Eisenbach, Markus (2020): Personenwiedererkennung mittels maschineller Lernverfahren für öffentliche Einsatzumgebungen. Ausgezeichnete Informatikdissertationen 2019. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-775-3. pp. 59-68. Schoss Dagstuhl, Deutschland. 17.-20. Mai 2020

Schlagwörter

Zitierform

DOI

Tags