
 
 

 

 

A sequential partly-iterative approach for 
multicomponent reactive transport with CORE2D 

 
 

 
Javier Samper¹, Tianfu Xu2 and Changbing Yang¹* 

 

¹ University of La Coruña, La Coruña, Spain, 15071 (corresponding author Javier Samper: jsamper@udc.es)  

2 Lawrence Berkeley National Laboratory, Berkeley, California 

* Now at Utah State University. USA. yangcb@gmail.com 

 

mailto:jsamper@udc.es
mailto:yangcb@gmail.com


 
 

 

 

Abstract 

CORE2D V4 is a finite element code for modeling partly or fully saturated water flow, heat 

transport and multicomponent reactive solute transport under both local chemical equilibrium 

and kinetic conditions. It can handle coupled microbial processes and geochemical reactions 

such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas 

dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via 

surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution 

reactions. Coupled transport and chemical equations are solved by using sequential iterative 

approaches. A sequential partly-iterative approach (SPIA) is presented which improves the 

accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the 

general sequential iterative approach (SIA). While SNIA leads to a substantial saving of 

computing time, it introduces numerical errors which are especially large for cation exchange 

reactions. SPIA improves the efficiency of SIA because the iteration between transport and 

chemical equations is only performed in nodes with a large mass transfer between solid and 

liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA 

using synthetic examples and a case study of reactive transport through the Llobregat Delta 

aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU 

time. In addition, SPIA is much more accurate than SNIA with only a minor increase in 

computing time. A further enhancement of the efficiency of SPIA is achieved by improving the 

efficiency of the Newton-Raphson method used for solving chemical equations. Such an 

improvement is obtained by working with increments of log-concentrations and ignoring the 

terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for 

the symmetry and non-singularity of the Jacobian matrix. Numerical analyses performed with 

synthetic examples confirm that these modifications improve the efficiency and convergence of 

the iterative algorithm. 
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1.  Introduction 

  

 Progress in coupled thermal, hydrodynamic, geochemical and microbial models in porous 

and fracture media is essential to understand how physical, geochemical and biological reactions 

are coupled in groundwater and their effect on groundwater-chemistry evolution and the reactive 

transport of contaminants and microorganisms. Numerical models have been increasingly used 

for this purpose, a trend that will continue because more sophisticated models and codes are 

being developed and computer costs keep decreasing. Significant efforts and attempts have been 

made during recent years toward the development of such tools (Kirkner et al., 1985; 

Kaluarachchi and Parker, 1990; Steefel and Van Cappellen, 1990; Lensing et al., 1994; Salvage 

and Yeh, 1998; Ayora et al., 1998; Steefel and Lichtner, 1998; Tebes-Stevens et al., 1998; 

Yabusaki et al., 1998; Chilakapati et al., 2000; Saaltink et al., 2000; Xu et al., 2000; Yeh, 2000; 

Ginn et al., 2001; Regnier et al., 2002; Saaltink et al., 2003; Pruess et al., 2004; Maher et al., 

2006; Yang, 2006; Yang et al., 2007; Yang et al., 2008a,b). A recent review on reactive transport 

modelling is presented by Steefel et al.(2005).  

The group of University of La Coruña (UDC) has developed over the last 15 years a series of 

codes with the generic name of CORE (COde for modeling partly or fully saturated water flow, 

heat transport and multicomponent REactive solute transport under both local chemical 

equilibrium and kinetic conditions). The reference code, CORE-LE2D was an extended and 

improved version of a previous reactive transport code, TRANQUI (Xu et al., 1999). CORE-

LE2D solves simultaneously for groundwater flow, heat transport and multicomponent reactive 

solute transport under the following conditions: 1) 2-D confined or unconfined, saturated or 

unsaturated steady-state or transient groundwater flow with general boundary conditions. 2) 

Chemical equilibrium including (a) Acid-base, (b) Redox, (c) Aqueous complexation, (d) 

Surface sorption, (e) Ion exchange, (f) Mineral dissolution-precipitation, and (g) Gas dissolution-



 
 

 

 

exsolution. 3) Transient heat transport considering conduction, heat dispersion and convection. 

CORE2DV2 was released in 2000 (Samper et al., 2000). Contrary to CORE-LE2D, CORE2DV2 

can handle kinetically-controlled dissolution-precipitation reactions. This version has been 

widely verified (Samper et al., 2000). CORE2D V2 was the base for the development of: 1) 

INVERSE-CORE2D, a code for automatic estimation of up to 16 different types of reactive 

transport parameters (Dai and Samper, 2004, 2006) and 2) BIOCORE2D (Zhang, 2001; Samper et 

al., 2006a; Zhang et al., 2008), a code which accounts for microbial processes in addition to 

geochemical reactions. 

 The most recent version of CORE2D, CORE2D V4 (Samper et al., 2003) is presented here. It 

was developed from CORE2D V2 (Samper et al., 2000) by adding some of the capabilities of 

BIOCORE2D and INVERSE-CORE2D such as automatic time stepping, kinetic aqueous 

complexation reactions, microbial processes, and inverse subroutines of INVERSE-CORE2D. A 

novel sequential approach is presented here which requires iteration between transport and 

chemical equations only in finite element nodes having a large mass transfer between solid and 

liquid phases. This approach is denoted as sequential partly-iterative approach (SPIA). At a 

given time step, after solving the transport equations, chemical calculations are performed only 

at the nodes not satisfying a prescribed partly-iterative tolerance. The computing time and the 

accuracy of SPIA is compared to those of other sequential iterative approaches for several 1-D 

synthetic examples covering the major types of hydrochemical reactions and a case study 

reported by Xu et al. (1999) dealing with cation chromatographic separation through the 

Llobregat Delta aquitard near Barcelona, Spain.  Several modifications of standard Newton-

Raphson iterative methods used for solving the set of nonlinear chemical equations are proposed 

which include: (1) working with increments of log-concentrations and (2) ignoring the terms of 

the Jacobian matrix containing derivatives of activity coefficients with respect to component 

concentrations. These modifications are shown to improve the efficiency and convergence of the 



 
 

 

 

iterative algorithm and lead to better conditioned systems of equations. A proof is given for the 

symmetry and nonsingularity of the Jacobian. Numerical analyses performed with synthetic 

examples confirm these results. 

2.  Mathematical formulation  

When diffusion and dispersion coefficients are the same for all aqueous species, reactive 

transport equations can be written in terms of total dissolved component concentrations, Ck, as 

(Yeh, 2000): 
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k k k k k C

C
C C w C C R k N

t
θ θ θ

∂
∇ ⋅ ∇ − ⋅∇ + − + = =

∂
D q  (1) 

where D is the dispersion tensor, q is the Darcy velocity, θ is the volumetric water content, w  is 

the external fluid source term, C* is the dissolved concentration of external fluid sources, k refers 

to the chemical component from 1 to NC.  Rk is the reactive chemical-microbial sink/source term 

which includes the chemical interactions of the kth component with the solid and gaseous species, 

the kinetics of aqueous complexation reactions and the consumption/production of the chemical 

component by microbiological processes.   

  Geochemical reactions can be grouped into two classes: 1) Homogeneous reactions which 

occur in the liquid phase, such as aqueous complexation, acid-base and redox reactions and 2) 

Heterogeneous reactions which involve mass transfer from liquid to solid/gas phases, and 

include mineral precipitation/dissolution, surface complexation, cation exchange and gas 

dissolution/exsolution. The total dissolved concentration of a given component, Ck in Eq. (1) can 

be written in an explicit form as a function of the concentration of the NC components or primary 

species 
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where Kj is the equilibrium constant which depends on the pressure and temperature of the 

system; xj and ci are molar concentrations of secondary and primary species, respectively, γ are 

activity coefficients, Nx is the number of secondary species, andijν  is stoichiometric coefficient 

of the i-th primary species in aqueous complexation of the j-th secondary species.  

Under equilibrium conditions, dissolution-precipitation reactions can be described by the 

mass action law which states that 
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where Xm is molar fraction of the m-th solid phase; mλ is thermodynamic activity coefficient (Xm 

and mλ  are taken equal to unity for pure phases); p

mi
ν  is the stoichiometric coefficient in the 

dissolution reaction of the m-th solid phase; and Km is the corresponding equilibrium constant. 

The assumption of pure phases has been accepted for reactive transport problems involving 

cement-based materials (Richardson, 1999). The equilibrium condition provides a relationship 

between the concentrations of the involved aqueous species. The mass transfer needed to achieve 

this condition is not specified. In fact, Eq. (3) does not include the concentration of the m-th solid 

phase, and therefore the amount of dissolved/precipitated mineral cannot be computed explicitly.  

Kinetic mineral dissolution/precipitation is modeled with the following rate law: 
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where r is the dissolution/precipitation rate (mol/m2/ s), Ω is the saturation index (dimensionless) 

and ς  is an integer variable which takes values of 1 or –1 depending on whether Ω  is larger or 

smaller than 1 (precipitation/dissolution), respectively. At equilibrium Ω = 1 and r = 0. The term 

Ea

RTe
−

 is a thermodynamic factor which accounts for the temperature, T, and the apparent 

activation energy of the overall reaction Ea  (KJ/mol). R (KJ/mol·ºK) is the gas constant and T is 



 
 

 

 

the absolute temperature. kN  is the number of kinetic reaction terms. kK is the kinetic rate 

constant for the kth kinetic term (mol/m2/s),  
1

C X

ki

N N

i

a
+

=
∏  is a term accounting for the catalytic effect 

of some species such as H+ and ai is the activity of the ith aqueous species. NC and NX are the 

numbers of primary and secondary species, respectively, kθ  and kη  are kinetic parameters 

usually determined from experiments.  

The subsurface environment contains microbes which use organic and inorganic chemical 

species as substrates, electron acceptors and nutrients. Microbial growth obeys Monod kinetic 

laws such as  
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where Cs, Ca and  Cn are concentrations of substrates, electron acceptors, nutrients, respectively; Ks, Ka, Kn 

are half-saturation constants of substrates, electron acceptors and nutrients, respectively; 

superscripts p, q and r refer to the order of substrates, electron acceptors and nutrients in the 

ecosystem; , ,p q r
iµ is the specific growth rate and , ,p q r

iG is the lag coefficient of the ith microbe 

growing on the pth substrate and qth electron acceptor; and Ns, Na, and Nn are the total numbers of 

substrates, electron acceptors and nutrients, respectively. Expressions of other microbial 

processes such as metabolic competition, decay, metabiosis, endogeneous respiration and 

attachment/detachment of microorganisms on biofilm can be found in Zhang (2001) and Samper 

et al. (2006a). Consumption and yield rates of chemical species involved in microbiological 

processes are related to microbial growth rates by yield coefficients. The rate of consumption of 

the pth substrate due to microbial growth, Bp, is given by:   
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where pj,i,
sY is the yield coefficient of the pth substrate being used by the ith microbe in its jth 

growth. To illustrate the previous concepts, let us consider iron reducing bacteria (IRB) which 

grow at a rate RB by oxidizing dissolved organic carbon (DOC) and reducing ferric minerals. The 

rate of substrate consumption, DOCR , is given by 

B

B
DOC Y

R
R −=       (7) 

where YB is the yield coefficient of DOC to IRB. Oxidation of DOC yields bicarbonate. Then, 

the rate of bicarbonate production by microbial processes, −
3HCO

R , is calculated as 

DOCHCOHCO
RYR

33
−− −=  where −

3HCO
Y is the yield coefficient of −

3HCO  from DOC. The 

consumption rate of dissolved Fe3+, +3Fe
R , is given by  DOCaFe

RfR 3 =+  where fa is the 

proportionality coefficient of Fe3+ and DOC in the redox reaction. Proportionality coefficients 

are generally equal to stoichiometric coefficients. However, they may differ from stoichiometric 

coefficients when the substrate is a complex macromolecular organic compound.  

Chemical reactions which involve mass transfer from solid to liquid phases can induce 

changes in physical and hydrodynamic properties of a porous medium (Steefel and Lichtner, 

1994). For instance, mineral dissolution (precipitation) can increase (decrease) the porosity. Such 

a change in porosity may, in turn, affect flow and transport properties (e.g., diffusion coefficient 

and permeability). Changes in porosity are evaluated from computed dissolution/precipitation 

rates using an explicit method. CORE2D V4 incorporates a Kozeny-Carman equation to relate 

permeability to porosity. Effective diffusion coefficient may change with porosity of the porous 

medium due to mineral dissolution-precipitation. Different expressions of effective diffusion 

coefficient in terms of porosity have been implemented in CORE2D V4. One of them is the 

expression derived by Garboczi and Bentz (1992) from numerical tests performed of 

microstructure of cement paste. 



 
 

 

 

 
3. Numerical methods  

The finite element method is used in CORE2D V4 to solve for groundwater flow, solute and 

heat transport equations. The groundwater flow equation is solved first in terms of hydraulic 

heads for saturated flow in confined or unconfined aquifers. Unconfined aquifer flow equation is 

solved iteratively using a predictor-corrector scheme. Flow in variably saturated media is solved 

in terms of pressure heads by a Newton-Raphson iterative method. For steady-state flow, the 

equation is solved once only at the first time step. Water velocities, which are needed to evaluate 

advective and dispersive solute and heat fluxes, are computed from nodal head values by direct 

application of Darcy’s law to the finite element solution.  

Thermal conduction and advection are considered in the heat equation. The solution of the 

heat transport equation is used to update temperature-dependent chemical equilibrium constants, 

activity coefficients and kinetic rates. Solution of heat transport shares subroutines with solute 

transport solution because the structure of both equations is similar. 

Each chemical component has a transport equation in terms of its total dissolved 

concentration. Since chemical sink/source terms are assumed known (they are evaluated at the 

previous iteration), each transport equation can be solved separately. Transport matrices may be 

different for each component because diffusion coefficients and effective porosity may be 

component dependent. A Newton-Raphson method is used to solve the geochemical equations. 

Biogeochemical reactions are solved node-wise. 

The numerical formulation presented here to solve the coupled equations of solute transport 

and chemical reactions is based on the sequential iteration approach (SIA) (Yeh and Tripathi, 

1991; Simunek and Suarez, 1994; Walter et al., 1994; Lichtner, 1996; Xu et al., 1999) in which 

transport and chemical equations are solved separately in a sequential manner. Transport 

equations are solved first and then chemical reactions. This sequence is repeated until 



 
 

 

 

convergence is attained for a prescribed tolerance. The key point of SIA is therefore the 

sequential solution of two independent sets of equations: (a) transport equations which are solved 

in a component manner, and (b) chemical equations which are solved node wise. These two sets 

of equations are coupled by reaction sink/source terms which are updated during the iterative 

cycle. The formulation implemented in CORE uses a mixed explicit-implicit scheme based on 

the standard transport operator which has adequate convergence properties (Xu, 1996). This 

scheme derives from rewriting Eq. 1 as  
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where superscript s denotes the transport plus reaction iteration number. A transport plus reaction 

iteration consists of two stages, a transport stage denoted by s+½ (it should be noticed that ½ 

does not mean ∆t/2 where ∆t is the time step) and a reaction stage denoted by s +1. Since 

reaction sink/source terms Rj
s  do not depend on 2/1+s

jC , Eq. 8 are linear and have the same 

structure as the standard transport equation of a conservative solute. These equations are solved 

with the Galerkin finite element method (Xu, 1996) and using a finite difference backwards 

Euler scheme for time derivatives. The system of equations for the j-th component is  
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where η  is a time weighting parameter (η =0 for explicit, η =1 for implicit), E is a (Nd x Nd) 

matrix containing dispersion and advection terms where Nd is the number of nodes of the finite 

element grid, F is also a (Nd x Nd) matrix of storage terms, 2/1,1 ++ sk
jC  is a column vector of nodal 

concentrations at the (s+1/2) stage of the (k+1)-th time step, sk
j

,1+R  is the column vector of 

reaction sink/source terms which are derived from the solution of the chemical system at the s-th 

iteration, g j
k+1

 is a column vector containing boundary terms as well as external fluid sink/source 



 
 

 

 

terms, ∆t t tk k= −+1
, and superscript k denotes time step. The actual expressions of E, F and 

g j
k+1

are given by Xu (1996). Eq. 9 is solved separately for each chemical component. Computed 

component concentrations,
2/1,1 ++ sk

jC , are then used to update total analytical concentrations, 

2/1,1 ++ sk
jT , which are defined in (A1) and include the contributions of precipitated, exchanged and 

sorbed species in addition to total dissolved concentrations. By solving the chemical equations in 

the manner described in Appendix A one obtains new values of dissolved concentrations 

1,1 ++ sk
jC and reaction terms 1,1 ++ sk

jR  which are compared to 1,1 ++ sk
jC  and sk

j
,1+R  to check for 

convergence. Sequential solution of transport and chemical equations is repeated until prescribed 

convergence criteria are satisfied both in terms of dissolved concentrations and reactive terms.  

The sequential non-iterative approach (SNIA) is a particular case of the sequential iteration 

approach (SIA) in which the sequence of transport and reaction equations is solved only once. 

The sequential partly-iterative approach (SPIA) only requires iteration between transport and 

chemical equations in areas where there is a large mass transfer between the solid and the liquid 

phases. 

The time step t∆  can be specified in advance by the user or derived from an automatic time 

stepping algorithm. The initial value of t∆  is obtained as the minimum value which satisfies 

simultaneously the following conditions: 1) The dimensionless time needed for the dissipation of 

a hydraulic perturbation within any finite element should be smaller than 2, 2) Courant number 

smaller than one, 3) Stability of chemical kinetics and 4) User-specified minimum printing 

intervals. Time steps are automatically updated by using empirically-derived expressions derived 

from several functions measuring the convergence performance such as numerical stability, 

number of transport+chemistry iterations and maximum cumulative concentration change among 

all nodes and aqueous components. Further details of the stepping algorithm can be found in 

Zhang (2001). 



 
 

 

 

Two types of stabilization methods have been implemented in CORE2D V4 to reduce 

numerical oscillations produced by classical finite element methods when solving advection-

dominated problems, They include stream upwinding Petrov-Galerkin (SUPG) method and 

subgrid scale stabilized method (Yang and Samper, 2008). 

CORE2D V4 can cope with heterogeneous systems having irregular internal and external 

boundaries. The code also can handle heterogeneous and anisotropic media. It is not restricted to 

specific chemical species, and therefore can consider any number of aqueous, exchanged and 

sorbed species, minerals and gases. Thermodynamic data and stoichiometric coefficients of 

chemical equilibrium reactions are read directly from a database which is modified from the 

EQ3NR database (Wolery, 1992). A pre-processor is provided to convert the contents of other 

chemical databases such as PHREEQE, MINTEQ, NEA, CHEMVAL and HATCHES into the 

format of CORE databases. It is worthy noting that CORE2D V4 can handle also problems with: 

1) Anisotropic diffusion to deal with diffusion anisotropy in clay media (see Samper et al., 

2006b), 2) Isotopic transport coupled with chemical reactions for the purpose of simulating 

radionuclide release from a radioactive waste repository, and 3) Automatic estimation of flow, 

solute transport, chemical and biological parameters (Yang et al.,  2008b). 

 
4.  Verification and Applications of CORE 
 

CORE2D V4 has been extensively verified against analytical solutions. The conservative 

solute and heat transport subroutines of CORE2D V4 have been verified for one-dimensional 

conditions. The 1-D test case corresponds to the time evolution of concentrations in a semi-

infinite confined aquifer under steady-state uniform flow. Reactive transport with kinetic 

dissolution-precipitation reactions and kinetic aqueous complexation has been verified against 

analytical solutions for 1-D problems in saturated media (Yang and Samper, 2008). 



 
 

 

 

Multicomponent reactive transport coupled with cation exchange reactions has been verified 

against analytical solutions derived by Samper and Yang (2007). Reactive transport with kinetic 

rate laws was verified for calcite and smectite dissolution against 1DREACT (Steefel, 1993). 

Capabilities of CORE2D V4 to deal with redox reactions were verified against DYNAMIX with a 

case of uranium migration through a column (Liu and Narasimhan, 1989). Reactive transport 

with cation exchange routines was verified against a solution reported in PHREEQM user’s 

manual problem (Nienhuis et al., 1991) which involves a column initially filled with 1 mM 

NaNO3 and 0.2 mM KNO3 which is flushed by a 0.6 mM CaCl2 solution. This case illustrates the 

chromatographic separation of Ca2+ and K+. Ca2+ is weakly adsorbed and is eluted first. K+ is 

more tenaciously held than Ca2+ and appears retarded in the column effluent. As indicated by 

Samper et al., (2006), subroutines for solving microbial processes were verified against 

analytical solutions derived by Salvage and Yeh (1998) and against other codes such as 

BIOCLOG3D (Engesgaard, 2000) and FEREACT (Tebes-Stevens et al., 1998). 

CORE2D V4 has been extensively used to model laboratory experiments (Samper et al., 

2008a,b) and in situ experiments performed at Underground Rock Laboratories (URL) such as 

those of Mont Terri (Switzerland) within the context of DI-B (Samper et al., 2006b), DR and VE 

experiments, Mol (Belgium) in the framework of CERBERUS experiment (Samper et al., 2006a; 

Zhang et al., 2008), Bure (France) within DIR experiments, Äspö (Sweden) within the Redox 

Zone (Molinero et al., 2004; Molinero and Samper, 2006) and REX experiments (Yang et al., 

2008b) and FEBEX experiment (Samper et al., 2008c) at Grimsel (Switzerland). CORE2D V4 

has been used also to calculate the long-term geochemical evolution of radioactive waste 

repositories in clay (Yang et al., 2008a) and granite (Yang et al., 2007) in integrated 

performance assessment projects such as BENIPA, NFPRO and PAMINA.  CORE2D has been 

used also to simulate: 1) Solute transport in natural aquifers including uranium transport in 

Andújar aquifer (Spain), geochemistry of Aquia aquifer, USA (Dai et al., 2006) and salt water 



 
 

 

 

flushing in Llobregat delta aquitard (Dai and Samper, 2006), 2) Drainage of civil engineering 

works, flow into tunnels and underground excavations, 3) Groundwater flow and heat transport 

in hydrothermal systems, 4) Concrete degradation (Galíndez et al., 2006), and 5) Stochastic 

transport and multicomponent competitive cation exchange in aquifers (Samper and Yang, 2006)  

5. Comparison of sequential approaches 

Some investigators such as Walter et al. (1994) claim that physical transport and chemical 

reaction reactions taking place under equilibrium conditions can effectively be de-coupled and 

therefore can be solved separately in a sequential manner without the need to iterate between 

transport and chemical equations. Steefel and MacQuarrie (1996) present a comparison of 

several approaches including direct substitution approach (DSA), SIA, SNIA and a time-centered 

SNIA or Strang splitting approach using several simple cases. They found that SIA sometimes 

gives the smallest error to CPU time ratio although in other cases SNIA is more efficient. While 

DSA can solve all the problems, it is not always the most computationally efficient approach. Xu 

et al. (1999) present a systematic comparison of the performance and accuracy of SIA and SNIA. 

Their results show that SNIA requires less computing time than SIA. However, the accuracy of 

SNIA is highly dependent on space and time discretization and the type of chemical reactions.  

A new sequential approach is presented here that requires iteration between transport and 

chemical equations only in nodes where there is a large mass transfer between the solid and the 

liquid phases. It is the sequential partly-iterative approach (SPIA). This new approach is 

implemented as follows. After the transport stage of a given iteration, chemical equations are 

solved only at the nodes in which the following convergence criterion has not been met in 

previous iterations 

ε≤
∆

ij

ij

j  all C
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max       (10) 



 
 

 

 

where Cij is the total dissolved concentration of the j-th chemical component at the i-th node, ∆Q 

is the mass transfer from the solid to the liquid phase per unit fluid volume during the time step 

∆t, and ε is a prescribed partly-iterative tolerance. Notice that ∆Q and Cij have the same units 

because it is a common practice in reactive transport modeling to express all concentrations as 

mol/L, even for solid species. 

To evaluate the performance of SPIA, a systematic comparison of the accuracy and 

computing requirements of the three sequential approaches (fully iterative, SIA, partly-iterative, 

SPIA, and non-iterative, SNIA) was carried out.  Accuracy of SNIA and SPIA is evaluated by 

computing relative differences such as, 
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where superscript * applies to either SPIA or SNIA, δikj
*  is the relative difference at the i-th 

node for the  j-th component at the k-th time step. To perform a systematic comparison, only the 

maximum and average values of δikj
* , δmax

*  and δ *  are retained which are defined as 
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where Nd, NC, and Nt are the number of nodes, chemical components and time steps, respectively. 

 

5.1 Comparison using synthetic examples 

The comparison of the performance of SIA, SPIA and SNIA was conducted on the same 

synthetic cases used for TRANQUI verification (Xu, 1996). They correspond to simple 1-D 



 
 

 

 

reactive transport problems under steady-state flow conditions. Each case involves a different 

type of chemical reactions. The first one deals with gypsum dissolution while the second 

involves pyrite oxidation. The third case is a cation exchange verification example discussed by 

Appelo (1994). The forth synthetic case coincides with Case 2 of Cederberg et al. (1985) which 

involves cadmium sorption in a soil column. 

Stability of the numerical solutions of solute transport equation as well as convergence of the 

iterative process are controlled by the Courant and Peclet dimensionless numbers. The Courant 

number, C, is defined as v t / x∆ ∆  where v is water velocity and ∆t  is time increment. In order 

to ensure stability, C must be less than 1, although usually C < 1 3/ . The Peclet number, P, is the 

ratio between advective and dispersive transport. If diffusion is negligible, the grid Peclet 

number is equal to ∆x /α  where ∆x  is grid size and α  is dispersivity. Stability is usually 

ensured whenever P < 2. 

A Courant number of 0.1 and a Peclet number of 1 were used in all four cases. The values of 

the maximum and average differences for each case are summarized in Table 1. For SNIA the 

maximum and average differences are small (less than 1.16% and 0.4%, respectively) for all 

cases (dissolution, redox and adsorption) except for cation exchange. Here the average difference 

is moderately large (equal to 2.4 %) while the maximum difference reaches a significantly large 

value of 57.4 %. The partly-iterative approach is always much more accurate than SNIA. One 

can see in Table 1 that SPIA differences are almost negligible. The largest maximum relative 

difference is equal to 8.4×10-4  % (five orders of magnitude smaller than that of SNIA).  

The performance of the three approaches in terms of computing time is summarized in Table 

2. SIA requires from 1.4 to 3.8 times the CPU time of SNIA which is always the fastest approach. 

SPIA, which is much more accurate than SNIA, requires from 1.2 to 1.9 times the CPU time of 

SNIA. 



 
 

 

 

Clearly, SPIA leads to a substantial saving of computing time when compared to the most 

CPU-demanding approach, while it provides solutions which for all practical purposes are as 

accurate as those of SIA. 

Additional runs were performed for the cation exchange synthetic case because it shows the 

largest errors. A more detailed account of this example is provided to understand better the 

results. This case corresponds to a laboratory column experiment reported by Appelo (1994). It 

illustrates cation chromatographic separation along a column which is initially filled with a pore 

water containing 1 mM of NaNO3 and 0.2 mM of KNO3. The column is flushed at a constant 

discharge of 0.072 m/day with a 0.6 mM CaCl2 solution. The column is 0.1 m long and contains 

a porous material with a porosity of 0.3, a dispersivity of 0.001 m, and a cation exchange 

capacity (CEC) of 0.01779 meq/100 g. The density of the solids is equal to 2650 kg/m3. 

Molecular diffusion is negligible. Redox reactions which could affect nitrate concentrations are 

disregarded. Therefore, both nitrate and chloride can be treated as conservative species. 

Thermodynamic data were taken from PHREEQM database (Nienhuis, 1991).  

To evaluate the effect of Courant and Peclet numbers on average and maximum relative 

differences of SPIA and SNIA, this problem was solved for 12 pairs of Courant and Peclet 

numbers corresponding to Peclet numbers of 0.2 and 1 and the following Courant numbers: 0.05, 

0.1, 0.2, 0.5, 1 and 2. 

For the non-iterative approach, SNIA, maximum differences, δmax
* , are much greater than 

average differences, δ *  (Figure 1). Both of them increase with increasing Courant and Peclet 

numbers. Differences are much more sensitive to variations in Courant number than they are 

with respect to P. A log-log plot of average and maximum relative differences versus Courant 

number reveals that results fit to straight lines having slopes equal to 0.61 for δ * and 0.44 for 

δmax
*  which are similar for P=0.2 and P=1. The average difference is small (1.5 %) for C = 0.05. 



 
 

 

 

However, it attains a significantly large value (17.2 %) for C = 2. Maximum differences are 

much greater and vary from 30 % for C = 0.05 to 184 % for C = 2. 

A convergence tolerance ε (in Eq. 10) of 10-2 was used for the partly-iterative approach, 

SPIA. Contrary to SNIA, SPIA maximum differences show a mild dependence on the values of 

C and P. The maximum difference is always smaller than 1.2 %, while the average difference is 

so small (on the order of 2×10-4  %) that it does not show in Figure 1. For ε = 10-3, differences are 

almost zero, meaning that SPIA and SIA solutions are almost identical. 

Figure 2 shows the breakthrough curves computed with the three approaches using Courant 

and Peclet numbers equal to 1. As expected, all solutions coincide entirely for conservative 

solutes such as Cl-. The breakthrough curve of Na+ is retarded with respect to that of Cl-. 

Moreover, K+ is tied to the exchange complex more strongly than Na+, and it is released later to 

the solution. In spite of the fact that the input solution has a very low K+ concentration, the 

release of exchanged K+ provokes a peak of dissolved K+ (retardation). Dissolved Ca2+ coming 

from the input solution is consumed in displacing Na+ and K+ from exchange sites. Therefore, 

dissolved Ca2+ breaks through much later than what would correspond to a conservative species. 

SPIA results obtained with ε = 10-2 and ε = 10-3 cannot be distinguished from those of SIA in Fig. 

2. There are some differences between SNIA and SIA breakthrough curves of K+. Curves of Na+ 

and K+ computed with SNIA are smoother than those of SIA, indicating that SNIA introduces 

numerical dispersion. This result is consistent with the findings of Herzer and Kinzelbach (1989) 

and Valocchi and Malmstead (1992) who concluded from both theoretical and numerical analyses 

that de-coupling of transport and chemical equations introduces numerical dispersion unless these 

equations are solved iteratively. 

 
 
5.2. Comparison on a case study 



 
 

 

 

A case study dealing with cation chromatographic separation through a vertical column of 

the Llobregat River Delta aquitard (Barcelona, Spain) was used to evaluate the performance of 

the sequential approaches in real complex problems. The regional setting of this two-layer 

aquifer separated by the aquitard here considered is described elsewhere (Iribar et al., 1997). The 

cation content of interstitial water in the Llobregat Delta aquitard shows the typical distribution 

of saline water in equilibrium with the soil, which is being displaced by upwards fresh water 

flow. Xu et al. (1999) presented the results of the simulation of reactive transport using 

TRANQUI. 

It is believed that the Llobregat River Delta aquifer system has been in close to steady-state 

head conditions during the last 3500 years. Fresh water coming from the deep aquifer has been 

flushing the aquitard at an estimated average flux of 2.373×10-3 m/year. The 35 m thick saturated 

aquitard column is constituted by a homogeneous clay-silt layer. According to Manzano (1993), 

porosity is equal to 0.411, longitudinal dispersivity amounts to 0.7 m while the pore water 

diffusion coefficient takes a value of 3.2×10-3 m2/year. 

The chemical composition of native aquitard pore water is listed in Table 3. This 

composition coincides for the most part with that of present Mediterranean seawater. Table 3 

also contains the chemical composition of groundwater in the lower aquifer. The numerical 

model accounts for: (1) acid-base and aqueous complexation reactions involving 14 secondary 

species, (2) cation exchange, and (3) dissolution-precipitation of calcite. These reactions are 

assumed to take place at local equilibrium. Their corresponding equilibrium constants are listed 

in Table 4. Gaines-Thomas convention was adopted for cation exchange, according to which 

activities of exchanged cation are given by their equivalent fractions (Appelo and Postma, 1993). 

Selectivity coefficients were derived from averages of measured values, except for NH4
+, for 

which a value of 0.5 was selected. 



 
 

 

 

Since the performance of SNIA and SPIA compared to that of SIA is expected to depend on 

space and time discretization, reactive transport through the Llobregat Delta aquitard was solved 

for a wide range of Peclet, P, and Courant, C, numbers. P ranges from 0.5 to 2 while C varies 

from 0.0579 to 0.9264. 

SNIA introduces errors which increase with increasing values of P and C. In a log-log plot of 

maximun and average errors versus Courant number, numerical results fit to straightlines (see 

Figure 3) having of 0.63 for maximum differences and 0.4 for average differences which are 

similar to those found for the cation exchange case (compare Figures 1 and 3). The Peclet 

number also affects the magnitude of the differences, although its effect is much smaller than 

that of the Courant number. For the smallest P and C values (P=0.5 and C= 0.0579) the average 

difference is rather small (1.32%) while the maximum difference is equal to 16.32 %.  For the 

largest P and C values (P= 2 and C= 0.9264), the average difference takes a small but significant 

value of 5 % whereas the maximum difference amounts to 123 %. 

Numerical results obtained with the partly-iterative approach, SPIA, are for all practical 

purposes undistinguishable from those of the exact solution. SPIA errors are always close zero, 

and for that reason they are not plotted in Figure 3. 

Common to all approaches is the increase of CPU time when the Courant number decreases 

(Table 5). Such an increase is especially noticeable for C=0.0579. On the contrary, CPU time 

shows no clear dependence on Peclet number. One would expect to observe a CPU time 

reduction by using coarse grids with large Peclet numbers. Some of the results in Table 5 

confirm this expectation, although the results corresponding to C=0.0579 show just the contrary. 

SNIA requires from 2 to 3 times less CPU time than SIA. This means that CPU time is reduced 

by a factor of 2 to 3 when iteration between transport and chemistry calculations is not 

performed. It should be noticed that the ratio of SIA to SNIA CPU times decreases as C 



 
 

 

 

decreases. For commonly used values of Courant number (usually less than 1/3), this ratio is 

approximately equal to 2. 

As expected, the CPU time for SPIA is always between those of SNIA and SIA for fixed 

values of P and C. A comparison of SPIA with the most accurate and time consuming approach, 

SIA, reveals that SPIA requires from 30 to 50% less CPU time than SIA. The smaller the 

Courant number, the greater the saving of CPU time achieved by SPIA. Apparently, the 

reduction in computing time achieved by SPIA seems to be independent of Peclet number, at 

least within the range 0.5 ≤ P ≤ 2. The comparison of the performance of SPIA with respect to 

that of SNIA shows that SPIA is as efficient as SNIA for small Courant numbers. For values 

greater than 0.2, however, SPIA requires twice as much CPU time as SNIA. 

Figure 4 shows the breakthrough curves of total dissolved Ca2+, K+, Na+ and Cl- at several 

points in the aquitard. They were computed with SNIA, SPIA, and SIA using Courant and Peclet 

numbers both equal to 1. Similar to the exchange synthetic case, SPIA curves coincide entirely 

with those of SIA. Numerical solutions obtained with the non-iterative approach, SNIA, also 

coincide with those of SIA for conservative species such as chloride (see Figure 4d). However, 

SNIA solutions for strongly reactive species such as calcium, which interacts with the exchange 

complex and participates in calcite dissolution-precipitation, show some deviations from “exact” 

solutions. Deviations in Ca breakthrough curves are largest at the bottom of the aquitard where 

the effects of mixing of fresh and saline waters and chemical reactions are strongest (Figure 4a). 

Potassium breakthrough curves computed with SNIA also show noticeable discrepancies with 

respect to SIA. In addition, these curves exhibit additional numerical dispersion. It should be 

noticed that SNIA solution for sodium (see Figure 4d) shows no major discrepancies because the 

changes in its concentration are caused mostly by dilution and to a much less extent by cation 

exchange. To realize such effect, the reader should pay attention to the fact that the concentration 

scale in Figure 4d is ten times larger than those used in Figures 4a, 4b and 4c. 



 
 

 

 

In general, the largest errors of SNIA take place in areas where boundary water mixes with 

native water, near concentration moving fronts and at the interfaces between different 

geochemical zones. To overcome this drawback of SNIA, SPIA iterates between transport and 

chemical reactions only in regions where it is needed to achieve accurate numerical solutions. 

Numerical modelling of reactive transport in the Llobregat Delta aquitard allows us to draw 

the following conclusions about SIA, SPIA, and SNIA: 

1)  SNIA is from 2 to 3 times numerically more efficient than SIA. However, SNIA solutions 

are less accurate and exhibit more numerical dispersion than SIA solutions. SNIA errors increase 

with increasing Peclet and Courant numbers. Relative errors range from 1.3 to 5% (in average), 

although they may reach locally very large values. 

2)  The proposed sequential partly-iterative approach, SPIA, achieves almost the same 

accuracy as SIA with a reduction in CPU time ranging from 30 to 50%. 

3)  The accuracy of SPIA solutions depends on the partly-iterative tolerance, ε. Although the 

optimun value of ε may be problem-dependent, for the Llobregat Delta aquitard a value of ε = 

10-3 leads to results which are identical to those of SIA. 

6. Numerical aspects of chemical calculations  

 
Most of the CPU time needed to solve the examples presented here is consumed by solving 

the chemical equations. This holds true for all approaches, including the non-iterative approach. 

This remark, which agrees with the statements of Yeh and Tripathi (1989), shows that the most 

effective way to improve the overall numerical efficiency of reactive transport should focus on 

deriving highly efficient numerical algorithms for the solution of chemical equations. Under 

local equilibrium conditions, these highly nonlinear equations are solved using the Newton-

Raphson iterative method described in Appendix A. The general solution scheme described in 

Appendix A is used to solve for mineral dissolution/precipitation. When the amount of dissolved 



 
 

 

 

mineral is larger than the quantity of existing mineral, then the mineral is considered to be 

exhausted. It is taken out of the chemical system for the next time step. 

 

6.1 Relative increment in concentration 

Sometimes concentrations of some species may vary tens of orders of magnitude. For 

instance, sulfate and sulfide concentrations change greatly from oxidizing to reducing conditions. 

This may lead to ill-conditioned Jacobian matrices and eventually to convergence failure. Basis 

switching, where most abundant species are dynamically switched as the set of components, can 

greatly improve the condition number of the Jacobian and help to overcome convergence 

problems (Wolery, 1992; Steefel and Lasaga, 1994). However, much more programming work 

and computing time is required if basis switching is tested everywhere and at every time step. 

The condition number of the matrix of a system of equations measures the sensitivity of the solution 

to modifications on the input data (Atkinson, 1989). The condition number times the relative error 

in the data provides an upper bound of the relative error in the solution. If the condition number is 

too large, the accuracy of the solution is poor and the significance of the results may be completely 

lost. 

The Newton-Raphson iterative scheme implemented here uses relative concentration 

increments, ∆c/c, or increments of log-concentrations, as unknowns rather than absolute 

increments, ∆c. The formulation is given in Appendix B. By working with relative increments and 

neglecting the derivatives of activity coefficients (see the following section), the Jacobian matrix 

is symmetric and invertible provided that primary species are the dominant species (as shown in 

Appendix B). In addition, it has a smaller condition number, especially for problems involving 

redox reactions in which some species such as dissolved oxygen may attain extremely low 

concentrations. 



 
 

 

 

In the gypsum dissolution synthetic case, the condition number of the Jacobian matrix is 

equal to 1.35×106 for absolute increments while it reduces to 3.2×103 for relative increments. In 

the pyrite oxidation case the reduction in the condition number is even more dramatic (from 

2.41×1010 to 7.63×105). 

 

6.2 Neglecting derivatives of activity coefficients 

The full Jacobian matrix includes terms involving derivatives of activity coefficients jγ  with 

respect to concentrations of primary species jc . Activity coefficients depend on concentration of 

all primary species through ionic strength, which in turn involves concentrations of primary and 

secondary species, ix . To evaluate 
j

j

c∂

∂γ
 one has to compute 

i

j

x∂

∂γ
 for all i which according to Eq. 

A4 in turn requires computing 
j

j

c∂

∂γ
. A lengthy time-consuming iterative procedure is required 

for computing 
j

j

c∂

∂γ
. In addition, the condition number of the Jacobian matrix sometimes may 

increase largely when derivatives of activity coefficients are considered. In the synthetic case 

involving pyrite oxidation, the condition number of J reduces from 4.31×1016 to 7.63×105 when 

derivatives of activity coefficients are neglected. Such a reduction greatly enhances the 

convergence of the iterative procedure. Table 6 shows a comparison of the number of iterations 

and CPU time required to solve the gypsum dissolution synthetic problem for the following 

combinations: considering or not derivatives of activity coefficients and working with absolute 

and relative increments. The sequential iteration approach (SIA) was used always. The number 

of transport iterations is the same. No significant improvements are achieved in the number of 

chemical iterations and CPU time here by working with relative increments. As expected, the 

maximum number of chemical iterations is reduced when derivatives of activity coefficients are 



 
 

 

 

considered. However, the total CPU time is increased. A 23% reduction of CPU time is achieved 

when derivatives of activity coefficients are neglected. 

 

7.  Conclusions  
 
  A sequential partly-iterative approach (SPIA) has been presented which only requires 

iteration between transport and chemical equations in areas where there is a large mass transfer 

between solid and liquid phases. Usually these areas coincide with system boundaries, moving 

reaction fronts and interfaces between different geochemical zones. This new approach (SPIA) 

as well as the sequential iterative, SIA, and non-iterative, SNIA, approaches were implemented 

in CORE2DV4 a general 2-D finite element reactive transport code. The accuracy and numerical 

efficiency of SIA, SPIA and SNIA have been systematically analyzed using several synthetic 

cases and a case study involving reactive transport through the Llobregat Delta aquitard. The 

following conclusions can be drawn: 

1)  SNIA is numerically more efficient than SIA. SIA requires from 2 to 3 times as much 

CPU time as SNIA. The numerical solutions obtained with SNIA, however, are less accurate 

than SIA solutions and contain more numerical dispersion. SNIA errors depend on the type of 

chemical reactions and the grid Peclet and Courant numbers. 

2)  The new sequential partly-iterative approach, SPIA, requires less CPU time than SIA 

while its accuracy is comparable to that of SIA. On the other hand, SPIA is much more accurate 

than SNIA and requires only a slightly greater amount of CPU time. Accuracy of SPIA solutions 

depends on the partly-iterative tolerance ε. For ε ≤ 10-3, SPIA results are identical to those of 

SIA. 

Several modifications of the standard Newton-Raphson iterative scheme used for solving the 

chemical equations have been proposed. These modifications include working with increments 

of log-concentrations and ignoring the terms of the Jacobian containing derivatives of activity 



 
 

 

 

coefficients with respect to the concentrations of primary species. A proof has been given for the 

symmetry and nonsingularity of the Jacobian when such modifications are considered. It has 

been also shown numerically that both of them improve the efficiency and convergence of the 

iterative process and lead to better conditioned systems of equations. 

As indicated by one of the reviewers, the accuracy and numerical efficiency of SIA, SPIA 

and SNIA should be analyzed in the future with the benchmark reactive transport problems listed 

in the MoMas group at http://www.gdrmomas.org/Ex_qualif/Geochimie/Documents/Benchmark-MoMAS.pdf. 
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Appendix A: Solution of the chemical equations  

The proposed numerical formulation for solving the chemical equations can be applied to 

problems involving homogeneous (aqueous complexation, acid-base and redox) and 

heterogeneous reactions (mineral dissolution/precipitation, gas dissolution/ex-solution, cation 

exchange and adsorption). For the sake of simplicity, the formulation presented here is restricted 

to systems involving only aqueous complexation and mineral dissolution/precipitation reactions. 

The general formulation can be found in Xu (1996). The formulation is based on mass balances in 

terms of components (Yeh and Tripathi, 1991). The total analytical concentration of the j-th 

component, Tj, in the system is given by 

cN ..., 1,j               pνxνcT
x pN

1i

N

1m
m

p
mji

x
ijjj =∑ ∑++=

= =
  (A1) 

which includes the concentration of the j–th component, cj, as well as the contributions, xi, of the Nx 

aqueous complexes and pm corresponding to the Np mineral phases. x
ijν  and p

mjν  are the 

stoichiometric coefficients of the j-th component in the i-th aqueous complex and m-th mineral, 

respectively. The sum of the first two terms of the right-hand side of (A1) are total dissolved 

component concentrations, Cj 
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X

= ∑ ν     j , ,     (A2) 

which are subject to transport (see Eq. 1). By lumping all the terms in the right-hand side of (A1) 

into a single term Fj
c , one has: 
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The local equilibrium assumption provides an explicit expression for the concentrations of 

aqueous complexes, xi, in terms of component concentrations, cj: 
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where γ j  and γ i  are thermodynamic activity coefficients, and Ki is the equilibrium constant. 

There is no such an explicit expression relating the concentration of precipitated species, pm, to cj 

(Yeh and Tripathi, 1991). Instead, one has a mass-action equation for the m-th mineral which can 

be written as: 

F K  c         m =  1 ...Nm
p

m
j=1

N

j j P

C
mj
p

mj
p

= ∏ − =−1 1 0ν νγ , ,    (A5) 

where Km is the m-th mineral solubility (equilibrium) constant. These NP equations plus the NC 

equations in (A3) provide the set of equations required to solve for the (NC+NP) unknowns 

( )c N NC p1 2 1 2,  c ,  ...,  c ,  p ,  p ,  ...,  p  which are lumped into a column vector X having entries, 

Xl (l=1, 2,..., NC+NP). In the Newton-Raphson method, the unknowns are computed iteratively 

according to 

l
n
l

1n
l

∆XXX +=+      (A6) 

where n denotes iteration number and l∆X  are changes in unknowns which are obtained by solving 

the following system of linear equations 

N+N1...=l        F- = X
X

F
PCli

i

l
NP+NC

1=i

∆
∂

∂
∑    (A7) 

which in matrix form reduces to 

F- = XJ ∆       (A8) 

where F and ∆X  are column vectors of residuals and unknowns, respectively, and J is the Jacobian 

matrix which contains the derivatives of the residuals lF  with respect to the unknowns, iX . Its 

evaluation is described in Appendix B. The iterative process in (A6) is repeated until a prescribed 

convergence tolerance is satisfied. 

 



 
 

 

 

Appendix B: The Jacobian matrix for solving chemical equations  

 

The Jacobian matrix  for aqueous complexation and mineral dissolution/precipitation reactions 

is given by: 
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By substituting (A4) into (A3) and taking derivatives of the resulting expression with respect to 

cλ and pµ, one has 
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where derivatives of activity coefficients with respect to cλ have been neglected. The remaining 

blocks of the Jacobian matrix are obtained by taking derivatives of (A5) with respect to cλ and pµ: 
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Let Jcc, Jcp, Jpc and Jpp be the blocks of J in Eqs. B1 through B4. The system of equations 

(A8) can be written as 
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where –Fc and –Fp are the residual terms which can be calculated from Eqs. A3 and A5, 

respectively. It should be noticed that this formulation of the Newton-Raphson equations does 

not yield a symmetric Jacobian matrix because neither the diagonal block Jcc is symmetric nor 

Jpc is the transpose of Jcp. However, by introducing the concept of relative concentration 

increments, ∆c/ c, which coincide with increments of log-concentrations, Eq. B5 can be rewriten 

as 
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By working with relative increments, the Jacobian matrix becomes symmetric because both 

diagonal blocks (Jcc)* and Jpp are symmetric (in fact Jpp is the null matrix), and (Jpc)* coincides 

with the transpose of Jcp. Notice also that if primary species are taken as the most abundant 

aqueous species, then ij xc >>  for all i. Under these conditions, the block (Jcc)* is diagonally 

dominant, a property that according to the Levy-Desplanques theorem (Horn and Johnson, 1985) 

provides a sufficient condition for (Jcc)* to be invertible. Furthermore, Jcp is a NCxNP matrix 

having entries equal to the stoichiometric coefficients of the Nc primary species in the NP mineral 

phases. According to the phase rule (Stumm and Morgan, 1981), NP≤NC. Since mineral phases 

are linearly independent, the rank of matrix Jcp is equal to NP. This ensures that the rank of 

matrix B (NPxNP) defined as  

 

( ) ( ) cp1cctcp JJJB
−∗=      (B9) 

 

is also equal to NP (Horn and Johnson, 1985). This is a sufficient condition for B to be invertible 

which allows one to compute the inverse of the Jacobian in (B6) according 
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where 

( ) cp1cc JJA
−∗=      (B11) 

 
 



 
 

 

 

Table 1. Summary of maximum and average relative differences of computed concentrations 

with sequential non-iterative (SNIA) and sequential partly-iterative (SPIA) with respect to the 

sequential iterative approach (SIA) for four synthetic cases. A convergence tolerance, ε in Eq. 10, 

of 10-3 was used for all SPIA runs. 

Case SPIA
maxδ  (%) 

(see Eq. 12) 

SPIA
δ  (%) 

(see Eq. 13) 

SNIA
maxδ  (%) 

(see Eq. 12) 

SNIA
δ  (%) 

(see Eq. 13) 

Dissolution 

Redox 

Adsorption 

Exchange 

    9×10-5   

 5.3×10-4 

 4.1×10-4 

 8.4×10-4 

    3×10-5 

    9×10-5 

 1.3×10-4 

    9×10-5 

0.272 

0.846 

1.158 

57.4 

0.124 

0.214 

0.392 

2.4 

 
 
Table 2. Comparison of CPU times (minutes in a Pentium PC 266 computer) required by 

SIA, SPIA and SNIA for several synthetic cases. 

Case SIA SPIA SNIA Ratio 

SIA/SNIA 

Ratio 

SPIA/SNIA 

Dissolution 

Redox 

Adsorption 

Exchange 

1.18 

0.21 

2.63 

16.4 

0.67 

0.18 

1.72 

8.24 

0.45 

0.15 

1.14 

4.315 

      2.62 

      1.40 

      2.30 

      3.80 

     1.48 

     1.20 

     1.50 

     1.90 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Table 3. Total dissolved component concentrations (mmol/l) of initial and bottom boundary 

water solutions (adapted from Manzano, 1993). X denotes exchange sites (in meq/l). 

 Cl C S Na K Ca Mg N pH X 

Initial 

Boundary 

613.2 

5.01 

32.0 

32.0 

8.5 

0.4 

521.9 

51.7 

12.8 

2.74 

5.0 

1.8 

32.6 

3.0 

15.0 

0.9 

7.9 

6.8 

645.3 

_ 

 
 
 
 
Table 4. List of hydrogeochemical reactions considered in the reactive transport model of the 

Llobregat Delta aquitard. Here “-X” denotes a cation exchange site. 
 

Geochemical reactions log10(K) at 25 oC 
Aqueous dissociation: 

OH- = H2O - H+ 
CO3

2- = HCO3
- - H+  

CO2(aq) = HCO3
- + H+ - H2O 

CaHCO3
+ = Ca2+ + HCO3

- 
MgHCO3

+ = Mg2+ + HCO3
- 

CaCO3(aq) = Ca2+ + HCO3
-  - H+ 

MgCO3(aq) = Mg2+ + HCO3
-  - H+ 

NaHCO3(aq) = Na+ + HCO3
- 

CaSO4(aq) = Ca2+ + SO4
2-  

MgSO4(aq) = Mg2+ + SO4
2- 

 NaSO4
- = Na+ + SO4

2-  
KSO4

- = K+ + SO4
2- 

 
13.995 
10.329 
-6.3447 
-1.0467 
-1.0357 
7.0017 
7.3499 
-0.1541 
-2.1111 
-2.309 
-0.82 

-0.8796 
Cation exchange: 

Na+ + 0.5Ca-X2 = 0.5Ca2+ + Na-X 
Na+ + 0.5Mg-X2 = 0.5Mg2+ + Na-X  

Na+ + K-X = K+ + Na-X 
Na+ + NH4-X = NH4

+ + Na-X 

 
0.1543 
0.2697 
0.3626 

0.5 
mineral dissolution-precipitation: 

CaCO3(s) (Calcite) = Ca2+ + HCO3
- - H+  

 
1.8487 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Table 5. CPU time required by SNIA, SPIA and SIA to solve reactive transport through the 

Llobregat Delta aquitard for different Peclet and Courant numbers. 

CPU time  
  

Peclet     Courant 
number   number  

SNIA     SPIA      SIA SPIA/SNIA 
SIA/SNIA SPIA/SIA 

0.5 
0.5 
0.5 
0.5 

 
1.0 
1.0 
1.0 
1.0 

 
2.0 
2.0 
2.0 
2.0 

0.0579 
0.2316 
0.4632 
0.9264 

 
0.0579 
0.2316 
0.4632 
0.9264 

 
0.0579 
0.2316 
0.4632 
0.9264 

4.79 
1.45 
0.85 
0.61 

 
5.17 
1.43 
0.92 
0.52 

 
5.21 
1.47 
0.93 
0.59 

5.12 
2.82 
1.85 
1.36 

 
5.28 
2.65 
1.94 
1.35 

 
5.58 
1.53 
1.87 
1.59 

9.13 
4.31 
2.51 
1.92 
 
9.71 
3.89 
2.63 
1.64 
 
10.56 
2.47 
2.62 
2.17 

1.06 
1.94 
2.17 
2.22 

 
1.02 
1.85 
2.10 
2.59 

 
1.07 
1.04 
2.01 
2.69 

1.90 
2.97 
2.95 
3.14 

 
1.87 
2.72 
2.85 
3.15 

 
2.02 
1.68 
2.82 
3.68 

0.56 
0.65 
0.73 
0.71 

 
0.54 
0.68 
0.74 
0.82 

 
0.53 
0.62 
0.71 
0.73 

 

Table 6. Comparison of number of iterations and CPU time required when derivatives of 

activity coefficients are considered (CDAC) or not (NO CDAC) and by working with relative 

(RIC) and absolute increments (AIC) for the gypsum dissolution synthetic case. 

 Number of 

transport iterations 

Number of 

chemistry iterations 

CPU time  

AIC + CDAC 

AIC + NO CDAC 

RIC + CDAC 

RIC + NO CDAC 

1-3 

1-3 

1-3 

1-3 

3-4 

3-6 

3-4 

3-7 

1.39 

1.18 

1.37 

1.13 

 



 
 

 

 

 

Figure captions 

Figure 1. Log-log plot of maximum and average relative differences, δmax
*  and δ *  (in Eq. 12 

and 13), in concentrations computed with SNIA, SPIA (with a convergence tolerance ε of 10-2), 

and SIA as a function of Courant number for the cation exchange case using Peclet numbers of 

0.2 and 1. 

Figure 2. Concentration breakthrough curves computed with SIA, SPIA and SNIA for the cation 

exchange case using Courant and Peclet numbers equal to 1. 

Figure 3. Log-log plot of maximum and average relative differences, δmax
*  and δ *  (in Eq. 12 

and 13), in the concentrations computed with SNIA and SIA as a function of Courant number for 

the Llobregat Delta aquitard. Results are shown for Peclet numbers, P, of 0.5, 1 and 2. 

Figure 4. Concentration breakthrough curves computed with SIA, SPIA and SNIA approaches at 

several depths of the Llobregat Delta aquitard using Courant and Peclet numbers equal to one. 

Aquitard bottom is at a depth of 36 m. Notice that the concentration scale in Figure 4d is ten 

times larger than those of Figures 4a, 4b and 4c. 
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Figure 2. 
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