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A model is proposed to simulate top-of-atmosphere (TOA) observations in the visible to near-infrared (NIR)
spectral range, over a pseudo-invariant calibration site, the so-called Libya-4 site. The model is based on a fully
physical radiative transfer model simulating the coupling between a realistic atmosphere and a spectral surface
Bidirectional Reflectance Distribution Function (BRDF) model parameterised by 4 free parameters. At first, the
model is ‘calibrated’ on 4 years of MERIS observations by inverting the 4 free parameters of the surface BRDF
model that provide the best fit to the MERIS observations. The model mimics the MERIS TOA observations
with a precision of approximately 1% RMSE outside water vapour and O2 absorption features. The inverted
BRDF model parameters obtained at MERIS spectral bands are then spectrally interpolated and used as input
to the radiative transfer model to simulate observations from ATSR-2, AATSR, A-MODIS, MERIS, POLDER-3 and
VEGETATION-2 over the 2002 to 2012 period. Depending on the spectral band considered, AATSR radiometry ap-
pears 2% to 3% above themodel ‘calibrated’ onMERIS radiometry, A-MODIS is 0% to 3% below, POLDER-3 is 2% to
4% below and VEGETATION-2 about 4% below. ATSR-2 data during the 2002 to early 2003 period are almost 10%
below their simulations. Temporal trends between simulations and observations are also measured for all sen-
sors. The smallest linear trends are observed for theMERIS 3rd reprocessing data (below 1%/decade). The tempo-
ral trends obtained from all sensors against the coupled surface-atmosphere model are in line with expected
residual errors of instrument degradation model used in temporal extrapolation: larger in blue than in the NIR.
The combined temporal trends from all sensors tend to demonstrate that the Libia-4 site is radiometrically stable
in the visible to the NIR to better than 1%/decade for the 2002–2012 period, thus quantitatively confirming that it
is a terrestrial target particularly adequate for the assessment of the temporal stability of Earth Observation
sensors.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, many space borne optical sensors have been
globally imaging the Earth radiation field at the kilometric spatial reso-
lution scale to serve both scientific and operational applications. Both
types of application generally require that these space measurements
be traceable to the radiometric standards of the Système International
(SI). Such traceability cannot be ensured only by means of exhaustive
on-ground instrument characterisation and calibration. The harsh envi-
ronmental constraints imposed by the launch and in orbit environments
inevitably lead to sensor performance degradation and consequently to
loss of traceability as the instrument radiometry cannot be related any-
more to the SI sources available on ground. Evenwhen onboard calibra-
tion devices, such as solar diffuser plates or reference lamps, are present
on the same platform to ensure radiometric traceability to on ground SI

standards, these devices can suffer from similar performance degradation
issues. Each sensor performance is generally affected differently in the
course of the its lifetime by space environment constraints. Such perfor-
mance issues are at best partially accounted for and sometimes not iden-
tified in the instrument degradation models put in place to compensate
them. This not only leads to a loss of radiometric traceability at individual
sensor level but also to an overall loss of radiometric consistency between
sensors and by extension of the global Earth Observation system.

Space agencies and private operators have increasingly relied on vi-
carious calibration methodologies and radiometric intercomparison
methodologies to identify and to recover from such loss of radiometric
traceability in the sensor lifetime. To support these methodologies, a
set of six desert sites (referred to as Algeria 3, Algeria 5, Libya 1, Libya
4, Mauritania 1 andMauritania 2) called the Pseudo Invariant Calibration
Sites (PICS). They were selected by the Committee on Earth Observation
Satellites (CEOS) among 20 sites originally identified by Cosnefroy,
Leroy, and Briottet (1996) as desert sites suitable for “multitemporal,
multiband, or multiangular calibration of optical satellite sensors”. All sites
are located in the Sahara andwere chosen chiefly for their potential radio-
metric stability.
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The Sahara region radiometric stability should however not be taken
for granted. Its climate changed rapidly from an arid climate to a humid
climate in the early Holocene (~8500 BC) and then back to today's dry
climate (~5000 BC) in response to climate forcing induced by solar in-
solation changes due to the Earth precession and possibly a non-linear
response to it (deMenocal et al., 2000; Kuper & Kröpelin, 2006). This
region of the globe is subject to the recurrent so-called African Humid
Periods, following a 20,000 year precession cycle, leading to significant
change in particular in vegetation cover and atmospheric regime (see
deMenocal & Tierney, 2012). The growing evidence for contemporary
climate change and the past record of climate variability of this region
invite to caution when assuming its radiometric stability. Some of the
sites originally identified by Cosnefroy et al. (1996) have also recently
been subject to human induced changes such as the development of
oil extraction fields. A quantitative estimate of the PICS temporal stabil-
ity is necessary if they are to be used to diagnostic and correct for instru-
ment radiometric degradation.

The present paper focuses on one of the 6 PICS, the Libya-4 site.
This site has been extensively used for radiometric intercomparisons
of Earth Observation (EO) sensors and their vicarious calibration
(e.g., Lachérade, Fougnie, Henry, & Gamet, 2013; Smith & Cox, 2013;
Sterckx, Livens, & Adriaensen, 2013). The present study proposes a
model of the spectral and angular variability of the TOA reflectance
over the site at a 1 nm spectral resolution in the visible to Near Infrared
(NIR). This model is used as a radiometric reference against which ob-
servations from various space sensors are compared. The originality of
the proposedmodelling lies in that it is based on a fully physical descrip-
tion of the radiative transfer scattering and absorption processes on the
4 St parameters of the radiation, by a Monte Carlo model, at high spec-
tral resolution (1 nm),with a realistic atmosphere and a full description
of the surface-atmosphere coupling via a hyperspectral Bidirectional
Reflectance Distribution Function (BRDF) model. Such spectral resolu-
tion allows to simulate observations from sensors with similar spectral
responses and compare them whilst implicitly taking into account the
slight differences between their spectral responses and thus constitutes
an alternative to the use of spectral bands adjustment factors derived
from hyperspectral sensor data (e.g. Chander et al., 2013).

The first step of the approach is to invert the 4 free parameters of a
surface spectral BRDF model from 4 years of the ENVISATMEdium Res-
olution Imaging Spectrometer (MERIS) observations over the site. This
process can be described as the ‘calibration’ of the model output onto
the MERIS measurements. The BRDF model parameters inverted in
MERIS spectral bands are then spectrally interpolated at a 1 nm spectral
sampling and used as input to the radiative transfer model in order to
simulate full time series of observations from the EO sensors: ATSR-2
(on board ERS-2), AATSR (on board ENVISAT), MODIS (on board
AQUA), MERIS, POLDER-3 (on board PARASOL) and VEGETATION-2
(on board SPOT-5). Finally, the question the radiometric temporal sta-
bility of the Libya-4 site is addressed and for the first time a quantitative
upper estimate of its decadal stability is estimated from the analysis of
all sensors radiometric temporal trends.

2. Definition of the reference dataset of TOA reflectance over Libya-4

MERIS L1 data from the 3rd reprocessing covering a 4 year period
from 01/01/2006 to 31/12/2009 were extracted from the freely avail-
able Database for Imaging Multi-spectral Instruments and Tools for
Radiometric Intercomparison (DIMITRI) (http://www.argans.co.uk/
dimitri/). These data consist of TOA reflectances averaged over the so-
called Libya-4 region of interest (ROI). The Libya-4 site is defined as
per Cosnefroy et al. (1996), i.e., a latitude/longitude box between
28.05 N–29.05 N and 22.89 E–23.89 E. A description of the site and its
climate can be found in Cosnefroy et al. (1996). The radiometric spatial
variability of the Libyan desert is such that the choice of the ROI centre
and ROI size has a significant impact on the absolute TOA radiometric
level of the time series of sensor observations. Previous studies aiming

at intercomparing sensors over the so-called Libya-4 site have made use
of a ROI centred at about the same location than Cosnefroy et al. (1996)
than the present study but with different ROI sizes (e.g., Lachérade et al.,
2013; Smith & Cox, 2013; Sterckx et al., 2013). One can distinguish two
typical ROI sizes being used in such studies. Firstly, the ROIs having
size of about 1° latitude and longitude; they are best suited for inter-
comparison of sensors with spatial resolution of the order of 1 km as
they provide a large number of TOAmeasurements (about 1000 pixels)
with a low associated standard deviation around 2%. Secondly, smaller
ROIs of size about 0.2° latitude and longitude; they are more likely to
be fully covered by the narrow swath of high spatial resolution sensors.
In the present study, the choice of the ROI first defined by Cosnefroy
et al. (1996) was driven by the fact that the sensors involved have
kilometric spatial resolutions.

The L1 data were corrected for the instrument smile effect (irradiance
correction only following Bourg, D'Alba, & Collagrande, 2008). They were
automatically cloud screened following theMERIS-GlobCarbon scheme as
per Plummer (2008). Data were further visually screened using
quicklooks to exclude acquisition with residual cloud contamination.
416 MERIS acquisitions are available after this data screening (see
Fig. 1). Cloud contamination over the site occursmore frequently during
the winter months resulting into more acquisitions being available for
low sun zenith angles (SZAs) than for high SZAs. To avoid over-
constraining the inversion of the surface BRDF model (described in the
next section) at low SZAs at the expense of high SZAs, a sub-selection of
200 of these cloud freeMERIS TOA observations is done at times random-
ly selected and uniformly spread across the 4-year period.

For each acquisition, the following data are automatically extracted
from the DIMITRI database: the mean TOA reflectance over ROI, the
standard deviation of the TOA reflectance within the ROI, the sun and
viewing direction zenith and azimuth angles (SZA, VZA, SAA, VAA),
the total columnar ozone (TCO) and the total column water vapour
(WV)). These TCO andWV available in the DIMITRI database correspond
to the meteorological data available in the MERIS L1 products. They are
data from the European Center for Medium-Range Weather Forecasts
(ECMWF) operational Numerical Prediction Weather (NWP) model.
They were substituted by the corresponding ECMWF ERA-Interim
reanalysis data (see description in Dee et al., 2011). These ERA reanalysis
meteorological data present several advantages:

1. They are generatedwith a singleNPWmodel throughout the entire re-
analysis period (1979 to present). In contrast the ECMWFNWP opera-
tion model has gone through 23 evolutions during the ENVISAT ERA.

2. They are generated with consolidated assimilated data.
3. They are generated on a Gaussian grid with an approximately uni-

form 79 km spacing compared to the 125 km spacing of the data
originally available with the ENVISAT data.

3. Retrieval of the surface BRDF model parameters

The retrieval of a surface BRDF model over Libya-4 is achieved by
minimizing the residual error between the previously described refer-
ence dataset of MERIS TOA reflectances and their simulations. The
TOA reflectance simulations are carried out with the MYSTIC radiative
transfer code.

3.1. The radiative transfer modelling: MYSTIC setup

MYSTIC was first described by Mayer (1999, 2000) as a forward
Monte Carlo for plane parallel atmospheres. It took part to the Interna-
tional Intercomparison of 3D Radiation Codes (see Cahalan et al., 2005).
The addition of a backward simulation mode and simulations in spher-
ical atmosphere are described in Emde and Mayer (2007). The model
has been further extended to simulate polarised radiation. These exten-
sionswere validated against exact solutions, benchmark results andmea-
surements by Emde, Buras, Mayer, and Blumthaler (2010). MYSTIC has
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further evolved as described in Buras andMayer (2011) and Emde, Buras,
andMayer (2011) to improve its efficiency in cloudy atmospheres and for
simulations at high spectral resolution. MYSTIC is freely available in its
1-D version from the libRadtran package (http://www.libradtran.org).

In this study, MYSTIC was operated in backwardmode and in vector
mode to provide the 4 St parameters of the radiation. In the following
sections, the choices made for its set up are presented and discussed.

3.1.1. Spectral parameterisation
MYSTIC was run with the pseudo spectral gaseous absorption

parameterisation of LOWTRAN 7 (Pierluissi & Maragoudakis, 1986)
adopted from the SBDART code (Ricchiazzi, Yang, Gautier, & Sowle,
1998). The spectral resolution of LOWTRAN 7 is 20 cm−1 FWHM (Full
Width at Half-Maximum) in averaged steps of 5 cm−1 in the spectral
range of 0 to 50,000 cm−1 or 0.2 μm to infinity. This corresponds
to a resolution of 0.32 nmat 400 nmand 2 nmat 1 μm. A single param-
eter band model (pressure) is used for molecular line absorption in
LOWTRAN 7. Separate band models and parameters for the absorbing
molecules are available for: H2O, O3, N2O, CH4, CO, O2, CO2, NO, NO2,
NH3 and SO2. These band model parameters were developed with
and based on degraded line-by-line spectra and validated against labo-
ratory measurements (see Abreu & Anderson, 1996; Pierluissi &
Maragoudakis, 1986). These bandmodels allow for an accurate descrip-
tion of absorption processes in radiative transfer calculations performed
at comparable or lower spectral resolution. The actual TOA simulations
of all space sensors in this study are done with a spectral sampling of
1 nm that does not justify using a gaseous absorption parameterisation
at higher spectral resolution than LOWTRAN 7 or using line-by-line
calculations.

These hyperspectral simulations are convolved with the sensor spec-
tral responses available in DIMITRI (and all originally obtained from the
respective space agencies).

1000 photons are assigned to each monochromatic simulations
resulting into typical photon noise of the order of 0.5% for the MERIS

412 nm band (10 nm band) down to about 0.2% in the MERIS NIR
bands (see Fig. 5).

3.1.2. Atmosphere parameterisation
The atmosphere is assumed plane parallel with a mid-latitude

summer atmosphere following Anderson, Clough, Kneizys, Chetwynd,
and Shettle (1986). This atmosphere profile description includes
trace gases profiles and default standard values for total column
content. For each sensor TOA simulation, the ozone and water va-
pour profiles are scaled to match the TOC and the WV content of
the ERA-Interim reanalysis fields at the sensor observation time. It
is important to note that this effectively implies that the atmosphere
used to simulate time series of sensor observations is temporally
variable (while the BRDF model described later is assumed time
invariant).

The aerosol profile and optical properties are chosen to follow
the so-called continental average model described in Hess, Koepke,
and Schult (1998). The composition of the continental average
model consists of a mixture of soot and insoluble and water-soluble
components.

The vertical distribution follows a 3-layer distribution. First, a 2-km
thick continental aerosols layers following an exponential profile
(scale height of 8 km, with a total aerosol optical thickness (AOT) of
0.151. Above this layer a 10 km thick layer of continental aerosol (with
slightly difference optical properties), with an optical thickness of 0.013
is added. The last layer is a stratospheric aerosol layer extending from
12 km to 35 km altitude with an optical thickness of 0.005. Furthermore,
the total aerosol optical thickness at all wavelengths is rescale by a fixed
factor in suchway that the total optical thickness of this three-layer aero-
sol vertical distribution amounts to 0.2 at 550 nm.

3.1.3. The BRDF model
The RPVmodel proposed by Rahman, Pinty, and Verstraete (1993) is

a parametric BRDF model representing BRDFs. It is represented by the

Fig. 1. In the top panel, theMERIS TOA reflectance in band 6 (620 nm) (in black). In blue, the acquisitions selected for the RPV parameter inversion and in red acquisitions selected several
times. In the bottom panel, the relative difference between the TOA reflectance and its mean value over the 4 years.
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product an amplitude ρ0 of three separate functions accounting for both
the illumination and viewing directions:

ρ θ0;θV ;Δϕ;ρ0; k;Θ;ρc

� �
¼ ρ0M1 θ0;θV ;k

� �
FHG g;Θð ÞH ρc;Gð Þ ð1Þ

Where

M1 θ0;θV ;k
� �

¼ cosk−1θ0 cos
k−1θ

cosθ0 þ cosθð Þ1−k
ð2Þ

FHG g;Θð Þ ¼ 1−Θ2

1þ 2Θ cosg þ Θ2� �3=2

ð3Þ

H ρc;Gð Þ ¼ 1þ 1−ρc

1þ G
ð4Þ

cos g ¼ cos θ0 cos θþ sin θ0 sin θ cosΔϕ ð5Þ

G ¼ tan2θ0 þ tan2θ−2 tan θ tan θ0 cosΔϕ
� �1=2 ð6Þ

where θ and θ0 are the VZA and SZA, respectively. In the above formula-
tion the relative azimuth angleΔϕ zero when the source of illumination
is behind the sensor. Themodel is parameterised by 4 parameters: ρ0, k,
Θ and ρc.

The function M1 defines the bell vs. bowl shape of the angular field
through the parameter k. The function FHG defines the importance of
the forward vs. backward scattering. The function H describes the
hotspot with its parameter ρc. The BRDF model follows the principle of
reciprocity and is symmetrical with respect to the principal plane.

Boucher, Cosnefroy, Petit, Serrot, and Briottet (1999) compared the
performance of several BRDF model at fitting goniometric measure-
ments. In the specific case of sand, the RPV model outperformed the
other models tested. Maignan, Breon, and Lacaze (2004) also compared
several BRDF models in their ability to fit atmospherically corrected
POLDER measurements. They conclude that the 3-parameter RPV
model and the Li-Ross model perform better than other models.

Maignan et al. (2004) also observed that for the specific case of the
hotspot, all models fail to accurately reproduce the sharp reflectance in-
crease close to the backscattering direction. As satellite remote sensing
data are generally acquired at scattering angles ranging from 100 to
180°, thehot spot signature is generally captured and itmust bewell de-
scribed by the BRDF used for the present study. Hapke, DiMucci, Nelson,
and Smythe (1996) discuss the nature of physical process behind the
hot spot phenomenon. They conclude the hot spots of vegetation and
dry fine grained soils are different in that they are dominated by respec-
tively shadowhiding and coherent backscatter. In their original descrip-
tion, Rahman et al. (1993) have set ρc to ρ0. They inverted this BRDF
model from AVHRR data in channels 1 and 2 (respectively the red and
NIR channels) over two desert sites located in Libya and Mauritania
characterised by dune fields comparable to the Libya-4 site. They
found the best fit with the 3 parameters ρ0 = ρc = 0.538, k = 0.826,
and Θ = 0.0269 in channel 1 and respectively 0.699, 0.805, 0.0097 in
channel 2. They also suggest a 4-parameter RPV model with a modified
hot spot function is better suited for pronounced hot spot signature. The
choice of a version of the RPV BRDF model with 4 parameters, as de-
scribed in Eqs. (1) to (6), with a specific parameter dedicated to the
hot spot modelling, is motivated by the need to maximise the fitting
performance of the MERIS observation for which backscatter geome-
tries are common over this site.

3.2. Inversion of the Libya-4 surface BRDF from theMERIS reference dataset
TOA observations

The inversion of the 4 RPVmodel parameters from theMERIS TOA re-
flectance measurements is based on the minimisation of a cost function:
the rootmean square deviation between the TOA reflectance from the ob-
servations and their simulations. It is defined as:

RMSE in % λð Þ ¼ χ ¼
X200

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
.

200

ρTOA
sim i;λð Þ−ρTOA

obs i;λð Þ
� �

ρTOA
obs i;λð Þ � 100

2
4

3
5
2

vuuut

ð7Þ

Where ρsimTOA(i,λ) and ρobsTOA(i,λ) are the simulated and observed TOA
reflectance respectively and i is the observation index ranging from 1
to 200 and λ is the spectral band ranging from 1 to 15.

The inversion is done following the downhill simplex method
implemented in IDL, also called AMOEBA (see Numerical recipes in C,
2nd Edition, Cambridge University press) and originally described in
Nelder andMead (1965). It is an iterativemethod,makinguse of repeat-
ed runs to infer a trajectory through the 4-dimensional RPV parameter
space leading to a minimum of the cost function. At each run, for each
spectral band, the 200 TOA MERIS observations are simulated and χ is
computed. The downhill simplex method is stopped when two succes-
sive computations of the cost function agree within 5%. It generally
takes few tens of iterations to reach such level of stability of the cost
function.

This minimisation method does not converge necessarily to the
global minimum of a cost function if local minima are also present in
the predefined parameter space. Moreover, in the specific case of this
study, the convergence of the cost function is hampered by the stochas-
tic nature of theMonte Carlo simulations, in particular in regions where
the cost function 4-dimensional landscape is characterised by small de-
rivative with respect to the RPV parameters.

The downhill simplex method must be initialised with a priori
values of the 4 RPV parameters and estimates of the associated uncer-
tainties. To maximise the chances of finding the global minimum of
the cost function, the minimisation process is repeated 5 times, each
time with a different a priori value for the ρ0 parameter of the RPV
model, starting from the mean TOA reflectance value from the 200
MERIS acquisitions and then sampling a ±0.2 domain around this
value. The a priori values for the k, Θ and ρc are kept identical for the 5
runs. They are set to 0.8, 0.0 and ρ0 respectively, with their associated
uncertainties set to ±0.3, ±0.3 and ±ρ0 respectively. After these 5
runs of the downhill simplex method, the 4 RPV parameters giving
the lowest χ are selected. More runs of the downhill simplex with
a larger range of initial values for the RPV parameterisation proved
unnecessary.

3.3. Results of the RPV BRDF model parameters inversion

Fig. 1 shows the temporal variations of the TOA reflectance in the
MERIS band centred at 620 nm. This spectral band is chosen in this sec-
tion to illustrate the inversion process and its outputs. As previously de-
tailed, out of the 412 acquisitions, only 200 are picked at randomly
selected times following a uniformly distribution over the 4 year period.
This results in acquisitions actually being selected up to 4 times in rare
cases (in winter in particular). On the same figure, the performance of
the simplest TOA reflectance model one could think of, i.e., the mean
TOA reflectance over the 4 year period, is reported.

Fig. 2 shows the relative difference between the MERIS TOA reflec-
tance observations in band 6 and their simulation with the radiative
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transfer model at the last iteration of the minimisation process. This
relative difference is hereafter referred to as:

ε i;λð Þ ¼
ρTOA
obs i;λð Þ−ρTOA

sim i;λð Þ
� �

ρTOA
obs i;λð Þ � 100 ð8Þ

In Fig. 3, the spectral variations of the inverted 4 parameters of the
RPV BRDF model are plotted. The parameters obtained for band 11
(760 nm) are clear outliers (the model spectral resolution is not suffi-
cient to accurately model this spectral band).

The values found for the parameters k and Θ controlling the overall
anisotropy of the BRDF are comparable to the values found by Rahman
et al. (1993) over desert sites from the inversion of AVHRR TOA obser-
vation (respectively 0.826 and 0.0269 in channel 1 and 0.805 and
0.0097 in channel 2). The values the ratioω ¼ ρc=ρ0

are generally larger
than 1. Such value indicates that a hot spot of lower amplitude than
what could be provided by a 3-parameter RPV BRDF model was found
during the inversion. In Fig. 4, a polar representation of the surface
BRDF model retrieved in band 6 is shown. The BRDF is characterised
by a hot spot in the backscattering direction and a minimum in the
forward scattering region for viewing angles below 30°. The yearly

variations with the SZA of this minimum in the BRDF can be observed
in MERIS TOA observations for instance in the bottom panel of Fig. 1,
as the lowest limit of the TOA reflectance relative to the mean.

Fig. 5 gives the χ value obtained for each MERIS spectral band at the
final step of the minimisation. The spectral variations of standard devi-
ation of theMERIS TOA reflectance over the 4 years are also shown. This
figure demonstrate the ability of themodel at capturing the geometrical
and temporal variability of the TOA reflectance by comparing its perfor-
mance to the simplest model of the TOA reflectance, namely, the mean
TOA reflectance value over the 4 years (which RMSE is the standard de-
viation of the MERIS TOA reflectance over the 4 years).

In Fig. 5, the spectral variations of the mean values of the standard
deviation of the Monte Carlo photon noise for the 200 MERIS TOA sim-
ulations is shown aswell. It is generally below0.5% and at least a factor 3
smaller than χ. Assuming χ2 is the quadratic sum of the Monte Carlo
noise and other residual errors (e.g.: MERIS instrumental noise, aerosol
natural variability in measured TOA signal, etc.…), the Monte Carlo
noise only contribute about 1/10th of the RMSE between MERIS

Fig. 2. The relative difference between theMERIS TOA reflectance in band 6 (620 nm) and
its simulation using the inverted RPVparameters. The error bar associated to each acquisition
is the Monte Carlo noise, the blue line is the linear fit and the red lines correspond to 2
standard deviations.

Fig. 3. The spectral variations of the RPV BRDFmodel parameters inverted from theMERIS
TOA reflectance observations. From left to right and from top to bottom, ρ0, k, Θ and the
ratio ω ¼ ρc =ρ0

.

Fig. 4. RPV BRDF model representation for the parameters retrieved from MERIS band 6
TOA reflectance. Rho_0 = 0.413, k = 0.853 and theta_hg = 0.009 and rho_c = 0.664.
Plotted with Anisview: software developed by P. Vogt and M. Verstraete.

Fig. 5. The spectral variations of the RMSE between theMERIS TOA reflectance simulations
and the observations is shown in red. In black, theMERIS TOA reflectance standard deviation
for the 4 year period. In blue, the mean photon noise associated to a single simulation of a
MERIS TOA reflectance observation.
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observations and simulations. There are fewoutliers on thisfigure: band
11 (761 nm) and 15 (900 nm). Absorption in these band is the domi-
nant process. The spectral sampling of the simulations (1 nm) is not
sufficient to capture the spectral variability of the signal. Moreover, for
band 15 (and to some extend for band 9 as well) the uncertainties on
the water vapour from the ERA-Interim reanalysis might introduce an
additional residual error to the simulations.

3.4. Analysis of the residual TOA difference between observations and
simulations

For each time series of ε(i,λ), i.e., the residual error between the
MERIS TOA observations and their simulation (see for instance Fig. 2),
the following statistical indicator are computed: the mean value of
ε(i,λ) over the 200 observations of the MERIS reference dataset
(shown in Fig. 6), the linear trend of ε(i,λ) with time (shown in
Fig. 7), the standard deviation of the 200 ε(i,λ) equal to χ and shown
in Fig. 5). Moreover, a multivariate analysis of ε(i,λ) was carried out
against: the VZA, the SZA, the difference (SAA − VAA), the SAA, the
scattering angle and the airmass. Finally, ε(i,λ) frequency histograms
were compared to Gaussian distributions with identical mean value
and standard deviations. These analyses reveal that:

• The histograms of ε(i,λ) in each band appear to approximately follow
a normal distribution. This is an important result which implies that
we can compute easily 95% confidence interval (CI) on the mean
value of ε(i,λ) over the 200 observations and also on the temporal lin-
ear trends. These 95% CIs are shown on the Figs. 6 and 7 respectively.

• The mean value of ε(i,λ) over the 200 observations is not null within
the 95% CI for several spectral bands (see Fig. 6). Such residual differ-
ence can be expected. In fact, the inversion of 4 parameters of the
BRDF is based on the minimisation of the cost function χ, i.e., the
root mean square error and not directly on the mean value of ε(i,λ).
The convergence criterion on χ was set to 5% of variation between
two iterations of the inversion. Setting the conversion criterion to
lower values results into ‘hitting’ theMonte Carlo noise of the simula-
tion, i.e., the variationsχ between two iterations starts to be dominat-
ed by Monte Carlo noise. Lowering the 5% convergence criterion in
order to completely cancel out the residual mean value of ε(i,λ) over
the 200 observations would simply require to increase the number
of photons used per simulation. This was not possible within the pro-
cessing time available for this study.

• There is no significant correlation between ε(i,λ) and the VZA, the
SZA, the difference (SAA − VAA), the SAA, the scattering angle and
the airmass (r2 b 0.09 for all angles and for all bands). This is an

important result indicating that the 4-parameter RPV BRDF model
and the parameterisation of the atmosphere used to runMYSTIC radi-
ative transfer code allows to capture the geometrical and temporal
variability of the MERIS TOA signal.

• There appear to be statistically significant temporal linear trends in
ε(i,λ) in few spectral bands over the 4-year duration of theMERIS ref-
erence dataset (see Fig. 7). The trends are of the order of 0.1%/year.
Larger trends of about 0.2%/year are observed in the 3 first bands. As
discussed previously, band 11 modelling (and bands 9 and 15) re-
quires a high spectral resolution model which was not the case in
this study and a trend in the band should not be over-interpreted.

• Camera 4 for band 11 is an outlier that appears to provide measure-
ments 5–10% brighter that the neighbouring cameras (not illustrated
here).

3.5. Where does the residual error ε(i,λ) come from?

In Fig. 5, the standard deviation associated to ε(i,λ) varies from ap-
proximately 1.5% at 412 nm to 0.8% in the NIR (apart from the spectral
bands with high gaseous absorption).

The residual error between the MERIS observations and their simu-
lations can be split into two components: the bias and the apparently
random error.

As discussed in Section 3.4, the residual bias shown in Fig. 6 is purely
an artefact of the inversionprocess. An increasednumber of photonsper
simulation further reduce this residual bias.

The remaining randomerror (following a normal distribution) could
not be fitted by the TOA reflectance modelling proposed in this study.
What is the dominant contributor to this apparently randomerror? Sev-
eral possible contributors and their magnitude are hereafter described.

3.5.1. MERIS instrumental noise
The MERIS signal-to-noise (SNR) was not characterised in flight. It

should be comparable to the currently designed S-3/OLCI instrument
which is designed to have SNR values of the order of 1000 to 2000 at a
reference radiance level lower than the radiance measured over Libya-
4. The contribution of this SNR to the mean TOA reflectance in the ROI
is weighted by the square root of the number of pixels in the ROI
(~800 pixels). Assuming 0.1% noise from the SNR we have a contribu-
tion below 0.01% to the mean in the ROI. Assuming this noise contrib-
utes quadratically to the total RMSE observed in Fig. 5, it should be
completely negligible.

Another potential contributor to the observed RMSE is the smile cor-
rection applied to the data described in Bourg et al. (2008). The correc-
tion performed by the DIMITRI tool is only done at irradiance level and

Fig. 6. The mean relative difference between the MERIS observation and their simulation
and the associated uncertainty of the mean (95% CI).

Fig. 7. The linear trends (in %/year) obtained for the time series of the relative difference
between the MERIS TOA observations and their simulation. The error bar is the 95% CI.
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does not take into account the spectral variations of the reflectance. A
full correction, included irradiance and reflectance correction over the
site is of the order 0.1% on average across the field of view and can
reach up to 0.5% (test carried with the BEAM software available from
https://earth.esa.int/web/guest/software-tools). Only correcting for
the effect of smile on the irradiance results in errors in as much as
0.5% where the spectral slope of the reflectance is largest over this site.

The residual error of the correction carried out in the DIMITRI tool
could partially explain the observed RMSE observed in Fig. 5 but it is un-
likely to be the major contributor.

Other sources of instrumental noise, such as the straylight correction
residual errors, the instrument dark current fluctuations or its non line-
arities might also contribute to the residual random noise observed be-
tween observations and simulations. Their individual magnitude is
unknown but the RMSE shown in Fig. 5 provides an upper estimate to
the combined random contribution to the TOA signal.

3.5.2. The site spatial heterogeneity
The standard deviation of the TOA reflectance in the Libya-4 site ROI

is about 3% in all spectral bands. The ROI ismapped by about 800MERIS
measurements at 1 km spatial resolution for each MERIS acquisition.
The value of the standard deviation of the TOA reflectance in the ROI re-
mains approximately the same for each acquisition fromMERIS, regard-
less of the acquisition geometry and the distribution of reflectance in
the ROI follows approximately a normal distribution (not illustrate
here).

In order to estimate the uncertainty on the mean TOA reflectance in
the ROI induced by the pixel-to-pixel TOA reflectance in the ROI, let's as-
sume that each one of these single pixel can be independentlymodelled
by a random TOA reflectance generator having a normal distribution
with a standard deviation of 3% and a mean value equal to the mean
TOA reflectance over the ROI. For each acquisition, for each pixel in
the ROI, the dies are rolled and the uncertainty of the mean TOA reflec-
tance in the ROI follows: it is the standard deviation of the normal dis-
tribution divided by the square root of the number of pixels in the
ROI, i.e., about 0.1% (1-sigma). This might be an upper estimate of the
random variations induced by the spatial heterogeneity on the mean
TOA reflectance over the ROI as there is a radiometric spatial correlation
between pixels in the ROI that does not dramatically change between
observation geometries. The site spatial heterogeneity cannot explain
the RMSE illustrated in Fig. 5.

3.5.3. Residual error of the RPV model
Is the RPV BRDFmodel able to reproduce the geometrical variability

of the actual Libya-4 site surface BRDF? Boucher et al. (1999) fitted the
RPV model on a sand sample BRF measured with a goniometre. They
obtainedfittingRMSE of about 2% at 600 and 800 nm. They claimedpre-
cision of their BRDF measurements of the same order (between 2% and
5%). In the present study, in the NIR, where the atmosphere is optically
thin and the TOA reflectance is a good first order estimate of the surface
BRF, the standard deviation of ε(i,λ) is about 1% (see Fig. 5). This is a
strong indication that the RPV model is better at fitting the site BRDF
than observed by Boucher et al. (1999) on sand samples and a demon-
stration that it can describe the site surface BRDF to at least approxi-
mately 1% RMSE.

3.5.4. MYSTIC photon noise
It was shown in Section 3.3 that theMYSTIC photonnoise produces a

negligible contribution to the RMSE in Fig. 5.

3.5.5. Atmospheric variability
The atmospheric surface pressure and the temperature profile are

fixed input to MYSTIC. In reality these vary both in time and space.
They are likely contributors to the variability observed in bands 9, 11
and 15. Water vapour is also a likely contributor to the variability of
the TOA signal in bands 9 and 15 and ERA-Interim data might not be

perfectly reflecting reality. The modelling of these bands with signifi-
cant atmospheric absorption was done at 1 nm spectral resolution.
This might not be sufficient for such bands where the spectral variation
of the absorption cross sections of the gas requires better spectral
resolution.

Both the atmospheric variability and the modelling limitations are
likely to explain most of the residual errors observed in bands 9, 11
and 15.

At other spectral bands, gaseous absorption is much lower or well
described at a lower spectral resolution (e.g.: for ozone). However, an-
other factor of atmospheric variability might result into residual errors
between observations and simulations: aerosol.

The issue of the most suitable aerosol model to use in combination
with the RPV model to simulate the MERIS observations was addressed
by looking at the final RMSEs obtained between TOA MERIS observa-
tions and their simulations for two aerosol models described by Hess
et al. (1998): the ‘average continental’ aerosol model and the ‘desert’
aerosol model. One might expect the ‘desert’ aerosol model to be
more representative of the Libya-4 aerosol optical properties. However,
the final RMSEs obtained with the ‘desert’ model (not shown here) are
higher by up to 0.5%, in the 400–700 nm region, than those obtained
with the ‘average continental’ model (for which the resulting RMSEs
are shown in Fig. 5). Further analysis of the ε(i,λ) obtained with the ‘de-
sert’ model reveals a residual variation of ε(i,λ) with the scattering
angle. This does not imply that the ‘average continental’ aerosol model
is more representative of the real aerosol present over the Libya-4 site
than the ‘desert’ model. It is rather the combination of this aerosol
model optical properties (in particular the scattering phase function)
and the RPV surface BRDF model that that allow the best fit of the
MERIS TOA observations. In other words, the ‘desert’ aerosol model de-
scribed by Hess et al. (1998) might be more representative of the real
aerosol present over the Libya-4 site but when combined in the radia-
tive transfer model with a RPV BRDF model it is not as efficient at mim-
icking MERIS TOA observations as the ‘average continental’ model. The
‘average continental’ model was thus selected for the purpose of this
study.

To further assess the sensitivity of the TOA signal to aerosol two
cases were simulated. In the first case, the inverted BRDFmodel param-
eters (shown in Fig. 3) and the same atmospheric parameterisation
(i.e., including the ‘average continental’ aerosol model) used for the in-
version are used to simulate the 200 MERIS observations. The total AOT
at 550 nm is however set to 0.3 rather than the value of 0.2 used for the
inversion for the BRDF model. This increase in AOT leads to an increase
by about 1% of the TOA signal in the blue spectral bands and a decrease
of about 2% towards the red and NIR.

In the second case, the same AOT value of 0.2 as used for the inver-
sion of the RPV parameters is re-used to simulate theMERIS TOA obser-
vations but the ‘average continental’ aerosolmodel is substituted by the
so-called ‘desert’ aerosol model (see Hess et al., 1998) to simulate the
200 MERIS observations. These simulations are meant to mimic the
change in aerosol optical properties that might when desert dust is
lifted off locally by wind driven process and substitutes the aerosol
transported over long distances. These changes in aerosol optical prop-
erties lead to a decrease of nearly 6% of the TOA signal in the blue and an
increase of 2% towards the red and NIR.

Both cases demonstrate the sensitivity of the simulated (and ob-
served) MERIS TOA reflectances to changes in aerosol load and optical
properties. The low RMSE obtained at the end of the BRDF model pa-
rameter inversion (as shown in Fig. 5) is mostly due to variations in
ε(i,λ) at the daily scale. These variations could be explained by day-to-
day changes in aerosol load and optical properties over the site. No var-
iation of ε(i,λ) is observed at longer time scales (as illustrated in Fig. 2
for band 620 nm). In particular, no seasonal variability in ε(i,λ) is
found. This indicates that the seasonal variations of the aerosol optical
properties and AOT do not need to bemodelled to reproduceMERIS ob-
servations at TOA level.
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3.6. What is the impact of the number of MERIS observations used to
‘calibrate’ the MERIS TOA reflectance model?

The objective of the surface BRDF retrieval scheme described in pre-
vious sections is to provide the surface BRDF model parameters that
best allow simulating the 200MERIS TOA observations.What is the per-
formance of theMERIS TOA reflectancemodel in relation to this number
of observations?

The performance of theMERIS TOA reflectancemodel can be directly
observed at single observation level on plots of ε(i,λ) against time as
show in Fig. 2. More synoptically, the performance can be assessed in
terms of simple statistical indicators: the spectral bias (plotted in
Fig. 6) and the spectral standard deviation (not plotted here butwell ap-
proximated by the spectral RMSE in Fig. 5). These two statistical indica-
tors, in turn, have associated uncertainties that directly depend on the
number of observations used to derive them.

Fig. 6 shows the uncertainty associated to the spectral bias as a 95%
CI. The CI is computed as twice the spectral standard deviation divided
by the square root of the number of observations (200). The 95% CI on
the spectral bias is of the order of 0.15% for all bandsmarginally affected
by gaseous absorption. Such CI is acceptable if thismodel is to be used to
as reference to identify radiometric differences betweenMERIS and sen-
sors of the order of few percent. For instance, if only 50 MERIS observa-
tions (about half a year of observations) had been used to retrieve the
surface BRDF model parameters, the 95% CI on the TOA model spectral
bias would be a factor 2 higher, i.e., about 0.3%.

The uncertainty on the spectral standard deviation can be assessed
in the framework of normal distributions. The standard deviation asso-
ciated to the population of ε(i,λ) is about 1% of all bands not significantly
affected by gaseous absorption. The 95% CI on a standard deviation of 1%
for a population of 200 samples normally distributed can be calculated
and is about ±0.1% (it is actually slightly asymmetrical). The 95% CI
on this standard deviation becomes about ±0.2% if only 50 samples
are used.

As a conclusion, the number of MERIS observations (200) used to
‘calibrate’ the TOA radiative transfer model is sufficient to ensure that
its performance in terms of bias and standard deviation of its error
are known with 95% CI suitable for its further use as a reference TOA
model for the radiometric intercomparison of sensors (i.e., about
±0.15% on the bias and about ±0.1% on the standard deviation of
the error). A lower number of MERIS observations (50) used to ‘calibrate’
the model would roughly double these uncertainties on the TOA model
bias and the standard deviation of its error.

4. Discussion on the extension of the geometrical and spectral
domain of validity of the inverted BRDF model

In the previous sections, a 4-parameter BRDF model was inverted
using a 4-year reference dataset of MERIS observations. The residual er-
rors of the resulting coupled surface-atmosphere model were assessed
at MERIS spectral bands and for the MERIS observational geometries.
In this section the extension of the geometrical and spectral domain of
validity of the model are discussed and various options are assessed.

4.1. Geometrical domain of validity of the TOA reflectance simulations

The 200 MERIS observations used to invert the 4-parameter BRDF
models have observation geometries characterised by VZAs approx-
imately ranging from 0° to 35°, SZAs from 18° to 60° and RAAs from
−180° to 50°. These 200 MERIS observation and illumination geome-
tries however do not cover continuously nor regularly these ranges of
VZA, SZA and RAA values. In fact, these angles are strongly correlated
for MERIS observations due to the ENVISAT repeat cycle and the instru-
ment geometry of observation.

It is worth noting that there is no significant correlation between
ε(i,λ) and all viewing and illumination angles: correlation coefficients

(r2) are below 0.09 for all bands. This demonstrates the geometrical
fitting skills of the proposed couple surface-atmosphere modelling.
However, such skills cannot be assessed outside theMERIS observation-
al geometries and consequently simulations for other sensors will be
done only for geometriesmatching one of the 200 geometries of the ref-
erence dataset.

4.2. Extension of the spectral domain of validity of the TOA reflectance
simulation

In order to simulate the observations from other sensors thanMERIS
the inverted spectral BRDF model must be interpolated in spectral re-
gions in between theMERIS spectral bands. In other words, the inverted
multispectral BRDF model must be turned into a hyperspectral BRDF
model. Two interpolation schemes are assessed and discussed in this
section. Moreover, it is investigated if the spectral sampling of MERIS
and POLDER-3 are sufficient to accurately reconstruct the spectral vari-
ations of the surface bidirectional reflectance factor.

First, the importance of the spectral sampling for the construction of
an hyperspectral BRDF model can be assessed by the following experi-
ment: only the RPV parameters inverted fromMERIS TOA observations
in band 443 nm, 560 nm, 665, 754 and 865 nm are used to derive
the RPV parameters at a resolution of 1 nm, through the 390 nm to
960 nm spectral interval, using a spline interpolation. This is quite rep-
resentative of the spectral sampling of sensors like POLDER orMISR. The
result is shown in Fig. 9. Using the interpolated RPV values obtained
from such interpolation approach at all MERIS spectral bands, we can
simulate the MERIS TOA reflectance using the radiative transfer model
and the pre-defined atmosphere and compare to the actual MERIS
TOA observations. The resulting biases for the 200 MERIS acquisitions
are shown in Fig. 10 and should be compared to those obtained in
Fig. 6. The obtained bias reaches 9% at 510 nm. With only a subset of
the MERIS spectral bands used for the spline interpolation of the RPV
model parameters, their spectral variations are not sufficientlywell cap-
tured as clearly indicated by the poor comparison between simulated
and observed MERIS TOA reflectances.

The MERIS spectral sampling is superior to the spectral bands used
for this experiment and the biases obtained in Fig. 10 should be
regarded as relevant to POLDER or MISR if these sensors were to be
used to invert the RPV parameters in their spectral bands and then spec-
trally interpolate them to simulate other sensor observations. In thepar-
ticular case of using MERIS observations, it is however a warning that
the interpolation of the RPV between the MERIS spectral bands should

Fig. 8. All BRF sand spectra measured on samples collected at the Simpson desert
(Australia), Muleshoe (Texas, USA) and in the Namibian desert. Illumination is at 45°
and measurement at nadir.
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be exercised cautiously, in particularly in the spectral region 500 nm to
600 nm.

The spectral properties of sand in the visible to NIR spectral region
are indeed quite variable (see Fig. 8). They depend on grain size,
shape and composition. Part of this variability is explained by the pres-
ence of iron oxide coatings on sand grain surface giving colour ranging
from brown and to red. The relationship between increasing redness
and increasing concentrations of iron oxide in the sediments is strong
and positive (Bullard & White, 2002). In visible to NIR spectral range,
the absorption of these coatings is strongest in the spectral region
extending between 500 nm and 600 nm. This absorption feature is vis-
ible as a steep increase of the amplitude parameter ρ0 of the RPV BRDF
model around 560 nm in Fig. 3. The spectral variations of the RPV BRDF
model are mainly governed by the spectral variations of the amplitude
parameter ρ0. The spectral variations of the three other parameters of

the model affect to a lesser extend the spectral variations of the output
BRF. Two interpolationmethodologies are assessed to interpolate the ρ0
values obtained in the 15 spectral bands of MERIS: 1) a spline interpola-
tion between theMERIS spectral bands and 2) a spectral reconstruction
based on a prior Principal Component Analysis of a hyperspectral sand
reflectance database (see spectra in Fig. 8). The hyperspectral database
used for the second interpolation approach consist of 83 BRF spectra
collected and measured by J. E. Bullard and K. H. White. They are spec-
troscopic laboratory measurements carried out on samples from the
Simpson desert (Australia) and described in Bullard and White
(2002)), from the Muleshoe Dunes (USA) and described in White and
Bullard (2009), and unpublished similar data from the Namibian desert
(Namibia). Measurements were taken in a purpose built spectroscopy
lab (matte black walls and ceiling). Sand samples (flattened surface)
weremeasuredwith aGER3700 spectrometer at 55 cmdistance. Illumi-
nation was provided by a 1KW daylight video lamp at 45° angle. A
spectralon panelwas used as reference reflectance. The spectrawere ac-
quired at a spectral resolution of 3 nm between 400 nm 800 nm and
4 nm beyond. The spectra were further denoised by convolving them
with a 10 nmwide square kernel.

These BRF spectra were convolved with MERIS and POLDER-3 spec-
tral responses to generate pseudo MERIS/POLDER-3 measurements.
These pseudo measurements were subsequently interpolated either
by 1) a spline function or 2) using a linear combination of the first 8
hyperspectral eigen vectors derived from the hyperspectral sand reflec-
tance database and fitted the pseudo measurements by a least square
minimisation. In both cases, the interpolated spectra obtained are then
compared to the original GER3700 measurements. The systematic
error and the 1-sigma random error are shown in Fig. 11. Analysis of
these comparisons reveals that: 1) the POLDER-3 spectral sampling
combined with a spline interpolation leads to systematic BRF errors ex-
ceeding 5% in the 500 nm–600 nm spectral range and exceeding 10% at
400 nm; 2) the MERIS spectral sampling combined with a spline inter-
polation leads to systematic errors of few percents for all sand samples
and reaching about 5% for the reddest sand samples; 3) theMERIS spec-
tral sampling combined with an interpolation based on a linear combi-
nation of 8 eigen vectors of the hyperspectral sand reflectance database
leads to systematic errors generally negligible. The latest interpolation
methodology is thus selected for the generation of an hyperspectral

Fig. 9. The spectral variations of the RPV BRDF model parameters inverted from the MERIS TOA reflectance observations. From left to right and from top to bottom, ρ0, k, Θ and the ratio
ω ¼ ρc =ρ0

. The red line for each parameter corresponds to the spline interpolation based on spectral band at 443 nm, 560 nm, 665, 754 and 865 nm.

Fig. 10. Themean relative difference between theMERIS observation and their simulation
and the associated uncertainty of the mean (95% CI) when using RPV parameters at
412 nm, 490 nm, 510 nm, 620 nm, 681 nm, 709 nm, 778 nm, 885 nm resulting from
the interpolation of those obtained from the direct inversion of MERIS observations at
443 nm, 560 nm, 665, 754 and 865 nm.
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surface BRDF model of Libya-4 with a view to simulate observations
from space sensors operating in the visible to NIR spectral region.

5. Radiometric comparisons between the Libya-4 simulator and
various sensors

In the following section, the previously described Libya-4 simulator
is used to simulate time series of TOA observations from AATSR
(2nd reprocessing), ATSR-2 (2008 reprocessing), MERIS (2nd and 3rd
reprocessing), MODIS Aqua (Collection 5), POLDER-3 (Calibration 1)
andVEGETATION-2 (Calibration 1). Simulations are compared to the ac-
tual satellite measurements.

5.1. Pre-processing of the data

The L1 data from these sensors were extracted from the DIMITRI da-
tabase for the period 2002 to 2012. These data were cloud screened and
quality checked (e.g.: no saturation).

The L1 data are then further selected on the basis of their geometry of
acquisitionwhichmust bematchedby one of theMERIS acquisitions used
to invert the RPV BRDF model (see discussion in Section 4.1). This
matching is achieved by computing the angular difference between the
sensor illumination direction and each one of the 200MERIS illumination
direction and adding it to the angular difference between the sensor
viewing direction and the MERIS viewing direction. Only acquisitions
for which this sum is less 5° are selected. In thematching process, it is as-
sumed that there is symmetry with respect to the principal plane and in-
sensitivity to the solar azimuth angle (see discussion in Section 4.1).

The meteor data (WV and O3) accompanying L1 data and extracted
in DIMITRI are substituted by the corresponding ERA-Interim data.

This results into about 300AATSRacquisitions, 30ATSR-2 acquisitions,
660MERIS 2nd reprocessing acquisitions, 830MERIS 3rd reprocessing ac-
quisitions, 270 MODIS-A acquisitions, 250 PARASOL acquisitions and 250
VEGETATION-2 acquisitions.

5.2. Parameterisation of the simulations of the sensor observations

These acquisitions are simulated using MYSTIC. The parameterisation
of the atmosphere is the sameused for the inversion of the RPVmodel pa-
rameters from MERIS data from 2006 to 2009 (detailed in Section 3.1).
The RPV BRDF model result from the interpolation at 1 nm spectral reso-
lution the parameters obtained from each spectral band of theMERIS ref-
erence dataset (shown in Fig. 3). The ρ0 parameter spectral variations are
derived from the interpolation scheme using the 8 eigen vectors of the
hyperspectral sand reflectance database. The spectral variations of the 3
other BRDF model parameters are obtained by simple spline interpola-
tion. The BRDF model parameter interpolation is done excluding spectral
band for which the water vapour and O2 absorption is significant (bands
9, 11 and 15).

Simulations are done using the ERA-Interim O3 andWV as input for
each acquisition. Simulations of ATSR-2, AATSR, A-MODIS, MERIS,
POLDER-3 and VEGETATION-2 in spectral bands forwhich thewater va-
pour and O2 absorption is significant were not done as they cannot be
confidently computed at the model spectral resolution.

5.3. The results: comparison between simulations and observations

The biases between sensor observations and the corresponding simu-
lations are shown in Fig. 12. They are computedusing a linearfit of the rel-
ative difference between observations and simulations, and computing

Fig. 11. The systematic error (in black) and the 1-sigma randomerror (grey error bar) of 3 interpolation approaches derived from the comparison of 83 sand BRF spectra and their interpolation
using 1) the POLDER-3 spectral sampling with a spline interpolation (top panel), 2) the MERIS spectral sampling with a spline interpolation (centre panel) and 3) theMERIS spectral sampling
with an interpolation based on the linear combination of eigen vector from the sand database.
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the bias on the 2008/01/01 resulting from this linear relationship. The cor-
responding linear trends are shown in Fig. 13.

It was observed in the analysis of the residual error between
MERIS observations and simulations for the inversion of the RPV pa-
rameters (see Section 3.4), that the residual errors approximately
follow a normal distribution. This is confirmed when simulating lon-
ger time series (~10 years). 95% CI on both the biases and the linear
trends can be derived from the statistical formalism applicable to
normal distributions. These 95% CI obtained on both the biases and
the linear trends are directly proportional to the standard deviations
of the residual difference between observations and simulations.
The better the coupled surface-atmosphere model can capture the
geometrical and temporal variations of the TOA signal, the smaller
the 95% CI obtained on both the biases and the linear temporal
trends. This explains that the 95% CI are obtained for instance on
the linear trends of the MERIS data are remarkably low: below
0.05%/year for all spectral bands (see Fig. 14).

The simulatedMERIS 3rd reprocessing time series extend from2002
to 2012, significantly longer than the 4 years used for the inversion of
the RPV parameters. Biases between the data and their simulation on
2008/01/01 ranging from 0 to 1% are found. These are larger than the
biases found at the end of the RPV parameters inversion process on
the MERIS reference dataset (see Fig. 6).

MERIS 2nd reprocessing data appear few tens of % lower than the
MERIS 3rd reprocessing, with the highest changes seen in the blue.
This is in line withwhat is expected from the change of calibration coef-
ficients between the two reprocessings.

The linear trends in Fig. 13 obtained forMERIS have been reduced by
the 3rd reprocessing change in calibration coefficients. There are small
but statistically significant downwards trends for several bands in the
3rd reprocessing data with the maximum being for the 443 nm band
with −0.08%/year (95% CI = ±0.03%/year).

Biases on the 2008/01/01 for AATSR range between 2% and 3% for its
3 spectral bands. Only the 560 nmbandhas a significant temporal trend
of −0.15%/year (95% CI = ±0.05%/year).

Only data during 2002 and early 2003 are available from ATSR-2
sensors in the DIMITRI database. Biases extrapolated to the 2008/01/
01 range between 13% and 16% for its 3 spectral bands (out of scale on
Fig. 12). Biases are around 10% during the ATSR-2 acquisition period
but they become larger due to downwards trends (see Fig. 13) in each
band. These trends are however statistically not significant due to the
low number of ATSR-2 acquisitions (about 30).

The largest bias between A-MODIS data and their simulation is
found at 412 nm, −2.91% (95% CI = ±0.30%) as well as the largest
downwards trend of −0.44%/year (95% CI = ±0.10%/year). All other
bands have bias between 0% and −2%. The 443 nm band also has a
downwards trend of −0.14%/year (95% CI = ±0.07%/year). All other
bands are stable within the 95% CI.

POLDER-3 data appear about 2 to 4% below their simulations for all
spectral bands. The 443 nm band shows the largest linear trend
+0.45%/year (95% CI = ±0.32%/year).

VEGETATION-2 data in the 450 nmand the 550 nmbands are below
their simulation by about 4% (95% CI b ±0.2%). The 550 nm band
shows a positive linear trend of about +0.24%/year (95% CI about
±0.05%/year). A multivariate analysis of the 450 nm band residual
error reveals a significant correlation (r2 = 0.27) with the viewing
zenith angle. Such values of the correlation with the VZA in this spec-
tral region is found for no other sensor but VEGETATION-2 which
rules out a surface BRDF model error. This could be explained by an
across track dependency of the calibration coefficients not fully
taken into account of about 2% between nadir and 40° VZA (confirmed
by CNES, personal communication P. Henry).

Fig. 12. The bias on the 2008/01/01 as resulting obtained from the linear fit of the time
series of the relative difference between observations and simulations of the AATSR,
MERIS, MODIS-A, POLDER-3 and VEGETATION-2 data over the period 2002–2012. Error
bars are the 95% CI.

Fig. 13. The temporal trend resulting from the linear fit of the difference between
observations and simulations of the AATSR, ATSR-2, MERIS, MODIS-A, POLDER-3 and
VEGETATION-2 data over the period 2002–2012. Error bars are the 95% CI.

Fig. 14. The temporal trend resulting from the linear fit of the difference between
observations and simulations of the MERIS 3rd reprocessing data over the period
2002–2012. Error bars are the 95% CI.
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5.4. Extension of the geometrical domain of validity of the reference TOA
model

The geometrical domain of validity of the surface BRDF model was
cautiously restricted to the observation and illumination geometries of
the 200 MERIS observations used to retrieve it. The TOA comparisons
between the various sensors observations and their simulations were
restricted to geometries matching any of the 200 MERIS observations,
only allowing only for a 5-degree total angular difference in the geomet-
rical matching process (see Section 5.1). To investigate the possible
extension of this domain, the geometrical matching process was aban-
doned and simply all cloud screened and quality checked sensor obser-
vations were simulated, regardless of their geometry of acquisition. This
results into approximately selecting 420AATSR acquisitions (previously
300), 50 ATSR-2 matching acquisitions (previously 30), 770 MERIS 2nd
reprocessing matching acquisitions (previously 660), 980 MERIS 3rd
reprocessing matching acquisitions (previously 830), 880 MODIS-A
matching acquisitions (previously 270), 1780PARASOLmatching acqui-
sitions (previously 250) and 720 VEGETATION-2 matching acquisitions
(previously 250).

The results in terms of bias between observations and simulations
(on the 2008/01/01) presented in Fig. 12 are only marginally affected
when all possible geometries of acquisition are considered for TOA sim-
ulations. The changes for all sensors and all spectral bands are of the
order of few tenths of percent compared to the results presented in
Fig. 12.

Similarly, the temporal trends presented in Fig. 13 are only margin-
ally affected when all possible geometries of acquisition are considered
for TOA simulations. The changes are all below 0.1%/year (except for
PARASOL 443 nm band) compared to the results given in Fig. 13.

This demonstrates that the TOA model can be used outside the
geometrical domain defined by the 200 MERIS observations that
were used to retrieve the BRDFmodel parameterswithout compromising
its performance.

5.5. What do all these space sensor observations tell us about the Libya-4
site?

It has been speculated that the Libya-4 BRDFmight suffer from a SAA
dependency due to a large scale alignment of the dunes with the wind
direction. The coupled surface-atmosphere model used in the present
study assumes invariance of the TOA and surface signal with respect
to the SAA (but not with respect to the difference (SAA − VAA)). The
multivariate analysis for the relative errors between all sensors observa-
tions and their simulation does not reveal any dependencywith respect
to the SAA. This is an indication that the model assumption is valid.

An implicit assumption made when analysis the temporal trends of
the various bands from each sensor is that the Libya-4 site radiometry
is stable. This assumption cannot be verified by comparing observations
from a single sensor to their simulations. In fact, the temporal evolution
of the difference between a given space sensor observations and its sim-
ulations is the result of 1) the potential radiometric temporal variability
of the site BRDF and atmosphere and 2) the residual error of the degrada-
tionmodel of the sensor. These two contributions cannot be disentangled
using the trends obtained froma single sensor.While it is clear that obser-
vations froma single instrument cannot provide alone estimates of the ra-
diometric stability of the site, the analysis of the trends obtained from
several sensors can provide indications on this stability. It is particularly
interesting to note two general tendencies in the linear temporal trends
obtained for all sensors in Fig. 13 (if ignoring the results obtained for
ATSR-2 which bare a large uncertainty):

• Most sensor measurements are stable (within 95% CI) in the green to
NIR spectral region

• The largest statistically significant trends (i.e., within 95% CI) are ob-
served in the blue spectral region

These two facts are consistent with 1) the expected ‘browning’ of
space instrument optics exposed toUV radiation, i.e., the faster degrada-
tion optical elements in the shorter wavelengths than in the longer
wavelength, and consequently with larger residual calibration trending
errors in the blue than the NIR and 2) with the assumption of radiomet-
ric stability of the Libya-4 site.

MERIS 3rd reprocessing measurements have the lowest trends
across the spectrum (see Fig. 14), all trends are within 0.1%/year. Such
stability can be explained by the fact that the MERIS instrument degra-
dation model should be less prone to residual errors as 1) it has been
shown that the instrument optics has degraded by at most about 5%
(in the blue) over its lifetime and 2) the instrument was equipped
with a first solar diffuser exposed every secondweek tomonitor this in-
strument degradation and 3) a second solar diffuser exposed every
3 months was used to monitor the first diffuser degradation. Assuming
the trends observed inMERIS 3rd reprocessing data (see Fig. 14) are due
to the site radiometric variability only leads to an upper estimate for the
Libya-4 site radiometric stability of 1%/decade over the 2002–2012 pe-
riod in the spectral range covered by MERIS. It is actually likely that
the residual trends in the blue are residual instrumental degradation
model errors as the MERIS calibration coefficients used for the 3rd
reprocessing results from the processing of the solar diffuser measure-
ments covering only the 2002 to 2009 period and not the full mission.

5.6. Are these findings consistent with the CEOS-IVOS-WG4 findings?

In the frame of the CEOS/IVOS WG4 (working group on PICS), an
intercomparison was carried out between various vicarious calibration
and radiometric intercomparison methodologies. This work involved
the Centre National Etudes Spatiales (CNES), ESA, the Rutherford
Appelton Laboratory (RAL) and the Vlaamse instelling voor technologisch
onderzoek (VITO). Intercomparisons over the sites Dome-C, Niger-2 and
Libya-4 were carried on a common reference dataset composed of
AATSR, A-MODIS,MERIS andPOLDER-3data spanning the2006–2009pe-
riod (see Adriaensen et al., 2012). MERIS data were used as reference for
these intercomparisons. The resulting radiometric difference between
MERIS and AATSR, A-MODIS and POLDER-3 for these methodologies for
the spectral band centred around 560 nm, 670 nm and 870 nm are
shown in Fig. 15. These values are comparable to the statistical indicator
chosen in the present study, i.e., the bias computed the 2008/01/01 fol-
lowing a linear fit of the time series of relative difference between obser-
vations and simulations.

6. Conclusion

A Monte Carlo vector radiative transfer model interfacing a fixed
plane parallel atmosphere and a modified RPV BRDF model with 4 free
parameters was used to simulate top-of-atmosphere reflectance time
series over the so-called Libya-4 site. First, the model is ‘calibrated’
against MERIS 3rd reprocessing observations, in the MERIS 15 spectral
bands, by adjusting the 4 free parameters of its surface BRDF model.
These parameters were then spectrally interpolated in order to serve
as input to the radiative transfer simulations of time series of observa-
tions from ATSR-2, AATSR, MODIS-A, MERIS (2nd/3rd reprocessing)
and VEGETATION-2.

Depending on the spectral band considered, AATSR radiometry
appears 2% to 3% above the model ‘calibrated’ on MERIS radiometry,
MODIS is 0% to 3% below, POLDER-3 is 2% to 4% below and
VEGETATION-2 about 4% below. ATSR-2 data during the 2002 to early
2003 period are almost 10% below their simulations. The presented anal-
ysis could be used to reduce the radiometric inconsistencies between
these sensors. The ability of the coupled surface-atmosphere model to
mimic the sensor observations allows computing accurate estimates of
the temporal trends in sensor observation time series. The temporal
trends obtained for all sensors against the coupled surface-atmosphere
model are consistent with the expected residual errors of instrument
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degradation model used in extrapolation: larger in the blue part of the
spectrum than in the NIR. This observation seems to indicate that the ob-
served trends are linked to the sensor degradation model residual errors
rather than to decadal radiometric changes of the site. The results of the
present study tend to indicate that the Libia-4 site is radiometrically stable
in the visible to NIR to better than 1%/decade during the 2002–2012 peri-
od, thus quantitatively confirming it is a terrestrial target particularly ad-
equate for the assessment of the temporal stability of EO sensors. The
results of the radiometric intercomparisons performed in this study com-
pare well to the findings of the CEOS/IVOS/WG4 on PICS. It further gives
confidence in these results.

Further work should be done to increase the spectral resolution of
the simulations, in particular in the spectral regions where gaseous ab-
sorption from O2 and H2O dominates. The hyperspectral sand database
used for the interpolation of the BRDF model should be further extend-
ed, ultimately, it should contain spectra directly obtained at the Libya-4
site. This work should also be extended to other PICS sites and also
snow sites (over Antarctica and Greenland) that are also considered as
pseudo-invariant.

The presented coupled surface-atmospheremodel of the Libya-4 site
cannot be considered as an absolute radiometric reference. Themodel is
‘calibrated’ onto the MERIS observations over the 2006–2009 period.
MERIS radiometric response was characterised pre-flight and it was
flown with two solar diffusers routinely exposed at different temporal
frequencies that should have ensured its radiometric stability. However,
it cannot be demonstrated that these devices did not suffer from any
process modifying their reflective properties in the ground to space
transfer or during their lifetime. MERIS, like all similar space borne in-
struments, suffered from a loss of radiometric traceability between its
on ground characterisation and inflight operation. Themodel presented
in this study is thus not aligned to an absolute traceable radiometric

standard. Only observations over the site from a space missions like
TRUTHS (Fox et al., 2011) or CLARREO (http://clarreo.larc.nasa.gov)
providing measurements directly compared to an onboard traceable
standard could allow such model to be ‘calibrated’ on a traceable and
absolute radiometric standard. The model presented here could be a
key element of the TRUTHS/CLARREO-like mission to transfer its radio-
metric standard to other space borne instruments by modelling the ra-
diometric differences between TRUTHS/CLARREO-like observations and
any other sensor observations due to geometrical and spectral response
differences. This radiometric transfer would not be only possible tomis-
sions flying simultaneously to a TRUTHS/CLARREO-likemission. The ra-
diometric stability of the pseudo-invariant calibration sites would also
allow to transfer this radiometric standard to EO instrument preceding
and following a TRUTHS/CLARREO-like mission. The combination of
space borne traceable absolute radiometric measurements, coupled
surface-atmosphere modelling and PICS will open the way to an era of
increased radiometric traceability for EO measurements.
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Fig. 15. Summary of the intercomparison of all methodologies participating to the CEOS/IVOS/WG4 on pseudo-invariant calibration sites showing themean relative difference between a
given sensor and MERIS 2nd reprocessing data expressed in percent. The error bar is the associated standard deviation expressed in percent. The black dots are the results obtained from
the methodology presented in this paper.
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