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Abstract—Random forest classification is a well known ma-
chine learning technique that generates classifiers in the form
of an ensemble (‘“forest’”) of decision trees. The classification
of an input sample is determined by the majority classification
by the ensemble. Traditional random forest classifiers can be
highly effective, but classification using a random forest is
memory bound and not typically suitable for acceleration using
FPGAs or GP-GPUs due to the need to traverse large, possibly
irregular decision trees. Recent work at Lawrence Livermore
National Laboratory has developed several variants of random
forest classifiers, including the Compact Random Forest (CRF),
that can generate decision trees more suitable for acceleration
than traditional decision trees. Our paper compares and
contrasts the effectiveness of FPGAs, GP-GPUs, and multi-core
CPUs for accelerating classification using models generated by
compact random forest machine learning classifiers.

Taking advantage of training algorithms that can produce
compact random forests composed of many, small trees rather
than fewer, deep trees, we are able to regularize the forest
such that the classification of any sample takes a deterministic
amount of time. This optimization then allows us to execute the
classifier in a pipelined or single-instruction multiple thread
(SIMT) fashion. We show that FPGAs provide the highest
performance solution, but require a multi-chip / multi-board
system to execute even modest sized forests. GP-GPUs offer a
more flexible solution with reasonably high performance that
scales with forest size. Finally, multi-threading via OpenMP
on a shared memory system was the simplest solution and
provided near linear performance that scaled with core count,
but was still significantly slower than the GP-GPU and FPGA.

Keywords-FPGA; GP-GPU; OpenMP; Machine learning;

I. INTRODUCTION

Random forest classification is a well known machine
learning technique [1] in which an ensemble of decision
trees is used to assign a label (or classification) to an
input sample. Random forest classifiers have been used
in myriad application domains ranging from proteomics
[2] to ecological studies [3]. In this work we consider
hardware acceleration of classification using random forests
generated by an off-line machine learning algorithm. Such
classification is inherently highly parallelizable since each
decision tree processes every sample independently, the
only synchronization occurring when the results of all the
decision tree are combined to provide a final classification
for a sample. However, it is challenging to apply hardware
acceleration when the decision trees within the forest vary
significantly in terms of shape and depth. This variability

makes pipelining and SIMD / SIMT parallelization tech-
niques difficult since the time to process a sample is data
dependent. Additionally, this irregularity in tree size and
shape makes it difficult to provide deterministic memory
access into the tree. Furthermore, the presence of very
deep trees within the forest makes it prohibitively expensive
to apply techniques that improve regularity, such as fully
populating all trees so that the processing time for each
sample is identical.

Researchers at LLNL have previously developed an ef-
ficient training algorithm that minimizes tree depth to pro-
duced a compact ensemble of decision trees. The develop-
ment of a compact random forest (CRF) classifier provides
the opportunity to fully populate all decision trees in the for-
est without dramatically increasing the number of nodes in
the forest. This optimization ensures that each classification
takes a fixed amount of time and follows a regular execution
path. As a result, we are able accelerate sample classification
using hardware platforms, such as FPGAs and GP-GPUs,
employing tradition pipelining and single-instruction mul-
tiple thread (SIMT) techniques, respectively. In this work
we will demonstrate that a compact random forest makes
it possible to accelerate classification with an ensemble of
decision trees on an FPGA and GP-GPU. Furthermore, we
compare the performance, power-, and cost-efficiency of
both FPGA and GP-GPU solutions, enumerating when each
provides a reasonable solution. Finally, we identify some of
the key parameters in the size and shape of the classification
task and relate them to resource trade-offs and hardware
constraints on the accelerators.

II. CHALLENGES AND OPPORTUNITIES

Classification using decision trees is not compute inten-
sive and is thus not typically considered a good candidate
for hardware acceleration. The processing of a single sample
through a decision tree within the forest requires one com-
parison and one data-dependent lookup for each level of
the tree. Therefore, the computation to communication ratio
is poor. Hardware acceleration platforms are not typically
well suited for such pointer chasing algorithms, but they
do provide massive bandwidth to a fixed, relatively small,
memory. The development of compact random forests (see
Figure 1 for an example) makes it possible to fit an entire
forest in the memory attached to one or more accelerators
and to tap this internal memory bandwidth.
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Figure 1. Snippet of a compact random forest with a maximum tree depth
of 6 - 3 decision trees shown.

Random forest classifiers are data parallel within the
forest and between data samples. Within the forest each
decision tree classifies the sample independently and only
synchronizes when all of the decision trees are finished
processing the sample. Additionally, each sample is inde-
pendently processed in the forest.

Classification algorithms are optimized according to the
number of decision trees in the forest, the maximum depth
of any tree in the forest, and the number of features per
sample. In this work we will compare three approaches to
accelerating classification: using a multi-core chip multipro-
cessor (CMP), an FPGA, and a GP-GPU. On the CMP we
will use the OpenMP library framework for modest thread-
level parallelism, i.e. one thread per core. On the FPGA, the
processing of each decision tree can be executed in parallel
by independent hardware and the processing of each tree
can be pipelined. The GP-GPU will use massive thread-level
parallelism with many threads per streaming multiprocessor.

III. TRAINING COMPACT RANDOM FOREST (CRF)
CLASSIFIERS

The key difference between compact random forests and
traditional random forests is in the size (number of trees)
and shape (maximum depth of any tree in the forest) of the
forests. The CRF training algorithm accepts as a parameter
the maximum tree depth, and will generate trees up to
that depth, but no deeper. Using this feature in conjunction
with hardware accelerators allows us to design processing
pipelines of fixed depth and with fixed memory require-
ments.

Describing the details of the training algorithm used to
generate compact random forests is beyond the scope of this
paper, as we focus on accelerating the classification phase.
Generally, the CRF training algorithm [4] is derived from
LogitBoost [5], with a couple of heuristic optimizations to

o improve accuracy by using a linear function of weights

associated with leaf nodes of the decision trees, and
 penalize generation of complex trees.

Tables I(a) and I(b) (from [4]) summarize the characteris-
tics of forests generated by traditional (gini) random forest
and compact random forest training algorithms respectively.
The input training data sets are the two-class classification
data sets from the UCI Machine Learning Repository [6].

The “URL Reputation” data set [7] is a set of features
derived from URLs that are labeled as either malicious
(responsible for spam, phishing, exploits, and so on) or
benign. The data set consists of 121 days of data. We used

Table I
CLASSIFIER PERFORMANCE ON URL REPUTATION DATA

Max. #

Max. # Depth | Trees | Accuracy
Depth | Trees | Accuracy oS 18 86.5%
00 200 86.7% 15 11 86.4%
60 200 78.3% 10 16 85.7%
50 200 74.0% 9 17 85.7%
40 200 73.0% 8 18 86.2%
30 200 72.1% 7 24 85.7%
20 200 68.2% 6 32 85.7%
(a) Random Forest > 47 86.2%

(b) Compact Random Forest

days 0 through 59 as training set and days 60 through 120 as
a testing set. This results in 1,176,300 training samples and
1,200,000 testing samples. Both the training and the test set
have roughly 32% malicious and 68% benign samples. The
data set has a very large number of sparse features, but here
we are interested in problems that require a complex model
rather than one capable of dealing with a large number of
features, so we used only the 64 continuous real features
from the data set. The leaves of the tree use a linear
combination of weights of the feature used at the parent
node and use a logistic function to map that number to a
score for the ensemble.

The RF model was run with a split dimension of eight,
the square root of the number of features, which is the
heuristic suggested for random forests [1]. This means
that the training algorithm evaluated eight random features
(without replacement) at each interior node of the decision
tree, and selected one to be used as the split criterion
at that node. The RF model was run with 200 trees to
ensure performance saturation. The CRF model determines
the number of trees from the data. Both the RF and CRF
models can be constrained to different depths.

The CREF results show that the prediction accuracies of the
models do not drop consistently as the maximum depth is
decreased, and remain nearly as good as the best RF model.
As the maximum depth of the trees decreases below eight,
the number of trees added by the CRF algorithm increases,
as expected. As the individual trees become simpler and less
able to reduce training error, the number of trees necessary
to reduce the error increases.

To summarize, the innovation of the CRF algorithm is
that the training algorithm produces forests with more trees
on average, but with smaller average and maximum depth.
Furthermore, these trade-offs in size and shape still produce
models with modest memory requirements and incur no
significant loss in classification accuracy over traditional RF.

Given the opportunity to constrain random forests into a
size and shape that is amenable to hardware accelerators,
we next describe and evaluate the algorithms used to map
CRF classification onto multi-core systems with OpenMP,
GP-GPUs, and FPGAs.



IV. USING OPENMP ON A SHARED-MEMORY
MULTIPROCESSOR

In software, the classification task can be implemented as
a doubly nested loop that iterates over samples and trees in
the forest. The following code snippet shows the kernel of
the classification routine that will be used as the basis for the
FPGA and GP-GPU designs. Note that this implementation
has been designed to work with full trees and does not
test for early termination. For performance testing of the
multi-core CPU we ran a version that used sparse, irregular
trees, which terminated as early as possible. We have found
that the most effective way to parallelize this code with
OpenMP is to exploit the data parallelism between samples
and process each sample independently. To execute the outer
for loop in parallel we add an OpenMP pragma on first line
of the code snippet.

#pragma omp parallel for shared(responses)

for (int j=0; j<data->NumVectors(); j++) {
real response=0;
for(int i = 0; i < num_trees; i++) { // Forest
int node_id=1; // Node ID
real local_result = 0;
for (int 1lvl = 0; 1lvl < max_depth; 1lvl++) { // Tree
int node_idx = (ixnum_nodes_per_tree)+node_id;

real threshold = nodes[node_idx].thresholds;
int feature_idx = nodes[node_idx].indicies;

real feature = data->FeatureColumn (feature_idx) [Jj];
if(1lvl < max_depth - 1) { // Split node

node_id = (node_id << 1) + (feature < threshold);
lelse { // Leaf node

local_result = nodes[node_idx].weight

+ feature + nodes|[node_idx].offset;
}
}
response+=local_result;
}
response=1/ (l+exp (-response)) ;
responses[j] = response;

}

V. FPGA IMPLEMENTATION

To accelerate the classification on FPGAs, we have trans-
formed the code snippet shown in Section IV into a hardware
implementation. Figure 2 shows the general mapping of the
algorithm to the FPGA and the general structure that will be
partitioned into discrete pipelines both within and between
FPGAs. Finally, Figures 3 and 4 shows the implementation
of the decision tree’s interior split nodes and leaf nodes.

To date, not much work has explored the efficacy of
FPGAs for accelerating machine learning classifiers. One
notable exception was work by Jiang et al. [8], which used
decision trees for classifying network traffic. Due to the
nature of network classification rules, they were able to
balance the size of the tree by pushing rules up in the
tree hierarchy (rule overlap reduction) and to use precise
address range cutting. The rule overlap reduction approach
was not applicable to compact random forests, which used
a linear function of the sample’s features at the leaf nodes.
The second optimization, precise address range cutting,
was a technique used for training the forest and thus was
not applicable to the efforts of accelerating classification

with a random forest. Becker et al. [9] presented a very
small random forest classifier that used 2-bit Binary Patterns
for object tracking. It leveraged the limited set of feature
patterns to minimize the fanout and depth of the decision
trees, which led to a very small FPGA implementation.
Another effort related to decision trees was performed by
Narayanan et al. [10], but it focused on improving the
training rather than the classification.
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Figure 2. CRF on a FPGA

A. Algorithm Description

Two key parameters in our FPGA algorithm are tree depth
and sample width. The tree depth affects FPGA resources
because each level of the tree has 2° nodes at depth D. Data
sample width directly affects flip flop usage, especially in a
highly pipelined design — flip flop usage in the data pipeline
is directly proportional to the data sample width and the
depth of the pipeline. In addition, very wide samples can be
difficult to multiplex, taxing FPGA routing resources. After
a preliminary evaluation of FPGA resources, we settled on
a maximum depth of 6, which for this training set required
32 trees. Furthermore, the data set has a sample width of
2048 bits (64 32-bit fields).

For FPGA hardware, we targeted a Hitech Global HTG-
V6-PCIE-L240-1 board with a XC6VLX240T-1FFG1759
Virtex 6. To evaluate hardware trade-offs, the design was
highly parameterized to allow easy modification of critical
CRF core dimensions.

1) Compact Random Forest: Figure 2 illustrates a basic
Compact Random Forest implementation in an FPGA. Com-
munication uses an existing, in-house gigabit ethernet core.
On startup, forest data is loaded into the tree’s pipelines.
Once configured, sample data is streamed to the FPGA,
where it enters the data pipeline in the CRF core. The core
aligns the data with the stages in each tree. The forest’s
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Figure 3. CRF internal stage on a FPGA (implements “split” nodes)

dimensions are n trees by s stages, where a stage represents
all the nodes on a level and will be discussed in more detail
below. The outputs of all the trees are summed together, and
the result (a 32-bit single precision floating point word) is
transmitted back to the host for final analysis. Figure 2 shows
an instance of the FPGA design with a single data pipeline
shared amongst all the trees. Note that the horizontal arrows
represent a point at which the pipeline is tapped so that every
tree in the FPGA can use the sample data in parallel.

2) Sample pipeline: using clumps: Within an FPGA a
wide data pipeline distributed to multiple destinations could
easily create routing issues; in the CRF, this problem is
enhanced due to the extreme width of the data pipeline -
2048 bits. With a large CREF, the issue is readily apparent
- more trees mean each distribution point in the pipeline
(where a stage taps off the pipeline to analyze the sample)
must be routed to more logic, while taller trees mean more
points of distribution, both of which compete for routing
resources with the remaining logic on the FPGA.

To better control the routing of the pipelines, and routing
of the samples from the pipelines to the trees, the concept of
a clump is introduced. A clump is a subset of the trees in the
CRF which share a unique sample data pipeline; a clump’s
architecture is identical to the basic CRF architecture shown
in Figure 2, except that a CRF could comprise multiple
clumps, and an external summing tree would be required to
sum the outputs of each clump. To create a complete CRF,
one clump containing all the trees in the CRF could be in-
stantiated, or multiple clumps each containing as few as one
tree could be instantiated. Changing the number of clumps
allows precise control over the number of pipelines in the
FPGA, and thus the fanout of each clump’s sample pipeline.
Varying the number of clumps changes the demands on the
flip flops, LUTs, and routing resources and will be explored
in Section V-B.

3) Decision Tree: The most direct implementation of a
decision tree on an FPGA would create a specialized block
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Figure 4. CRF leaf stage on a FPGA (implements leaf nodes)

of logic for every node within the tree. While minimizing
memory requirements, this would create a great deal of
routing logic. Instead, our design uses a single block of
logic at each level (i.e. stage) in the tree to implement the
functionality of any node at that level. To “customize” a
stage to behave like a particular node, a node index from
the previous stage is used to address local, unshared memory
and load from it node variables that describe the behavior of
the current stage. The tradeoff is that additional pipelining
for the sample data is required to allow non-blocking access
to the local memory. The architecture of the internal and
leaf stages are shown in Figures 3 and 4, respectively.

4) Decision Tree Node: The tradeoff between using block
and distributed storage for node variables was more complex
than the design of the decision tree stages. Specifically,
low-level stages (early in the tree) require significantly less
storage than higher-level stages, as the node count doubles at
each subsequent level. Internal stages require a feature index
and threshold value for each node, while leaf stages require
a feature index, multiplication factor, and offset value for
each node. In order to meet the performance metric of one
sample per clock cycle, a stage cannot block on a memory
access and thus does not time-multiplex storage structures.
While BRAMs are efficient, they are a scarce resource and
underutilized by low-level stages. Conversely, flip-flops are
plentiful, but inefficient for the large fan-in (-out) at higher
stages. We found that the best split was to use BRAMs for
stages with 32 or more nodes and logic for the other stages.

In addition to BRAM, DSP slices were used to com-
pute the final weighted summation. The selected FPGA
(XC6VLX240T) contains 768 DSP48E1 digital signal pro-
cessing slices which can be used to implement floating point
functions. For each floating point adder, two DSP48E1s were
used; for each multiplier, three were used. Comparisons
within the interior split nodes used a comparator core that
didn’t require DSP48E1 slices.



Table II
EIGHT-TREE AND SIXTEEN-TREE FORESTS, 6 STAGES PER TREE, 2048-BIT SAMPLES, ON XC6VLX240T-1 & XC6VLX550T-2, RESPECTIVELY

XC6VLX240T-1 (Target Frequency = 100 MHz) XC6VLX550T-2 (Target Frequency = 100 MHz)
(Max. Registers = 301,440 Max. LUTs = 150,720) (Max. Registers = 687,360 Max. LUTs = 343,680)
. s 1 clump x 2 clumps x 4 clumps x 1 clump x 2 clumps x 4 clumps x
FPGA Usage & Stats 8 trees/clump 4 trees/clump 2 trees/clump 16 trees/clump 8 trees/clump 4 trees/clump
Slice Registers 48,642 73,218 122,370 62,660 87,236 136,388
Slice LUTs (total) 76,731 98,275 139,348 122,328 143,527 185,904
P&R Stage Completed bitgen bitgen mapper mapper bitgen bitgen
Mapped Freq. (MHz) 64 69 N/A N/A 57 79
CAD P&R Time (min) 775 398 232 155 848 1049

B. Exploratory Place and Routes

Given the demands on the routing resources, flip flops,
and floating point cores, it was apparent that that even a
modestly sized CRF would not fit on a single FPGA. Using
the modular clump design, we targeted placing 8 trees (max
depth 6) of a CRF on a single LX240 FPGA that we had in
the lab and 16 trees (depth 6) on a LX550T. The LX550T-
2 was the largest device available in the Virtex 6 family
that would not require design modifications. The number of
clumps was varied from 1, 2, or 4 (the number of clumps can
only be configured as a power of 2), and the number of trees
per clump was 8, 4, or 2 respectively. To find the upper limit
of the design the CRF core was mapped to the FPGA with
a target frequency of 100MHz, even though it would be I/0
bound at that frequency. The results are shown in Table II.
Increasing the number of clumps is a design tradeoff which
reduces the amount of routing required from each pipeline
to its associated trees, at the cost of increasing the number
of flip flops utilized (due to the duplicated pipelines). The
overall impact of introducing clumps to the design typically
allows the tools to achieve a higher clock rate at the expense
of using more flip flops and LUTs. With 8 trees on the
LX240, too many clumps prevented the design from routing,
but with 16 trees on the LX550 adding clumps allowed the
design to route. The impact of clumps on overall CAD place
and route time was erratic, in some cases it helped, others
it hurt.

Unlike many floating point FPGA designs, the design was
constrained by routing resources for the input sample and
memory resources for tree depth, rather than DSP slices. On
the L.X240, the 4 clump configuration uses a large amount
of hard FPGA resources (Slice LUT usage exceeded 92%).
Coupled with the 2048-bit sample width, which taxes routing
resources in any configuration, PAR did not complete, with
a large number of signals left unrouted. Conversely, fewer
clumps results in fewer pipelines and fewer utilized hard
resources to compete for routing resources. Therefore, the
1 and 2 clump configurations were able to complete their
routes, but were unable to meet the requested timing of
100MHz. The target board used for testing has a LX240T-1
FPGA, which is the slowest speed grade available for that
device; when the fastest speed grade of the same device (-3)
is used, the timing is easily met for the 1-clump and 2-clump
configurations. On the LX550T, the best results occurred

with 4 clumps; having 4 pipelines did not tax the registers
or LUTs, but the routing resources were still stressed - the
processing time was exceptionally long, and timing did not
meet the 100MHz target frequency, instead reaching 79MHz.

C. CRF Performance on FPGA

The performance of the CRF core is highly deterministic
with respect to the number of samples it can process per
clock cycle. This characteristic was achieved by using a
high-bandwidth design that is synchronous, non-blocking,
and highly-pipelined. The performance of the CRF core
was tested using Modelsim, while the entire CRF FPGA
infrastructure was validated using Xilinx ISim. With both
environments, it was verified that the CRF core can process
samples at the rate of one sample per clock cycle indefinitely.

VI. GP-GPU ALGORITHM

Setting up the classification task for thread level paral-
lelism is the first step for accelerating on the GP-GPU. Using
the code snippet from Section IV as a starting point, we
identify the key challenges for executing the code efficiently
on a GP-GPU as 1) extracting enough thread parallelism,
and 2) selecting the best location in the storage hierarchy to
hold the input data (samples) and the CRF model (forest).
Figure 5 shows both the memory hierarchy of the GP-GPU
and the distribution of data and computation for the CRF
classification. Note that texture caches and L1 caches are
both private to each streaming multiprocessor; furthermore,
the texture caches are optimized for unaligned single word
accesses, and the L1 cache is optimized for coalesced multi-
word accesses.

Unlike the multi-core kernel segment in Section IV, using
just a single thread per sample is insufficient to exercise the
capabilities of a modern GP-GPU. To increase the amount
of available work, each thread processes a sample on a
portion of the compact random forest. Partial results are
locally aggregated and then combined by the host processor.
To improve data locality, threads are assigned to streaming
multiprocessors (SM) such that each SM on the GP-GPU
only traverses a subset of the decision trees in the forest.
During steady state execution, each SM uses independent
threads to process a small number of samples in parallel on
a portion of the compact random forest. For example, Figure
5, shows SMs 0 and 1 evaluating samples O and 1 on trees
0 and 1 and 2 and 3, respectively.
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Figure 5.

When optimizing the data movement within the GP-
GPU we have two classes of data to consider, forest data
and sample data. As noted previously, the forest data for
CRFs is actually fairly small, can be loaded once for the
lifetime of classification, and is reused for every sample. The
sample data is asynchronously input as a blocked stream,
it has many features per sample and is only reused when
processing each tree in the forest.

Maximizing the reuse and locality of data the CRF trees is
challenging because processing each sample down a decision
tree is inherently data dependent. However, the CRF trees
are not too large and require only a small amount of data per
level. Therefore we are able to take advantage of the texture
fetch engines and the texture caches. We found that allowing
each multiprocessor to evaluate the entire forest thrashes
the cache and reduces performance. Therefore we block
the design so that each multiprocessor only evaluates four
decision trees of the CRF. Figure 5 illustrates an example
where trees 0 and 1 processed on SMs 0 and 2 and trees 2
and 3 are processed on SMs 1 and 3. (Partial summations
are combined on host.) In this design the private (per SM)
level 1 cache is not used since the texture cache provides
better access latency and bandwidth for random, uncoalesced
reads. This approach of fully populating decision trees,
packing the forest data into texture memory, and converting
control-flow into data-dependent memory accesses is similar
to Sharp’s work in [11]. Our implementation extends these
concepts to work with larger forests by blocking the design
to improve the effectiveness of texture caching.

The sample data is asynchronously moved in batches from
the host memory into the GP-GPU’s global memory. To
process each sample a data-dependent subset of the features
within the sample will be required for comparison to the
branches within the decision trees. To minimize the cost
of moving sample data we load each sample from global
memory into shared memory using wide, coalesced loads
to pull samples in 128 bit chunks (Figure 5). While this
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CRF on a GP-GPU.

will typically pull in unused features for each sample, it
minimizes the number of memory requests and makes the
data dependent lookup target shared memory, rather than
global memory. Note that for classification problems with
a very small number of features per sample (i.e. < 12)
using private registers in the SM is better than the shared
memory. However, when there are a reasonable number
of features per sample using shared memory, rather than
private registers, improves thread occupancy. With multiple
threads all concurrently evaluating multiple samples, the data
organization in the SM’s shared memory is optimized for
parallel 32 bit access, e.g. one feature per sample, per thread,
per bank.

VII. EVALUATION

To evaluate the performance of our accelerators we used
the URL dataset published by Ma et al. [7], as noted in
Section III. The hardware platform for both the multi-core
and GP-GPU tests was a 2-socket Intel X5660 Westmere
system with 12 cores running at 2.8 GHz, 96 GB DRAM,
and an attached NVIDIA Tesla M2050 that had 3 GB
GDDRS. The FPGA system was a Hitech Global HTG-V6-
PCIE-L240-1 as described in Section V. As noted earlier,
we used the CRF training algorithm as a black box, and
we focused solely on the classification task. We selected a
maximum tree depth of 6 since that produced a forest of a
reasonable size that fit well into our FPGA framework.

Reported performance measurement for the CPU and GP-
GPU platforms is based on elapsed time with the following
caveats. To exclude disk seek access times, the performance
for the multi-core system was measured for the classification
loops once the CRF and sample data files were loaded
within the program. For the GP-GPU we also allowed the
program to open the files and load them into memory, but
performance did include the time required to transfer all of
the data over the PCle-bus and back.

Given that we were unable to assemble the 4 PCle boards
required for an entire FPGA-based classifier we did not use



end-to-end wall clock time to calculate performance. Instead
we tried to tease out the performance of the classification
task itself, including system delays as was reasonable. We
first ran an end-to-end test on a partial forest, using a single
FPGA board and an existing in-house Gigabit Ethernet core
to validate correctness. The overall performance was 1/O
bound as expected, and throughput for the test matched
expectations given the relatively low bandwidth of a GigE
core. For the purposes of comparison we evaluated the
FPGA CRF core assuming that it was matched with a PCle-
2.0 x16 core that could deliver 8GB of data bandwidth and
thus a sample rate of 31.25 Msamples/s. The assumed I/O
interface places the FPGA design on a competitive level
with the NVIDIA M2050. The final performance and power
characterization of the FPGA-based systems was computed
using a 31.25 MHz system frequency to keep up with the
I/O rate.

A. Performance

To test the multi-core and GP-GPU systems, we wanted
a large enough sample set to amortize any pipeline fill and
drain issues, so we created a 4.7M sample set by looping the
original 1.2M input samples. Using this set of 4.7M samples
on a CRF with 32 trees and 6 levels per tree we were able
to classify samples at the following rates, reported in Kilo-
Samples per second (KSps):

o CPU: 9,291 KSps (12 threads) & 884 KSps (1 thread)

o GPU: 20,398 KSps (14 SMs w/ 1536 threads per SM)

o FPGA: 31,250 KSps (w/ 4 LX240s)

B. Power and Cost

To provide a first-order comparison of the power effi-
ciency of each accelerator we computed the ratio of clas-
sification rate to power consumed for the FPGAs, the GP-
GPU plus GDDR5 DRAM, and the CPUs. The GDDRS
DRAM was included since the GP-GPU actively uses it for
the classification, but we chose to exclude the system DRAM
since it was common to all designs. We were unable to
use a power meter to directly instrument the multi-core and
GP-GPU compute node in our production environment, or
fully assemble an FPGA-based system. Therefore, we relied
upon the data sheet specifications for the NVIDIA GP-GPU
and Intel CPUs, and a power estimator for the FPGAs. The
power envelope of the Tesla M2050 is listed as < 225W
for the entire card. The Intel Westmere-EP X5660 processor
is listed as having a TDP of 95W (note that hyperthreading
was administratively disabled).

Xilinx’ XPower Estimator (XPE) 13.2 was used to de-
termine the power consumed by the various CRF FPGA
configurations listed in Table II that successfully completed
place and route. Table III shows the results of the XPower
calculations at a clock frequency of 31.25 MHz, all signals
at a toggle rate of 50%, and the optimization field was set
to “Timing Performance”.

Table IIT
CRF COST AND POWER CONSUMPTION @ 31.25MHZ, FROM XPOWER
ESTIMATOR 13.2 (FPGA PRICES ARE FROM DIGIKEY WEBSITE FOR
1759-BALL COMMERCIAL PACKAGES 01/10/12)

Power Con-
No. Clumps/ .
FPGA! Total No. Trees SSELP ;(l;]é}zf Cost ($)
Per FPGA (Wats)
XC6VLX240T-1 1/8 2.88 1941.25
XC6VLX240T-1 2/8 3.20 1941.25
XC6VLX240T-3 1/8 2.88 1941.25
XC6VLX240T-3 2/8 3.20 1941.25
XC6VLX550T-2 2/16 5.45 5444.40
XC6VLXS550T-2 4/16 6.10 5444.40

To put these results in perspective, the performance cost,
in terms of both power and dollars, of a 32-tree Compact
Random Forest was calculated as shown in the last two
columns of Table IV and discussed in Section VII-D. Note
that these tables contain MSRP prices for the GP-GPU and
CPU, and list price of the component cost for the FPGAs
required to create a CRF of 32-trees. Furthermore they do
not take into other costs associated with the broader FPGA-
based system.

C. Scalability

One challenge with machine learning algorithms is that
the size of the compact random forest is dependent on the
complexity of the input training set and the desired level
of classification accuracy. We know that the FPGA based
system can be scaled out to support moderately large forests
by adding hardware. To test how the performance of the
GP-GPU kernel would scale we forced the CRF training
algorithm to dramatically increase the number of trees in the
ensemble. This resulted in a CRF with 234 trees and 6 levels
per tree that was able to classify samples at the following
rates, reported in Kilo-Samples per second (KSps):

o CPU: 1,044 KSps (12 threads) & 93 KSps (1 thread)
o GPU: 5,381 KSps (14 SMs w/ 1536 threads per SM)
o FPGA: 31,250 KSps (w/ 8 LX240s)

We see that performance of the GP-GPU decreases with
the increased work, but not by the seven-fold increase in
number of trees in the forest. Furthermore, the GP-GPU
kernel provided this scalable level of performance without
any change to parameters or implementation. Finally, the
advantage of the GP-GPU versus multi-core CPU with
OpenMP was greater with the larger forest than with the
smaller one.

D. Tradeoffs: Analysis

Looking at the performance, estimated power and costs
we can compare the effectiveness of both accelerators in
terms of samples per second per Watt and samples per
second per dollar. However, note that without a full end-to-
end FPGA system and more precise power numbers from
the GP-GPU and CPU systems, these comparisons are only
approximate. Despite those caveats, these approximations



Table IV
CRF PERFORMANCE VS. POWER CONSUMPTION AND COST - CRF WITH 32 TREE FOREST WITH MAX. DEPTH OF 6.

No. Clumps/ # FPGAs, Classification Accel Accel CRF Performance/ CRF
Accelerator Total No. Trees GPUs, Rate Power (W) Cost ($) Power Performance/Cost
Per FPGA or CPUs (Ksamples/s) ((Ksamples/s)/Watt) ((Ksamples/s)/$)
XC6VLX240T-1 1/8 4 31,250 12 7765 2604 4.0
XC6VLX240T-1 2/8 4 31,250 13 7765 2404 4.0
XC6VLX550T-2 2/16 2 31,250 11 10889 2841 2.9
XC6VLX550T-2 4/16 2 31,250 12 10889 2604 2.9
Tesla M2050 N/A 1 20,398 225 2699 91 7.6
Intel X5660 N/A 2 9,291 190 2440 49 3.8
can provide an effective roadmap for implementing a random ACKNOWLEDGMENTS

forest classification system. Examining the results of Table
IV we draw the following conclusions:

o FPGAs offer the highest level of performance and
performance per Watt.

o FPGAs are built to support a maximum CRF size and
require additional hardware to scale to larger classifiers.

e GP-GPUs offer the best performance per dollar and
more than twice the performance of CPUs.

o GP-GPUs performance gracefully degrades with larger
classifiers.

e GP-GPUs still have hard resource bounds that are
sensitive to classifier or sample size.

e Multi-core CPUs with OpenMP are extremely simple
to get scalable, near linear performance.

Overall, real-time classification systems typically have a
minimum performance requirement. Once that requirement
is met further performance is often unnecessary. The chal-
lenge of assembling any accelerator based system is that
the exact shape and size of the classifier’s random forest is
unknown until it is trained, and it can evolve over time as the
training is refined. Therefore, while the minimum level of
required performance will dictate if an FPGA is required or
if a GP-GPU is suitable, the scalability of a GP-GPU based
system would provide a more flexible system deployment.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have demonstrated acceleration algo-
rithms to speed up classification using a compact random
forest classifier on multi-core CPUs, GP-GPUs, and FPGAs.
A key contribution of this work is exploiting the low tree
depth of the CRF model to regularize the decision trees
and thus be able to create pipelined and SIMT algorithms.
Further we have related aspects of memory hierarchy such
as size, shared access, alignment, and access pattern to the
classification algorithm parameters of forest dimension, tree
shape, and sample size. We have presented parameterized de-
signs, and carefully evaluated the space of feasible designs,
leading to the notion of clumping groups of trees to improve
routability in the FPGA. We have identified alternative
mappings to be used for different forest and sample sizes.
Finally, we have quantified the performance, power, and cost
of each implementation, yielding measurable criteria to be
used in selecting a platform for this classification task.

This work was partially performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
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the Livermore Computing facility resources.

REFERENCES

[1] L. Breiman, “Random forests,” Machine Learning, vol. 45,
pp- 5-32, 2001.

[2] G. Izmirlian, “Application of the random forest classification
algorithm to a seldi-tof proteomics study in the setting of a
cancer prevention trial,” Annals of the New York Academy of
Sciences, vol. 1020, no. 1, pp. 154-174, 2004.

[3] D. R. Cutler et al., “Random forests for classification in
ecology,” Ecology, vol. 88, no. 11, pp. 2783-2792, Nov. 2007.

[4] R. J. Prenger, B. Y. Chen, D. M. Merl, T. D. Lemmond, and
W. G. Hanley, “Fast map search for compact additive tree
ensembles,” LLNL, Tech. Rep., 2012, (in progress).

[5] “Java Class LogitBoost,” http://weka.sourceforge.net/
doc/wekal/classifiers/meta/LogitBoost.html.

[6] A. Frank and A. Asuncion, “UCI machine learning reposi-
tory,” 2010, http://archive.ics.uci.edu/ml.

[7]1 J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
suspicious urls: an application of large-scale online learning,”
in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. New York, NY, USA:
ACM, June 2009, pp. 681-688.

[8] W.Jiang and V. K. Prasanna, “Large-scale wire-speed packet
classification on fpgas,” in Proceedings of the ACM/SIGDA
international symposium on Field programmable gate arrays.
New York, NY, USA: ACM, 2009, pp. 219-228.

[9] T. Becker, Q. Liu, W. Luk, and G. Nebehay, “Hardware-
Accelerated Object Tracking,” in Computer Vision on Low-
Power Reconfigurable Architectures Workshop, Field Pro-
grammable Logic and Applications (FPL), 2011.

[10] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and
J. Zambreno, “An fpga implementation of decision tree clas-
sification,” in Design, Automation Test in Europe Conference

Exhibition, 2007. DATE *07, April 2007, pp. 1 —6.

[11] T. Sharp, “Implementing Decision Trees and Forests on a
GPU,” Computer Vision—-ECCV 2008, vol. 5305, no. Lecture
Notes in Computer Science, pp. 595-608, 2008.



