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ANALYTTICAL SOLUTIONS TO EDDY-CURRENT PROBE COIL PROBLEMS

C. V. Dodd and W. E. Deeds?

ABSTRACT

Solutions have been obtained for axially symmetric eddy-
current problems in two configurations of wide applicability.
In both cases the eddy currents are assumed to be produced by
a circular coil of rectangular cross section, driven by a
constant amplitude alternating current. One solution is for
a coil above a semi-infinite conducting slab with a plane sur-
face, covered with a uniform layer of another conductor. 'his
solution includes the special cases of a coil above a single
infinite plane conductor or above a sheet of finite thickness,
as well as the case of one metal clad on another. The other
solution is for a coil surrounding an infinitely long circular
conducting rod with a uniformly thick coating of another con-
ductor. This includes the special cases of a coil around a
conducting tube or rod, as well as one metal clad on a rod of
another metal. The solutions are in the form of integrals of
first-order Bessel functions giving the vector potential, from
which the other electromagnetic quantities of interest can be
obtained. The coil impedance has been calculated for the case
of a coil above a two-conductor plane. The agreement between
the calculated and experimental values is excellent.

INTRODUCTION

Electromagnetic problems are usually divided into three categories:
low frequency, intermediaté frequency, and high frequency. At low fre-
quencies, static conditions are assumed; at high frequencies, wave equa-
tions are used. Both of these regions have been studied extensively.
However, in the intermediate frequency range, where diffusion equations
are used, very few problems have actually been solved. Eddy-current
coil problems fall into this intermediate frequency region. This report
presents an accurate techgique for analyzing the problems of eddy-current

testing.

Llconsultant from the University of Tennessee.



Eddy-current testing has been used in industry for many years. As
early as 1879, D. E. Hughes?® used an induction coil to sort metals.
There have been numerous articles on the testing of materials with eddy
currents. Some of the first papers dealing with both the theory and the
practical aspects of' eddy-current testing are by F'o'rster,3 Forster and
Stambke,4 and Forster.” In this series of papers, analyses are made of
a coil above a conducting surface, assuming the coil to be a magnetic
dipole, and of an infinite coil encircling an infinite rod. Hochschild®
also gives an analysis of an infinite coil including some eddy-current
distributions in the metal. Waidelich and Renken’ made an analysis of
the coil impedance using an image approach. Their theoretical results
agreed well with theory for relatively high'frequencies. Libby8 pre~
sented a theory in which he assumed the coil was a transformer with a
network tied to the secondary. This network representation gave good
results when compared to experiment. ''hé dartusion of eddy-current
pulses (Atwood and Libby®) can be represented in this manner. Russell,
Schuster and Waidelich!© gave an analysis of a cup core coil where they
assumed the flux was entirely coupled into the conductor. The semi-

empirical results agreed fairly well with the experimental measurements. -

’D. E. Hughés, Phil. Mag. 8(5), 50 (1879).

*Friedrich Férster, Z. Metallk. 43, 163-171 (1952).
“Friedrich Férster and Kurt Stambke, Z. Metallk. 45(4), 166-179 (1954).
’Friedrich Forster, Z. Metallk. 45(4), 197-199 (1954).

®R. Hochschild, "Electromagnetic Methods of Testing Metéls," Progress
in Nondestructive Testing, Vol. 1, Macmillan Company, New York, 1959.

7D. L. Waidelich and C. J. Renken, Proc. Natl. Electron Conf. 12,
188-196 (1956). o

, 84. 1. Libby, Broadband Electromagnetic Testing Methods, HW-59614
(1959). B

%K. W. Atwood and H. L. Libby, Diffusion of Eddy Currents, HW-79844
(1963). .

10p, J, Russell, V. E. Schuster, and D. L. Waidelich, J. Electron.
Control 13, 232-237 (1962). '




Vein,ll Cheng,lz and Burrows!?

gave treatments based on delta function
coils, and Burrows continued with the development of an eddy;current flaw
theory. Dodd and Deed,s,14 Dodd_,15 and Dodd*®é gave a relaxation theory to
calculate the vector potential of a coil with a finite cross section.
Here we extend a '"closed form" solution to such coils.

The vector potential is used as opposed to the electric and magnetic
fields. The differential equations for the vector poteﬁtial will be
derived from Maxwell's equations, with the assumption of cylindrical sym-
metry. This differential equation will then be solved to obtain a "closed
form" solution.

For the "closed form" solution, sinusoidal driving currents and
linear, isotropic, and homogeneous media will be assumed. Solutions will
be obtained for two different conductor geometries: a rectangular cross-
section coil above a plane with one conductor clad on another and a
rectangular cross-section coil encircling a two-conductor rod. The solu-
tions for both geometries will be given in terms of integrals of Bessel
functions. Once the vector pofential has been determined, it can be used
to calculate any physically observable electromagnetic quéntity.

Equations to calculate eddy-current density, induced voltage, coil
impedance, and effect of defects will be given. Measured values of coil

impedance as compared with calculated values show excellent agreement.

11p. R. Vein, J. Electron. Control 13, 471-494 (1962).

12pavid H.S. Cheng, "The Reflected Impedance of a Circular Coil in
the Proximity of a Semi-Infinite Medium," Ph.D. Dissertation, University
of Missouri, 1964.

13Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection,
University Microfilms, Inc., Ann Arbor, Michigan, 1964.

l4¢. V. Dodd and W. E. Deeds, "Eddy Current Impedance Calculated by
a Relaxation Method," pp. 300-314 in Proceedings of the Symposium on ‘
" Physics and Nondestructive Testing, Southwest Research Institute, San
Antonio, Texas, 1963.

15¢c. v. Dodd, A Solution to Electromagnetic Induction Problems,
ORNL-TM-1185 (1965) and M.S. Thesis, the University of Tennessee, 1965.

Lég. v, Dodd, Solutions to Electromagnetic Induction Problems,
ORNL-TM-1842 (1967) and Ph.D. Dissertation, the University of Tennessee,
1967. .




DERIVATION OF VECTOR POTENTIAL

The differential equations!” for the vector potential will be

derived from Maxwell's equations which are:

vXﬁ=3+§_g (1)

Vx—}é’:—?—]% (2)
ot

V-B =0 (3)

The medium is taken to be linear and iSOtrbpic, but not homogeneous. In
a linear and isotropic medium, the following relations between D and E

and E and ﬁ hold:

B = uH (5)
B:eﬁ ' ’ (6)

The current density 3 can be expressed in terms of Ohm's law:

J = ou | {(7)
Equations (6) and (7) may be substituted into Equation (1) to obtain the

curl of ﬁ in terms of E:

- - Aedﬁ
UxH = on+ 05T 8
E+ st (8)

175 1ist of symbols is given in Appendix A.
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The term oﬁ is much greater than %%E, so the latter may be neglected for
frequencies below about 10 Mc/sec (ref. 18). The magnetic induction

field E may be expressed as the curl of a vector potential K:
B=VxA (9)

Substituting this into Equation (2) gives

fo:—a— ><1.-\.’-_-—V><-aﬁ (10)
3t v 3t

or

Fo -k _ G o3 + 7 (1)

Tt ~ Tinduced applied
- : .

E=—0 oA _ ' (12)
ot

The term ¢ is interpreted as an applied scalar potential. The coil may
be driven by a voltage generator with an applied voltage ¥ and an internal
resistivity, %. However, for the purpose of this problem, the driving
function is expressed as an alternating current density of constant
amplitude, ;o rather than an applicd potential, where

-
Limit (= oW) = i
o - 0.

W—)oo

o] (13)

This provides a current which is not affected by induced voltages or the

presence of other coils. Making this substitution gives:

B=-oc% 73 (14)

Substituting Equations (5) and'(9) into the left side of Equation (8)
and Equation (14) into the right side gives:

18For sinusoidal waves, g%g = %%E = jedﬁ. The term oE is much
greater than ¢wE or ¢ >> ew. 0 ~ 107 mhos/meter for metals, ¢ ~ 1071,
For frequencies on the order of 107 cps, w =~ 108, 107 >> 108 x 10711,

or o = 10'° cw.



.—:Vx[(l/u)VxK]_—o@-Al-Plo (15)

ot

Vx H=Vx

= i

The vector identities (Morse and Feshbach'?)

Vx (VF) = (W) X F+ yWx Fand Vx (VX F) = YV-F) - V5,

can be used to expand the left side of Equation (15):

vx (1)@ xE) = 91/ x (FxK) + 29 x (9x D)
=(1/n) x (W~ K) + % O rl: v . (16)

In the definition of the vector potential the divergence of the vector
potential was not defined, so it can be defined to be anything convenient.
For induction problems V-4 is set to zero. (This corresponds to the
Coulomb gage.) Equation (16) will then yield the following results when
substituted into Equation (15).

-> - ok e
VA =—pi_ + uo v WV(1/u) x (V x A) (27)

This is the equation for the vector potential in an isotropic, linear,
inhomogeneous medium. For most coil problems it is possible to assume
axial symmetry as shown in Fig. 1. The vector potential will be sym-
metric about the axis of the coil. Since this assumption is valid for
most problems and the altcrnative to this assumption is a much more
complicated and impractical problem, axial symmetry is assumed. With
axial symmetry, there is only a 6 component of f and therefore of K.
Expanding the 6 component of Equation (17) gives:

2 2
DR LI VR A
or r dr Jdz¢ r? 0 ot

—u {d(l/g) ig? @(;?)) QA] (18)

19Philip M. Morse and Herman Feshbach, Methods of Theoretical
Physics, McGraw-Hill Book Company, New York, 1953.
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Fig. 1. Delta Function Coil above a Two-Conductor Plane.

Assume that i_ is a sinusoidal function of time, i_ = i/ eI Then the

vector potential is likewise a sinusoidal function of time,

Ao aedlut+o) 0 Jut

Substituting into Equation (18) gives:



. . 2 . . . .
SZA”ert 1 oA” LWt ) %” LJut __é; egwt - i St Sl A LJub
dr? r or oz re ¢

3(1/k) /1 drA” ejwt) 3(1/u)\ oA” ejw’cJ
—Hldr r Jor , dz / dz
Canceling out the term ert and dropping the prime gives:
2 2
el + loa + é-é._.é— = —pi_ + JwuoA — [6(1/u) 1l ar (1{u2 dA
dr?  r dr Jz2 2 ° oz dz
(19)

This is the general differential equation for the vector potential
in a linear, inhomogeneous medium with a sinusoidal driving current. We

shall now obtain a "closed form" solution of Equation (19).

CLOSED FORM SOLUTIONS OF THE VECTOR POTENTIAL

We shall assume the medium to be linear, isotropic, and homogeneous.
When I is the total driving current in a delta function coil at (ro,zo),

the general Equation (19) then becomes:

o 1A, éié ~& o juoA+uIs(r-r)os(z-2)=0 (20)
dr2 r dr 2dz%2 r? °© °

Once we have solved this linear differential equation for a particu-
lar conductor configuration, we can then superimpose any number of delta
funcfion coils to build any desired shepe of coil (provided that the
current in each coil is known).

~ We shall solve the problem for two different conductor configura-

tions: a coil above a two-conductor plane and a coil encireling a two-
conductor rod. These two configurations apply to a large number of

practical problems.

Coil above a Two-Conductor Plane

The coil above a two-conductor plane is shown in Fig. 1. We have
divided the problem into four regions. The differential equation in air

(regions I and ITI) is:



3%A 1 3A 3% a
- 22 20 21
dr? ¥ r dr * dz? e (21)

The differential equation in a conductor (regions III and IV) is:

0%A , 10A 3% _A . (22)

dr2  r dr dz? 2 1
Setting A(r,z) = R(r) Z(z) and dividing by R(r) Z(z) gives:

1 ¥R(x) 1 W(x) 1 d%(z) 1 _ (23)
R(r) or? rR(r) oOr z(z) dz? r2 JWMO, =

We write for the z dependence:

1 d%2(z) 5
—_— = "constant" = o + jupo, .
zZ(z) oz® I | (24)

or

2 . - 2 .
2(z) = A ePVOTHWO, 2 o Jo+iwe 2 ()

We define:

a, E,/a2+jwuoi ' (26)

1

Equation (23) then. becomes:

1 M+__i__a§££l+a2_}—=o

27
R(r) or? rR(r) or | r? (27)

This is & first-order Bessel equation and has the solutions:
R(r) = C Jy(ar) +D Y, (ar) (28)

Combining the solutions we have:

.Z
A(r,z) = (A e'%i% + B e H%](C Jl(ar) +D Yl(ar)] (29)
We now need to determine the constants A, B, C, and D. They are
functions of the separation "constant" a and are usually different for

each value of'a; Our complete solution would be a sum of all the indi-

vidual solutions, if « were a discrete variable; but, since o is a
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continuous variable, the complete solution is an integral over the entire

range of . Thus, the general solution is:

A(r,z) = [ [a(@) €17 + B(a) e ¥?%71c(a) Jy(ar) + D(a) Yy(ar)]l & . (30)

We must take A(a) = O in region I, where z goes to plus infinity.
Due to the divergence of Y1 at the origin, D(a) = O in all regions. 1In
region IV, where z goes to minus infinity, B(x) must vanish. The solu-

tions in each region then become:

A(l)(r,z) - J:Bl(oz)e_az J, (ar) da : (31)
A (r,2) - lc,(@) € + B,(0) €71 g, (ar) @ (32)
2B,z = f:[C3(Ot) 1% 4 By(a) €A% Jy(or) @ (33)
A e, z) = fc)”[c4(a) 2% g, (ar) da (34)

The boundary conditions between the different regions are:

sz, ) = al¥) (2, 0) (35)
%%(l)(r,z)l‘z - g%(a)(r,z)}z:z ~ BT 8(x = 7)) (3€)
4 (r,0) 2 4B (x,0) (37)
%(2)(:1',2):12*:0 i _2%(3)(1:,2)]“0 (38)
2P,y = 4t (r,—) (39)
:—‘2(3)(1«,51: - %%M(r,z)}z: . | (40)
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Equation (35) éives:
émBl(oz) e 5 (or) a = {)'fcz(oc) &, B, (a) ) 5y (ar) @ (1)

If we multiply both sides of Equation (41) by [ Ji(a’r)r dr and then
)

reverse the order of integration, we obtain:

°;3 o7 2
J-ﬂoii; [fo,Jl(ar) J (o'r) ar dr] do = {)wé [Cp(a) ot

e

+ B,(a) e—az][{:oJl(ocr) Jl(oz’r) ar dr] do  (42)

We can simplify Equation (42) by use of the Fourier-Bessel equation,

which is:

Flo' ) = c{?(a) g?l(ar) 5 (o) or ar a (43)

Equation (42) then becomes:

B ’ ! B ! (44)
_le'aﬂ=ﬁea‘+_ée'°‘£
af o a’
We can evaluate the other integral equations in a similar manner.
We get (after dropping the primes on the Q):
- ol —ob _ (45
_Ble = C2 e —_ B2 e uII‘O Jl(CtI‘o) ( )
B C B
S2,2_ 2, (46)
04 (0 0/ a
, [0} al ' (47)
C,— B, = 5L C3 =5 Bs
C B c S
23 ot L 2 e 2 e a2t (48)
a o4 a
% o M g, A .2, %2 (49)
C, € 4
3 3 a
o (0
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We now have six equations with six unknowns. Their solution is-

1 ar [looy)(ag-0,) + (a-ay ) (e ) €™ —ouz}
B; = 35 wIr Jl(aro) {e + [

(-0 ) (g -0y ) + (o ) (a4, ) e?C
(50)
Ca’% WIr Jl(ocro) ot (51)
1 (ot ) (o =0ty) + (- ) (ot ) ezo‘lcl o 52)
B2=-§ HIrO Jl(aro) {ka'al)(al‘az) + (a+al)(a2ﬁxl) emxlg
) { alayiay) T BN il (53)
Cy = bIr Jl(ocro (0 ) (@, + (v (@) .20, ¢
. Q.
B Ir_ J,(ar ) J\ i) © = (54)
37 o 1t (r-ry ) (g -0tp) + (o ) (it ) €22
g 0T 8 )
C, = wIr_ Jy(or,) o

(a-ai)(al-az) + (o ) (o) N

We can now write the expressions for the vector potential in
each region:

plr

O R L ACARNCOR

—b-0z

200
S [mﬂl)(af%) + (om0 ) (090 @ 1:} } o (56

X (c-ciq )y =0t,) + (co ) (orp4ry ) e

Ir _
2 (r,2) = “:0 [3, (e )3, (ar) e

20
{Olz + [(aml)(o‘l'az) +(a-ay) (ot ) e lc_] e—az} ax . (57)
e 20,

(a-0ty ) (g =g} + (aHay ) (@p4aty ) e
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A(3)(r)z) = LLII’O/:OJ'l(Oﬂro)Jl(Oﬁr) e—aza

{(Oﬁz-lal) ezOllC ealz + (al-az) e—OZlZ
<

c} dor (s8)

20

L(a'al)(al'az) + (o ) (gt ) ™2

A(4)(r,z) = uIroémﬁl(aro)Jl(ar) ey

{ 2011 e(ag-lal)c'e-iazz

(o= ) (o =at,) + (oo ) (ot

These are the equations for the vector potential of a delta function
coil above a two-conductor plane. ©Next we shall consider the derivation
of the vector potential of a delta function coil encircling a two-

conductor rod.

Coil Encircling a Two-Conductor Rod

We shall assume a delta function coil encircling an infinitely long,
two-conductor rod, as shown in Fig. 2.
The general differential equation is the same as Equation (23) for

a coil above a conducting plane.

1 R(r) 1 3R(x) 1 ¥%(2) 1 _ .. (60)

R(r) or? rR(r) Or z(z) dz? r?

Now, however, we shall assume the separation constant to be negutive:

2
1 9%(z) = "constant" = — a? (é1)
z(z) dz?
Then
Z(z) = F sina(z-zo) + G co&x(z-zo) (62)

and Equation (60) becomes:

. 9%R(r) TOR(r)
r< +

- [(@® + juwo)r?2 + 1] R(r) = O A (63)
dr? or
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Fig. 2. Delta Function Coil Encircling a Two-Conductor Rod.
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The solution to Equation (63) in terms of modified Bessel functions

is:

1
R(r) = CI,[(a® + jwuc)%r] + DKy [(@® + juno)3r] (64)

We can now write the vector potential in each region. We shall use
the fact that it is symmetric (with respect to z-zo) to eliminate the
sine terms, and the fact that Ki(o) and I;(«) both diverge to eliminate

their coefficients in regions I and IV, respectively. Thus we have:

A(l)(r,z-zo) = é(?l((x)ll_[(oz2 + jwucl)%r] cosoz(z-zo) dor (65)
A(?‘)(r,z-zo) = f{cg(a)ll[(a?- + jmz)gr]
+ Dy(a)Ky [ (a® + jwp.dz)%r]] cosoz(z-zo) do (66)
;A(B)(r,z-zo) = ffcz‘(a)ll(ar) + Dy (@)K, (ar)] coscx(z-zo) do (67)
A(4)(r,z-zo) = £°I34(a)Kl(ar) cosa(z-zo) dor (68)
The boundary conditions between the different regions are:
A(‘l)(a,z-zo) = A(z)(a,z-zo) : (69)
%A(l)(r,z-zo)] = %; A(Z)(r,z-zo)] : | (70)
r=a r=a
A(z)(b,Z-ZO) = A(B)(b,Z-zo) (71)
G TR N TN OO TN, ~ (72)
S;A (r,2 zoi_ib ™ AV (r OZlb
A(B)(ro,z-'zo) = A(4)(ro,2-zo) = | (73)



; 1
g_r A(B)(r,z-zo)J = —g—; A(Z')(r,z'-zo)

r=XY =
o r=r

:;] + uI&(z-zo) (74)

If we multiply both sides of Equation (69) by coso’ (z-zo) and integrate

from zero to infinity, we obtain:

,émfomcl(oz)Il[(oz2 + ju!rldl)%r] cosa(z-zo) cosa’ (z-zo) do
1
= [[feat@)Lal0? + juno,)ox) + Dy(@)Ky [ (02 + Jupo,)2r)]
x [cosa(z-z ) cosa (z-2 )] da d(z-2) (75)

We can reverse the order of integration and use the orthogonality

properties of the cosine integral or use the Fourier integral theorem:

1/~ .

= £ f‘(oz)[,cf> coso:(z-zo) cosa’(z-zo) d(z-zo)] do = (o) (76)

Thus, we can solve the integral equations (69) through (74). We shall use

. i Y
oy and 0p to designate (@? + juwnoi)? and (@® + jwdon)2. We shall use primes
to designate derivatives with respect to the argument. We get trom the

integral equations (69) through (74):

CyI;{aya) = C,I;(@,a) + DK, (a,a) (77)
Cry I3 () = Ca,T)(aya) + Do K] (,8) (78)
CpIy (@5b) + DKy (apb) = C5I;(ab) + DK,y (ob) (79)
C,0,I3 (@b) + Dok (a,b) = C3aii(ab) + D,0K; (ab) (80)
C3Il(aro) + DBKl(aro) = DAKl(aro) : (81)

' . ’ ' kI
CBaII(ozro) + D3aKl(ocro)‘= D4aKl(aro) + = (82)
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Now we have six equations with six unknown constants. The equations

may be solved to give the constants. We define:

D = [ozzKO(azb)Kl(ocb) - aKO(ocb)Kl(osz)][_cxlIl(aza)I(')(ocla)

Il(ala)Io(Ot?_a)] + [a?_Ko(aza)Il(ala)

+ ozlxl(ozza)lo(ala)][ocIl(azb)Ko(ab) + azlo(azb)Kl(ab)]

The constants are
proIKl(aro)
abnD

urOIKl(aro)

2 bD
uIr K, (ar,)
Co=—305 [0 Ko (@,2)T, (@g2) + oKy (@)1 (0 2)]

. . uIroKl(aro)
e

)
]

[(azll(ala)lo(aaa) - alll(cxza)lo(ala)]

hr I K, (aro) 1 (@,b)

D, = — — K, (@) L bD [a111<°‘2a)10(°‘1a) - @I, (4 2a)I_(az2)]

- Eié%’-‘_b.)_ [aZKo(aza)Il(ocla) + O‘lKl(aza)Io(%a)] + Il(ab)JL

I-lIroKl (o«’ro) 1 (a2b> (@I, (a]_a)IO (0128.) - oIy (aza)Io(ala) ]
2 Ky (0lb)bD

Dy =

I, (a,b) I, (ob) I (ar

¥ Kl(db)'bD [azll(ala)Ko(GZa) + a]_Kl(aza)Io(ala)] -

K, (ab) K (ar

(83)

(84)

(85)

(86)

(87)

(88)

o} (s9)
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We can now write for the vector potential in each region:

r K,(ar )
Al )(T,Z-Zo) = L‘;II 2 a—g -—lD—n— 1 (o, 1) cosa(z-2 ) du (20)
r Ky (oc o)

A(Z)(r,z-zo) L fm

- {[(azll(ala)l (22) - Ty (2)T_(04)]

X X, (@,r) + [ozzKo(ozza)Il(ala) + alKl(aza)IO(ala)]Il(azr)} cosa(z-zo) do

(91)
A (r,2-2 ) = B % g ar ) q1y(o) - [% <a111(a2a)lo(ala)
_ aZIl(ala)Io(aza)> - %ﬁ% 0K (0,8)T, (ga) + alKl(aza)Io(ala))
ziz:ﬂ Kl(ar)} cosa(z-z ) & (92)
A(") i u—ﬂI j:roKl(aro)nl(ar) {Kl(u ob) [, Il(ala);gz]z?)w oy Iy (@0)I (0y2)]

I, (@,b)

K; (ub) LD [aéIl(ala)Ko(aZa) + QLKL(aza)In(ﬁla)]

_ Il(ab)i-Il(aroi} cosa(z-zo) dx  (93)

Kl (ab ) Kl (Otro

Equations (90) through (93) are the equations for the vector poten-
tial ot a delta funetioh coil encirellng a lwo-conductor rod. We will
now consider the superposition of the delta function coils to form "real".

coils.
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Coils of Finite Cross Section

We have the equations for the vector potential produced by a single
delta function coil. We can now approximate any coil such as the ones
shown in Figs. 3 and 4 by the superposition of a humber of delta function

coils.

ORNL-DWG 67-2523

= \\\\\\\ \\\\\Z y

== //// //////

| NN / /
NN //////

Fig. 3. Rectaﬁgular Cross-Section Coil above a Two-Conductor Plane.
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Fig. 4. Rectangular Cross-Section Coil Encifcling a Two-Conductor Rod.

In general, we have:

n o, '
o ‘ - )
A(r,z)(total) = Zfi(r,z) = Zﬁ(r,z,ﬂi,ri) (94)

i=1 i=3
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This equation is good for coils of any cross section. If we let the
current distribution in the delta function coils approach a continuous

current distribution, we obtain:

(95)
A(r,z)(total) = J[ A(r,z,ro,z) d(area)
coll :
cross section

where A(r,z,z,ro) is the vector potential produced by an applied current
density io(z,ro). If the coil has a rectangular cross section, as in

Figs. 3 and 4, we have;

Ty L2

A(r,z)(total) =J fA(r,z,ro,z) ar_as (96)
4 -

We will now assume that the applied current density io(ﬂ,ro) is a .
constant over the dimensions of the coil; that is, the current in each
loop has the same phase and amplitude. We shall apply these results to
Equation (56), the case of a probe coil above a two-conductor plane.

After reversing the order of integration, we write:

o T2tz
1 ] BT —a(s+z) | 208
al )(r,z) =fj J ‘2’ Jl(aro)Jl(ozr) e e
°ry b
204 C
(aml)(al-q?_) + (a-ay ) (a4, ) e } (o7)
g _ ) 20, C do dro as
(a-ap ) (q-ay) + (s ) (a4 ) e
We shall express the integral over r_ as:
r2 ars ar, :
ar, = 5 | o, = =5 | xny(x) ax= L 1(r )
\/ roJl(aro Nl aroJl(aro r, = oz xJq (x == NN
r = Or_=ary X=0r'y

1 ) _ (98)
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The integral over £ is:

£ L2
fe—a(£+z) ’{ezow + l} df = e—(xzf {eaz + e_ow} al

£=f

L=4, 1

—Qz |
- Keouzz _ eowl>_ <e—az2 _ e—ahﬂ (99)

Upon applying Equations (98) and (99), the equations for the vector

potential in the various regions for a rectangular cross-section coil

become:

A(l)(r,z)

pi ,
al xl ~Cil -l
—2—j I(r,,r;) Jl(oer) {e 2 -1 = <e 2 —e 1)
o :

- o) (o) €
y [(awl)(al a,) + (a-0y) (a +ozl) l} o (100}

(a-ay ) (o -Olz) + (o ) (a0 ) o2 C

x)

pi o~ N
A(d)(r,z) S j 1_3 I(ry,ry)Jdy (ar) (e_('wl - e-uzz) X {euz
>

May ) (@, =a,) + (a-a )(%*061) 92‘*1‘] ~zl o

l o

Ll ) (ay-ap) + (a"'al)(az-lal) A0 (101)

ool 7
A(3)(r,z) = MIO[EE I(r,,ry)J, (ar) <e‘0‘ﬁ1 _.eﬁaﬂz)
{Q(ag"'al) e®MC (M7 4 a(oy-ay) e—alzl o
(a'al)(al'az) + (aﬂl)(az'ﬂl’l) eZOfIC_J (102)
O IR I N EA O ey
5 :

Ve

(@, +ay)e 0z

{ 200, € ]
(0-ay ) (g -0t,) + (o ) (argtary) €22

(103)
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Equation (100) for A(l) is valid in the region above the coil and
Equation (101) for A(Z) is valid for the region below the coil. We have
to give special treatment to region I-II, between the top and bottom of
the coil. For a point (r,z) in region I-II, we can use the equation
A(l)(r,z) for the portion of the coil from z down to £; and the equation
A(z)(r,z) for the portion of the coil from z up to £,. If we substitute
£> = z in Equation (100) and £; = z in Equation (10l1) and add the two

equations, we get:

pi ‘
A(l’z)(r,z) = —53 k/qé% I(r,,ry)d, (ar) {é - éa(z-lz) - eﬂq(z-zl) + e 2
) .

(o ) (g -ay) + (a-ozl)(a.z-tal) e2a1cJ- } - (104)
lc

(a0 ) (g -ap) + (aboy ) (ot ) e

@®
d
IS
]
|
(0]
g
Nh
N’
—

We now have the equations for the vector potential in all the

regions.

CALCULATION OF PHYSICAL PHENOMENA

- Once we have determined the vector potential, we can calculate any
physically observable electromagnetic induction phenomenon. We shall now
give the equations and perform the calculations for some of the phenomena

of interest in eddy-current testing.

Induced Eddy Currents

We have, from Ohm's law:

-

3:: Oi:’:—o'a—Az—ijX (105)

From the axial symmetry, Equation (105) becomes:

J = — jwoA(r,z) (106)

where A(r,z) is given by either Equation (102) or (103), depending on the

region ot interest.
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1nduced Voltage

We have, for the voltage induced in a length of wire,:
V = jw/A.ds | (107)

For an axially symmetric coil with a single loop of radius r,

Equation (107) becomes:

V = jw 2nr A(r,z) (108)

The total voltage induced in a coil of n turns is then:
n
y

V - § Znw Lj&A(ri’zi) (109)
i=o

We can approximate thc above summation by an integral over a turn

density of N turns per unit cross-sectional area:

V= 2w j] rA(r,z) Ndrdz - (110
coil
cross section

For coils with a constant number of turns per unit cross-sectional area:’

j 21w n o :
Vv = J - (j\j rA(r,z) drdz (111)
coil cross section coil

cross section
This is the egquation for the voltage induced in a coil by any
coaxial ¢o1l.
When the two coils are one and the same, with cross-sectional area

equal to (£, — £,)(r, — r;), the self-induced voltage is:

TR
j 27w n i )
V = J \/ rA(l’a’(r,z) drdz (112)
zl 1

) (£,-21)(xp-1y) r



25

Coil Impedance

From the self-induced voltage, we can calculate the coil impedance

V=2I, or Z = (113)

Hl <

The current in a single loop is related to the applied current density,

io, by: \
i = nl (114)
° (‘22_31)(1‘2-1‘1)
The coil impedance becomes:
(o]
. 2 N 1
- ijz? n )ZL/ ;é 12(ry,my) \208-0) + 3
L -8 r -r
2% 271
[28—05(.22-"@1) -2 4 <e—20422 + e—zaﬂl_ 2e—a(£2+21)>
ata, )(a,-a,) + (o-a )+, ) e
(ot N, -a,) + (a0 )( ]}da (115)
2‘3‘1

(a-0q ) (o -ap) + (ad0y ) (cptary)

This equation can be made more general by normalizing all the dimensions
in terms of a mean coil radius, r.
I‘l+r2
5 (116)

r =

All lengths are divided by T and all o's are multiplied by T.

Upon>normalization, Equation (115) becomes:
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Just p n? T

4 A 1
ERSPRTY )2J 5 Tlam) {2(2-2'£1) T a
274y T\ Fpm T3/ 0 ’

[Zeﬂm(EZ_zl) -2 +ﬁ<?—2a£2 + e—2a£l - 2e—a(zé+£1))

% (117)

(ot ) (o -y ) + (-0 ) (et ) -ezalc.)}
do

(0may ) (g =ty ) + (o ) (aupte ) €*°

The impedance may be normalized by dividing it by the magnitude of

the air impedance. For the air impedance y=Q,=0 and:

=]

-

2nw ¢ nr 1
J = I%(rp7y) {<'e2-£l)
b

“air (£2-81)%(rp-11)?
+ é [e_o‘(zle) - 1] } do (118)

Flaw Impedance

Once the eddy-current density is known, we can simulate a flaw by
superimposing a small current flowing in the opposSite direction. 1the
normalized impedance change due to a small, spherical defect not too

close to the surface (Burrows®0) is:

/A 2
2 \ I
where Adefecf is the vector potential at the defect, given by the eyuu-

tions for either A( ) and A( 4) and "vol" is the volume of the defect.

Coil Inductance

The coil inductance is related to the magnitude of the air impedance

by:

20Mlchael Leonard Burrows, A Theory of Eddy Current Flaw Detectlon,
University Microfilms, Inc., Ann Arbor, Mlchlgan, 1964. .
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WL = | aipl : (120)

or

. 2mp n? T fol_ (e, 2) {(ﬂg-zl) ! {e-a(za-zl) _ 1} } -
(£5-01)(rpmry) 20 @ - (121)

Mutual Inductance

The voltage generated in a "pickup" coil with dimensions r5, ri, Z%,

, - . . .
£1 by a current I flowing in a "driver" coil with dimensions rz, ry, £,

ﬁl is:
. (122
V=MQI—-= J(dVII )
at
or
M= — (123)
JwI

Using Equation (111) to calculate the voltage we have:

27 n’
= —— — rA(r,z) drdz (124)
(coil cross section) ( .
coil
cross section)’

The equation for A will vary, depending on the region where the
pickup coil is located. If the pickup coil is located in region I-II,

the mutual induectance is:
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~

p.n n n, T l 14 ? ’ !
| 35 1ea )i, 1) x {2(z2 — 8)

M=
(‘e,?._z:,l.)(rlg‘r;)(zg"el)(rg'rl) [

4 ’
'3 [e_auz-zl) _ollantn) | aleh-ay) | a4y <e‘°‘(ﬂ'2+z2)

Q

_ alehrey) | o(eiee,) | e—a(z’lul))

(a-ral)(ozl-az) + (a_al)(azwl) eZCZIC .

(-0 ) (@ -at,) + (orey ) (4 ) eao‘1C>J } w (129)

This is the mutual inductance between the driver coil and the pickup
coil in the presence of a clad conductor. By the reciprocity theorem,
this is equal to the mutual inductance between the pickup coil and the

driver coil.

Evaluation of Integrals

The normalized impedance has been calculated using a C-E-I-R time-
sharing computer to evaluate integral equations (117) and (118). The
solutions have been programmed for any rectangular coil dimensions and
lift-off as well as for a metal of any conductivity clad (ih varying
thickness) onto a base metal of any conductivity. The programs, in
"BASIC" language, and their descriptions are given in Appendix B.

Figure 5 shows how the normalized impedance varies as a function

of clad thickness.
EXPERIMENTAL VERIFICATION

A family of four coils was constructed with different mean radii
but all with the same normalized dimensions. The coil impedance was
measured at various values of normalized 1lift-off and at various values

of ?Zwuo. The values of the experimental normalized coil impedance and
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‘Fig. 5. Variation of Normalized Impedance with Clad Thickness.

the calculated normalized coil impedance are plotted in Fig. 6. The
agreement between the calculated and measured values is excellent at the
higher frequencies. At the lower frequencies the measurements are very
difficult to make, and the accuracy of the measured values becomes very
poor. (Because of this, few eddy-current tests are made at these freg-
uvencies.) Thus the theory is in excellent agreement with experimental

values at the frequencies of interest in eddy-current testing.

ACCURACY OF CALCULATIONS

This technique,‘like most others used in engineering, is "exact,
. except for a few assumptions we have to make in order to work the
problem.” We will now discuss ‘the probable errors in some of these

assumptions.
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Fig. 6. Variation of kxperimental and Calculated Values of Normsal-
ized Impedance with Frequency and Lift-Off.

Axial Symmetry

This is a very good assumption, but we cannot easily wind coils that
have perfect axial symmetry. This error will vary with the winding tech-
nique and will decrease as the number of turns on the coil and the coil-
to-conductor spacing increases. This error will be effectively reduced
when normalized impedance is calculated. For a typical coil it should
be less than 0.01%.

Current Sheet Approximation

This error arises because we have assumed a current sheet, while we

actually have a coil wound with round, insulated wire. Some correction
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formulas are given by Rosa and Grover?! for the inductance of a coil in
air. From Equations (87) and (93) by Rosa and Grover, we have calculated

the following correction formula:

0.5058r, — 0.2742r, + 0.44 (£,-4)] '
%% [ 2 L (P2t (zn g + o.155> (126)
n

ﬁhere all dimensions are normalized by the mean coil radius. The symbols
D and 4 are the wire diameters with and without insulation, respectively.

For a typical coil with 100 turns the change in inductance is 0.19%. The
' change in normalized impedance will be a small fraction of the change in

inductance.

High Frequency Effects

These are probably the most serious sources of error in this calcu-
‘lation technique. As the frequency increases, the current density ceases
to be uniformly distributed over the cross section of the wire but
becomes concentrated near the surface. The resistance of the coil
increases, and the inductance decreases. The current is capacitively
coupled between the turns in the coil, tending to flow across the loops
of wire rather than through them. Both the interwinding capacitance
and the coil-to-metal sample capacitance increase. The coil-to-sample
capacitance can be reduced by winding the coil such that the turns
nearest the sample are electrically near alternating-current ground.
The coil-to-sample capacitance will be much less than the interwinding
capacitance. If the coil is used at frequencies where the interwinding
capacitance has a small'effect, the error in calculated normalized

impedance will bhe a much smaller cffect.

2lgaward B. Rosa and Frederick W. Grover, "Formulas and Tables for
the Calculation of Mutual and Self-Inductance," Nat. Bur. Std. (U.S.),
Tech. News Bull. 8(1), 1-237 (1912).
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CONCLUSIONS

This technique presents a quick and easy way to calculate the
observed effects of actual eddy-current tests to a high degree of

accuracy.
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APPENDIX A
List of Symbols

In the first column the symbol used is given, and in the second
column the name. In the third column the meter-kilogram-second (MKS) units
are given. In the last column the dimensions are given in terms of mass (M),

length (L), time (T), and electric charge (Q).

Symbol. ' Name MKS Units Dimensions
. webers ML
A vector potential —oter )
B magnetic induction EEEEE% M
meter TQ
c clad thickness ' meter L
D electric displacement 29359%3 'QEI
meter L
E electric intensity volt M%—
meter T<Q
H magnetic intensity ampere e
meter TL
I applied current ampere %
i applied current density EEEEEE 2;3
o meter TL
. anmpere . Q
J current densit —_— 2
v meter? TL?
J square root of minus one
- 2
L inductance . henries M%_
' . Q
y/ distance from metal to delta function coil meter L
L2 distance from metal to top of the coil meter L

£y distance from metal to bottom of the coil meter L
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Symbol Name MKS Units Dimensions
. turns 1
N turns per unit ureu — —
meter 1,2
n number of turns turns
ry coil inner radius meters 1
r2 coil outer radius meters L
T mean coil radius meters 1
t time seconds T
2
A voltage volt MLZ
T3Q
ML2
Z impedance ohms —_—
TQ?
(04 separation constanl meter 1 %
2 % 1 1
a; (o +quoi) meter A
2n2
€ dielectrie constaul forad i’
meter ML>
1L permeability henry ML
meter Q%
ne 2
o conductivity mho e~
meter ML3
w angular frequerncy radians L
second T
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APPENDIX B

Thié appendix contains two "BASICY programs which were used to calculate
eddy-current coil impedance using the C-E-I-R time-sharing computer system.
The first program, CLADT5, is the more general program and will calculate the
impedance of a coil of any rectangular cross section positioned any distance
above one conductor of any conductivity clad on another conductor of any
conductivity. The second program is a special case of the first program
where the two metals have the same conductivity. While the integral over «
is from o0 to =, the integrals converge to within about 0.03% of their final

value for the integral of 0 to a=35.
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DTS 9:27 CEIK ¢e/25/767

Ev THIS IS A PROGRAM TO CALCULATE EDDY CURRENT COIL IMPEDANCE
EM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNER AND
EM OUTEKR RADII,R! AND R2, AND THE SPACING OF THE BOTTOM AND
EM TOP OF THE COIL ABOVE THE PLANE, L1 AND L2, MUST BE GIVEN.

EM THE VALUE OF Rt2*xMU*FREG*COND MUST EE GIVEN FOR BOTH THE EBASE

EM MATERIALs M1, AND THE CLAD MATERIAL, M2. THE THICKNESS, C.»
EM OF THE CLAD #MATERIAL MUST ALSO EBE GIVEN.
LET R1=.8333
ILET R2=1.1667
LET L1=.0476
LET L2=.3%09 '
LET M1=77.25
LET M2=4
LET C=.05S
PRINT "K1="3R1,"R2="3R2,"L1=""5L1,"L2=""5L2

PRINT *'"CLAD THICKNESS IS "3C,'"M1="3M1,"M2=""3M2
PRINT "X, "AIR VALUE", "REAL PART', "IMAG PART"
LET S1=1E-2

I.ET $2=5

LET 16=6

LFET 17=0

LET I&=9

LET 19 =0

LEl Ei=p

LET B2 =82

FOR X = 21 +S1/2 10 B2 STEP St

LET Z=R2xX

LET Q1=R2

GOSUB 79

LET IP=F2

LET 7sR1%X

LET @1=R1

GOSUB 79

LET 11=F2

LET I3=12-11

LET S$3=S1#I3%I13/X

IF 2%xXxL1>18 THEN 630

LET Y2z« T7G7107*SERESOGRIX*X*kX*X+M2%M2) =X *X)

LET X1 = 707107%SQRCSORCX*kXAXKX+M1*01) +X%X)

LET Y1 = «707107*SORCSORCX*X*XkX+M1%M1) =X*X)

IF 2%X1%xC>30C THEN S16

LET %2 = 707108 7T*SORCSARIX*X*kXAkX+ME*kMBI +X4X)

LET Y2=. 70710 7T*SOR(SQROXKXEXKkX+MOkMP) =Xk K)

LET X3=EXP(L%X1%0y

LET Y3=C0S(2%Y1%C)

LET Y4=SIN(Z2*Y1x(C)

LET A6=(X=-X1)%(X1+X2)+Y1%(Y1+Y2)

LET AT=(X=-X1)%(Y1+Y2)-Y1%(X1+X2)
LETASZ(X+X1)%(X1-X2)=Y1x(Y1-Y2)+(A6*xY3I-AT*Y4)*X3
LET BS=Y 1% (X1=X2)+(X+X1)*(Y1=-Y2)+(ATkYI+LEXY4)%X3
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440 LET C6=(X+X1IH(X1+X2)-Y1*(Y1+Y2)

450 LET CT7=Y14(X1+X2)+(X+X1)#(Y1+Y2)

4607 LET CS5=(X=X1)#(X1-X2)+Y1%(Y1-Y2)+(CE*kYI-CTxY 4)*X3
472 LET DS=(X=X1)*(Y1=Y2)=-Y1I*(X1-X2)+(CT*Y3+CoXY4I*xX3
480 LET Ki1=(ASk*CS+BS*DS5)/ (CS%CS5+D5S*DS)

497 LET K2=(CS*ES5-£5%D5S)/ (CS*C5+D5*D5)

5¢G6 GOTO 546

516 LET A5 =X-X1

520 LET ES=-Y1

530 LET C5=X+X1

540 LET D5=Y1

550 GOTO 480

S6% LET G=REXP(-2%X* 1)+EXP(-2%X*L2)-2%EXP(~X*x(L1+L2))
576 LET G1=G6G*K1

588 LET G2 =GkK2

59¢ LET A1=S3*%G1/(2%xX)

60¢ LET A2=S3*%G2/(2%%)

610 LET 1é6=16+A1

627 LET 1I8=1&+A2

630 LET G3=EXP(-X*(L.2-L1))>-1

640 LET A3=S3%(G3/%+L2-L1)

650 LET I9=19+A3

660 NEXT X.

670 LET B1=B1+S2

6580 LET B2=E2+S%2

690 LET Q3=X+S1/2

7068 LET 17=19+16

71% PRINT 03519,17,18

72¢: 1F X < 3 THEN 19@

730 LET S1=5E-2

740 IF X < 30 THEN 19@

75¢ LET €1=-18/19

766 LET @2=17/19

TTOPRINT 'NORMALIZED IMAG PART™; G2, "NORMALIZED REAL PART'; Q1
786 GOTO 948 '

796 1FZ>3THEN &8

8GO LETLS=INT(2%Z)+3

810 LETF1=.5%G1%Q1%Z

&20 LET F2=F1/3

%3¢ FORN=1TOLS

840 LETF1=-F1%.250%Z%Z/ (N.kN+N)

S0 LETF2=F2+F1/(2%N+3)

S 66 NEXTN .

874 GOTO 936 :

BSE LET P1=.80G69%Z1e497+.1738%EXP(=-.2675%7)

896 LFT P2=SIN(Z-2.340+¢« 1G6HEXP (-« R68%xZ)+ 4 32¥EXP(~e 3%7))
920G LET P3=+156%EXP(=-.9%Z)%SIN(2.2%Z~431) '
919 LET F4=]

92¢ LET F2=(F1%P2+P3+P4)/ (XxX)

93¢ RETURN

940 END
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REM THIS IS A PROGKRAM TO CALCULATE EDDY CURRENT COIL IMPEDANCE
REM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNER AND
REM OUTER RADII,R1 AND R2, AND THE SPACING OF THE BOTTOM AND
REM TOP OF THE COIL ABOVE THE PLANE, L1 AND L2, MUST BE GIVEN.
REM THE VALUE OF Rt2%FREG*MUxCOND MUST ALSO BE GIVEN.

LET R1=.8333

LET R2=1.1667

LET L1=.0952

LET L2=.4285

LET M=77.85

LET S1=1E-2
LET S2=1 v
PRINT"R1=""3R1,'"R2=""3R2,"L1=""5L1,"L2=""3L2,"M=""3M
PRINT *X",*"AIR VALUE","REAL PART","IMAG PART"
LET 13=0
LET 14=0
LET 17=06
LET 18=¢
LET I9 =@
LET Bi=@
LET B2 =5
FOFR X E1 +31/72 TO B2 STEP Si
LET Z= E

LET Olm 2
GOSUB

>

3

~11
I 3%I3/X
SHEAY I EIUETY
41421 %AKEORXT=-XxXD /-1
VX-].41Ad1 :SER(X T+XaX) ) xX/M
ShXaL 1) +EAP(-2# KL 2) = @5 kEXP (- X2 (L 1+1.2))
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LET I8=1
NEXT X

LET Bi=h1+52
ILET B2=E2+52
LET @3=X+51/2
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or
=t
-
-]
0

P 3,1%
IF X < 3 THEN 17%
LET $1=5E-2

IF % < 3¢ THEN 17¢
LET 61=-18/19

LET gE 3
' MALIZED IMAG PART3G2,"NORMALIZED REAL PART";G1

GNTOE 27

IF Z>3THENT7G

LET LS=INT(2%Z)+3

LET Fl=.5%812:01%2

LET F2=F1/3

FOR N=1TOLS

LET Fl=-Fl%e250%72%7/ (N&N+N)

LET F2=F2+F 1/ (2%xN+2)

NEXT N

GGTOg2G

LET FP1l=.RGA69%Zt e 49T7++ 1 T3G8HEXP(=e2675%7)

LET P2=SINC(Z-Cel340+e 106%EXP(=e G68%Z)+¢ 32%EXP (-0 3%Z))

LET P3=+156%EXP(-e9%Z)%S5INC2+2%Z=431)

LET P4=1

LET F2=z(P1%P2+P3+P4)/ (X=X .

RETURN

END
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