
NO I ~ l 1967 

OAK RIDGE NATIONAL LABORATORY 
operated by 

UNION CARBIDE CORPORATION 
NUCLEAR DIVISION 

for the 

U.S. ATOMIC ENERGY COMMISSION 
• 

0 RN L - TM - 1987 

·Jit\S$ 
''-'~··· 

ANALYTICAL SOLUTI O NS TO EDDY -CURRENT PROBE COIL PROBLEMS 

C V . Dodd 
W E , Deeds 

NOTICE This document contoins information of a preliminary natu re 
and wo" prepared pr1mor1 ly for internal u"c at the Oak Ridge Not1onol 
Laboratory. It is subject to revision or correction and therefore does 
not represent a final report. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



LEGAL NOTICE 

This report was prepared a:; on account of Government :;pon:.orcd work. Neither the United States, 

nor the Commission, nor any person acting on behalf of the Commission: 

A. Make:; any warranty or representation, expressed or imp I ied, with respect to the occurocy, 

completeness, or usefulness of the information contained in this report, or that the use of 

any information, apparatus, method, or proce5& disclosed in this report may not infringe 

privately owned rights; or 

I 

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of 

any information, apparatus, method, or process disclosed in this report. 

As used in the above, 11 person acting on behalf of the Commission" includes any employee or 

l
controctor of the Commission, or employee of such contractor, to the extent that such employee 

or contractor of the Comm1ss1on, or employee of such contractor prepares, disseminates, or 

provides access to, ony information pursuant to his employment or contract with the Commission, 

or his employment with such contractor. 



ORNL-TM-1987 

Contract No. W-7405-eng-26 

METALS AND CERAMICS DIVISION 

ANALYTICAL SOLUTIONS TO EDDY-CURRENT PROBE COIL PROBLEMS 

C. V. Dodd and W. E. Deeds 

LEGAL NOTICE 
lo( Government sponsored work. Neither the UnJted 

This repart was prepared as an accoun Ung n behalf of the CommJeeton: 

States, nor tbe Commission, nor any person ac o ed o implied with respect to the accu-

A. Makes any warranty or re~r:~~:::~=~::scon~ed tn th.ts rePort, or that the use 

racy, completeness, or useful nee, dJ 
1 

ed tn this report may not tnCrtnge 

of any tnformaUon, apparatus, method, or process sc oe 

privately owned rights; or t to th use of or for damages resulting from the 

B. Assumes any UablUUes with r=c or prO:ess di~closed in thJs report. 

use of any tnformaUon, apparatus, me ' behalf f the CommtSsion" includes any em-

As used in the above, "perso:ea~::u~::m('llnyP.: of lll\lCh contractor, to the extent that 

ployee or contractor of the Cu@mi 1 • t t or employee of eucb contractor prepares, 

sucb ewiJ\uyee or contract"'" nf the Comm ee on, uant to biB empluywcl1t or oontrlM:t 

dtesem.lne.tee, or provides e.ccees to, any tnformatto~ pure 

wt th the Comm!eeton, or bis employment with such contractor. 

NOVEMBER 1967 

OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 
operated by 

UNION CARBIDE CORPORATION 
for the 

U.S. ATOMIC ENERGY COMMISSION 



THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 

' '· 

'=j 



iii 

CONTENTS 

Abstract .. 

Introduction 

Derivation of Vector Potential 

Closed Form Solutions of the Vector Potential 

Coil above a Two-Conductor Plane . . 

Coil Encircling a Two-Conductor Rod 

Coils of Finite Cross Section 

Calculation of Physical Phenomena 

Induced Eddy Currents 

Induced Voltage 

Coil Impedance 

Flaw Impedance . 

Coil Inductance 

Mutual Inductance 

Evaluation of Integrals 

Experimental Verification 

Accuracy of Calculations . 

Axial Symmetry . . • 

. .. . . . . 

Current Sheet Approximation 

High Frequency Effects • . • . 

Conclusions 

Acknowledgments 

Appendix A 

Appendix B 

Page 

1 

1 

4 

8 

8 

13 

19 

23 

23 

24 

25 

26 

26 

27 

28 

28 

29 

30 

30 

31 

32 

32 

33 

35 



ANALYTICAL SOLUTIONS TO EDDY-CURRENT PROBE COIL PROBLEMS 

C. V. Dodd and W. E. Deeds 1 

ABSTRACT 

Solutions have been obtained for axially symmetric eddy­
current problems in two configurations of wide applicability. 
In both cases the eddy currents are assumed to be produced by 
a circular coil of rectangular cross section, driven by a 
constant amplitude alternating current. One solution is for 
a coil above a semi-infinite conducting slab with a plane sur­
face, covered with a uniform layer of another conductor. 'l'his 
solution includes the special cases of a coil above a single 
infinite plane conductor or above a sheet of finite thickness, 
as well as the case of one metal clad on another. The other 
solution is for a coil surrounding an infinitely long circular 
conducting rod with a uniformly thick coating of another con­
ductor. This includes the special cases of a coil around a 
conducting tube or rod, as well as one metal clad on a rod of 
another metal. The solutions are in the form of integrals of 
first-order Bessel functions giving the vector potential, from 
which the other electromagnetic quantities of interest can be 
obtained. The coil impedance has been calculated for the case 
of a coil above a two-conductor plane. The agreement between 
the calculated and experimental values is excellent. 

INTRODUCTION 

Electromagnetic problems are usually divided into three categories: 

low frequency, intermediate frequency, and high frequency. At low fre­

quencies, static conditions are assumed; at high frequencies, wave equa­

tions are used. Both of these regions have been studied extensively. 

However, in the intermediate frequency range, where diffusion equations 

are used, very few problems have actually been solved. Eddy-current 

coil problems fall into this intermediate frequency region. This report 

presents an accurate technique for analyzing the problems of eddy-current 

testing. 

1 Consultant from the University of Tennessee. 
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Eddy-current testing has been used in industry for many years. As 

early as 1879, D. E. Hughes 2 used an induction coil to sort metals. 

There have been numerous articles on the testing of materials with eddy 

currents. Some of the first papers dealing with both the theory and the 

practical aspects of eddy-current testing are by Forster, 3 Forster and 

Stambke, 4 and Forster. 5 In this series of papers, analyses are made of 

a coil above a conducting surface, assuming the coil to be a magnetic 

dipole, and of an infinite coil encircling an infinite rod. Hochschild6 

also gives an analysis of an infinite coil including some eddy-current 

distributions in the metal. Waidelich and Renken7 made an analysis of' 

the coil impedance using an image approach. 'l'hhr theoretical results 

agreed well with theory for relatively high frequencies. Libby8 pre­

sented a theory in which he assumed the coil was a transformer with a 

network tied to the secondary. This network representation gave good 

results when compared to experiment. 'l'he dit'1U.Sioi'l of eddy-current 

pulses (Atwood and Libby9 ) can be represented in this manner. Russell, 

Schuster and Waidelich10 gave an analysis of a cup core coil where they 

assumed the flux was entirely coupled into the conductor. The semi­

empirical results agreed fairly well With the experimen.tal measurements. 

2D. E. Hughes, Phil. Mag. ~(5), 50 (1879). 
3Friedrich Ffo·ster, Z. Metallk. 43, 163-171 (1952). 
4 Friedrich Forster and Kurt Stambke, z. Metallk. 45(4), 16~179 (1954). 
5Friedrich Forster, Z. Metallk. 45(4), 197-199 (1954). 
6R. Hochschild, "Electromagnetic Methods of Testing Metals," Progress 

in Nondestructive Testing, Vol. 1, Macmillan Company, New York, 1959. 
7 D. L. Waidelich and c. J. Renken, Proc. Natl. Electron Conf. 12, 

188-196 (1956). -
8H. L. Libby, Broadband Electromagnetic Testing Methods, HW-59614 

(1959). 
9K. W. Atwood and H. L. Libby, Diffusion of Eddy Currents, HW'-79844 

(1963). 
10T. J. Russell, V. E. Schuster, and D. L. Waidelich, J. Electron. 

Control 13, 232-237 (1962). 
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Vein, 11 Cheng, 12 and Burrows13 gave treatments based on delta function 

coils, and Burrows continued with the development of an eddy-current flaw 

theory. Dodd a.nd Deeds, 14 Dodd, 15 and Dodd 16 gave a relaxation theory to 

calculate the ~ector potential of a coil with a finite cross section. 

Here we extend a "closed form" solution to such coils. 

The vector potential is used as opposed to the electric and magnetic 

fields. The differential equations for the vector potential will be 

derived from Maxwell's equations, with the assumption of cylindrical sym­

metry. This differential equation will then be solved to obtain a "closed 

form" solution. 

For the "closed form" solution, sinusoidal driving currents and 

linear, isotropic, and homogeneous media will be assumed. Solutions will 

be obtained for two different conductor geometries: a rectangular cross­

section coil above a plane with one conductor clad on another and a 

rectangular cross-section coil encircling a two-conductor rod. The solu­

tions for both geometries will be given in terms of integrals of Bessel 

functions. Once the vector potential has been determined, it can be used 

to calculate any physically observable electromagnetic quantity. 

Equations to calculate eddy-current densi'ty, induced voltage, coil 

impedance, and effect of defects will be given. Measured values of coil 

impedance as compared with calculated values show excellent agreement. 

11p. R. Vein, J. Electron. Control 13, 471-494 (1962). 
12David H.S. Cheng, "The Reflected Impedance of a Circular Coil in 

the Proximity of a. Semi-Infip.ite Medium," Ph.D. Dissertation, University 
of Missouri, 1964. 

1 3Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection, 
University Microfilms, Inc., Ann Arbor,- Michigan, 1964. 

14 c. v. Dodd and W. E. Deeds, "Eddy Current Impedance Calculated by 
a Relaxation Method," pp. 300-314 in Proceedings of the Symposium on 
Physics and Nondestructive Testing, ·southwest Research Institute, San 
Antonio, Texas, 1963. 

15c. v. Dodd, A Solution to Electromagnetic Induction Problems, 
ORNL-TM-1185 (1965) and M.S. Thesis, the University of Tennessee, 1965. 

16c. V. Dodd, Solutions to Electromagnetic Induction Problems, 
ORNL-TM-1842 (1967) and Ph.D. Dissertation, the University of Tennessee, 
1967. 



'· 

4 

DERIVATION OF VECTOR POTENTIAL 

The differential equations1 '1 for the vector potential will be 

derived from Maxwell's equations which are: 

-> 
\7 x E = 

(1) 

(2) 

'V'·B = o (3) 

'V'·D = P (4) 

The medium is taken to be linear and isotropic.• but not homogeneous. In 
-> -> 

a linear and isotropic medium, the following relations between D and E 
-> -> 

and B and H hold: 

-> -> 
B = µH (5) 

- -> D = €E ( 6) 

-> 
The current density J can be expressed in terms of Ohm's law: 

> > 
J = O'.I!; (7) 

Equations (6) and (7) may be substituted into Equation (1) to obtain the 
-> -curl of H in terms of E: 

-\! x H = Ci'~ + r1EF. ot ($) 

17A list of symbols is given in Appendix A. 
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-"'? 

-"'? ckE 
The term crE is much greater than a:r-' so the latter may be neglected for 

frequencies below about 10 Mc/sec (ref .. 18). The magnetic induction 
-"'? -"'? 

fi.eld B may be expressed as the curl of a vector :potential A: 

Substituting this into Equation (2) gives 

or 

-"'? dA -"'? -"'? 

E = - dt - \7\jr = Einduced + Ea:p:plied 

-"'? dA 
crE = - cr - - o'V\jr 

dt 

The term w is interpreted as an a:p:plied scalar :potential. The coil may 

(9) 

(10) 

(11) 

(12) 

be driven by a voltage generator with an a:pplied voltage w and an internal 

resistivity,~ However, for the purpose of this·problem, the driving 

function is expressed as an alternating current density of constant 
-"'? 

amplitude, i rather than an applied potential, where 
0 

Limit (- o'Vw) 
cr -"'? 0. 
\Ajr -"'? 00 

-"'? 

= i 
0 (13) 

This provides a current which is not affected by induced voltages or the 

:presence of other coils. Making this substitution gives: 

crE = - cr dA + i ( 14) 
dt 0 

Substituting Equations (5) and (9) into the left side of Equation (8) 
and Equation (14) into the right side gives: 

-"'? -"'? 

18 ' dEE EdE -"'? • For sinusoidal waves, dt = dt = jEwE. The term crE is much 

greater than EWE or cr >> EW. cr ~ 107 mhos/meter for metals, E :::::: lo-11 . 

For frequencies on the order of 107 cps, w:::::: 108, 107 >> 108 x 10-11, 

or 0 '"""' 101.0 EW. 
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-+ 
\1 X H 

-+ -+ 
B -+ ?JA -+ 

::: \1 X - = \1 X [ (l/µ) \1 X A] = - a -·· + i 
µ ct 0 

The vector identities (Morse and Feshbach19 ) 

can be used to expand the left side of Equation (15): 

v x (1/µ)('V x A) = 'V(1/µ) x ('V x A) + ! \1 x ('V x A) 
µ 

(15) 

= \7(1/11) x (\7 x 1) + ~ \7(\7·A) - ~ v2:A . (16) 

In the definition of the vector potential the divergence of the vector 

potential was not defined, so it can be defined to be anything convenient. 
~ 

For induction problems 'V·A is set to zero. (This corresponds to the 

Coulomb gage.) Equation (16) will then yield the following results when 

substituted into Equation (15) . 
. ...,. 

2-+ 7 dA I -+ 
\1 A = - µi + µer - + µ'V( 1 µ) x ('V X A) 

0 dt 
This is the equation for the vector potential in an isotropic, linear, 

inhomogeneous medium. For most coil problems it is possible to assume 

axial s,ymmetry as shown in Fig. 1. The vector potential will be sym­

metric about the axis of the coil. Since this assumption is valid for 

most problems and the alternative to this assumption is a much more 

complicated and impractical problem, axial symmetry is assumed. With 
-+ -+ 

axial symmetry, there is only a e component of I and therefore of A. 

Expanding the e component of Equation (17) gives: 

?J 2A 1 ?JA ?J 2A A . ?JA -- + - - + -- - - = - µi + µcr -
?Jr2 r ?Jr ?Jz 2 r 2 0 ?Jt 

.... l.l r o(l/µ)(! orA·). + (o(l/µ)) ~A] 
L ~r r dr . dz dz 

1 9Philip M. Morse and Herman Feshbach, Methods of Theoretical 
Physics, McGraw-Hill Book Company, New York, 1953. 

(17) 

(18) 
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Fig. 1. Delta Function Coil above a Ti-To-Conductor Pla.ne. 

Assume that i is a sinusoidal function of time, i = i' ejwt. Then the 
0 0 0 

vector ]?otential is likewise a sinusoidal function of time, 

A = A' ej (wt + <!>) = A" ejwt. 

Substituting into Equation (18) gives: 
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~2A." J'wt 1 cA" J'wt c 2A" J'wt A" J·wt ., ejwt + jwt 0 + - -- e + --· - e - """""' e = - µ i j~_1_crA" e 
cr 2 e r er cz 2 r"" 0 

rd(l/µ) (.! crA" ejwt) + (d(l/µ) \ 0A
11 

ejwtJ 
- µ L er r er . CZ J CZ 

jwt canceling out the term e and dropping the prime gives: 

(19) 

This is the general differential equation foz; the vector potential 

in a linear, inhomogeneous medium with a sinusoidal driving current. We 

shall now obtain a "closed form" solution of Equation (19). 

CLOSED FORM SOLUTIONS OF THE VECTOR POTENTIAL 

We shall assume the medium to be linear, isotropic, and homogeneous. 

When I is the total driving current in a delta function coil at (r ,z ), 
0 0 

the general Equation (19) then becomes: 

c 2A 1 ?JA c 2A A . ( - + - - + - - - - JwµOA + µI 5 r - r ) o(z - z ) = O 
cr2 r dT oz 2 r 2 O O 

(20) 

Once we have solved this linear differential equation for a particu-

lar conductor configuration, we can then superimpose any number of delta 

function coils to build any desired shape of coil (provided that the 

current in each coil is known). 

We shall solve the problem for two different conductor configura­

tions: a coil above a two-conductor plane and a coil encircling a two­

conductor rod. These two configurations apply to a large number of 

practical problems. 

Coil above a Two-Conductor Plane 

The coil above a two-conductor ~lane is shown in Fig. 1. We have 

divided the problem into four regions. The differ.ential equation in air 

(reeion~ I and II) is: 
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(21) 

The differential equation in a conductor (regions III and IV) is: 

o 2A 1 oA o 2A A - + - - + -- - - - jwµcr A = 0 
or 2 r or oz 2 r 2 i 

(22) 

Setting A(r,z) = R(r) Z(z) and d~viding by R(r) Z(z) gives: 

1 o2R(r) 1 oR(r) 1 o 2Z(z) 1 
---+----+-- ---ju:µcr. = 0 

R(r) or 2 rR(r) or Z(z) oz 2 r 2 1 

(23) 

We write for the z dependence: 

1 02
z(z) = "constant" = a 2 + jwµcr. 

Z(z) oz 2 i 
(24) 

or 

( 25) 

We define: 

(26) 

Equation (23) then.becomes: 

i_ o2R(r) + 1 

R(r) or 2 rR(r) 

oR{r) + a2 _ !.._ = O 
or r2 

(27) 

Thls is a firct-order BeSRP.1 e~uatio~ and has the solutions: 

(28) 

Combining the solutions we have: 

-f<:X.Z -Q'..Z ( ) ( )1 A(r,z) = [A e i + B e i ][C Ji ar + D Yi ar J (29) 

We now need to determine the constants A, B, C, and D. They are 

functions of the separation "constant" a and are usually different for 

each value of a. Our complete solution would be a sum of all the indi­

vidual solutions, if a were a discrete variable; but, since a is a 
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continuous variable, the complete solution is an integral over the entire 

range of a. Thus, the general solution is: 

We must take A(a) = 0 in region I, where z goes to plus infinity. 

Due to the divergence of Y1 at the origin, D(a) = 0 in all regions. In 

region r:v, where z goes to minus infinity, B(a) must vanish. The solu-

tions in each region then become: 

A( 1 )(r,z) ... ~B1 (a)e-az J 1 (ar) dcx 

A( 2 )(r,z) (cc2 (a) 
-t\.X:l. -o::z: 

= e + B2 (a) e ] J
1 

(ar) da 

A( 3 )(r,z) = f[C 3 (a) eaJ.z + B3(a) e-alz] J
1

(ar) a.ex 
0 

A( 4 )(r,z) = ff#)[ C
4 

(a) ea2z J
1 

(ar) da 
0 

The boundary conditions between the different regions are: 

Z=o 

oA (3
) J - (r, z) 

dZ 

oA (:-J.) J = - (r,z) 
c::iz 

Z=f. 

Z•O 

oA (4
) J =- (r,z) 

- µI o(r - r ) 
0 

Z= -C OZ Z= -C 

(31) 

(32) 

(33) 

(34) 

( 1')) 

(36) 

(37) 

(38) 

(39) 

(40) 
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Equation (35) gives: 

/
0 
Bi (ex) e -a£ J 

1 
( exr) da .. ./[ C 2 (ex) e ex£ + B 2 (ex) e -a£] J 1 ( exr) da 

0 u (41) 

• 00 

If we multiply both sides of Equation (41) by J J 1 (ex'r)r dr and then 
0 

reverse the order of integration, we obtain: 
00 

J B, (exex) e -a£ 00 

[~.J1 (exr) J
1 

(ex' r) exr dr] aa = ff¥)~ [c
2

(ex) eex£ 
0 0 

We can simplify Equation (42) by use of the Fourier-Bessel equation, 

which is: 

o:> f¥) 
'F(ex'),,., £F(ex) £J

1
(exr) J

1
(ex'r) exr dr da (43) 

Equation (42) then becomes: 

Bi -a'£ C2 ex' p, B2 -a' p, 
-e =-e +-e 

.ex' ex' ex' 

(44) 

We can evaluate the other integral equations in a similar manner. 

We get (after dropping the primes on the ex): 

(45) 

C B C B 
2 2 3 3 -+-=-+- (46) 

ex ex ex ex 

ex exl 
C

2 
- B2 :a :::1. C - - B3 ex 3 ex 

(47) 

c4 -a.,c = - e -
(48) 

ex 

(49) 
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We now have six equations with six unknowns. Their solution is: 

{(a:-tal )(a:l-a:2) + (a-a:l )(0:2-tal) ~l~ 1 
:20:]. c 

~p, 
J (ar ) e B ,. 2 µIr 

+ (a-KXJ. )(a:2-to:1) 2 - 0 i o (a:-a:1)(a:1-a2) 

{ a:(a:2-ta1) 
-o:,P, + 2CX1 c 

' c 

20:1 cf c3 = µIr
0 

J (a:r ) 
l 

0 (a:-0:1)(0:1-0:2) + (a:-ta1)(a:2-ta1) e 

. ( ) ~,e 

e20'.l c} { (Y. O.l -.lX.2 t! 

B3 = µIr Jl (a:r ) 
0 0 (o:-o:1 )(a1 -a~) + (a;o;1 )(0:2-ta1) 

(a: 2-ta1) c ~p, 

e2al~ { ~ala e e 
C4 =µIr J 1 (a:r ) . 

o o (a-a:1 )(cxl-a2) + (a:-+ex1)(0:2-KX1) 

We can now write the expressions for the vector potential in 
each region: 

( ) µIr co -a.e 
A 2 ( r' z) = __ o J Jl ( a:r ) J l ( a:r) e 

' 2 0 ° 

{ 
a:z x e 

(50) 

(51) 

(52) 

(53) 

(:>4) 

( 5'.J) 
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-af, 
e a 

( 59) 

These are the equations for the vector potential of a delta function 

coil above a two-conductor plane. Next we shall consider the derivation 

of the vector potential of a delta function coil encircling a two­

conductor rod. 

Coil Encircling a Two-Conductor Rod 

We shall assume a delta function coil encircling an infinitely long, 

two-conductor rod, as shown in Fig. 2. 

The general differential equation is the same as Equation (23) for 

a. coj_l above a conducting plane. 

1 6 2R(r) 1 dR(r) 1 ci 2Z(z) 1 
--- + -- + -- - - - jwµa = 0 

R(r) dr 2 rR(r) ~r Z(z) ciz 2 r 2 
(60) 

Now, however, we shall assume the separation constant to be negative: 

_.!.._ 62Z(z) = "constant" .., - a 2 

Z(z) dZ 2 
( 61) 

Then 

Z(z) = F sirn:(z-z ) + G cosa(z-z ) 
0 0 

( 62) 

and Equation (60) becomes: 

r2 d2R(r) + rdR(r) - [(a2 + juµa)r2 + l] R(r) = 0 
cir 2 cir 

(63) 
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Fig. 2. Delta Function Coil Encircling a Two-Conductor Rod. 
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The solution to Equation (63) in terms of modified Bessel functions 

is: 
l l 

R(r) = CI1 [(a 2 + jwµcr) 2r] + DK1[(a 2 + jwµa) 2 r] ( 64) 

We can now write the vector potential in each region. We shall use 

the fact that it is symmetric (with ,respect to z-z
0

) to eliminate the 

sine terms, and the fact that Ki(o) and Ii(oo) both diverge to eliminate 

their coefficients in regions I and IV, respectively. Thus we have: 

1 

+ D2 (a)K1 [(a2 + jwµcr 2 )2 r]} cosa(z-z
0

) da 

~( 3 )(r,z-z0 ) = £[c3 (a)I1 (ar) + D3 (a)K1 (ar)] cosa(z-z
0

) da 

A(4 )(r,z-z ) ~ Jn4 (a)K1 (ar) cosa(z-z ) da 
0 0 0 

The boundary conditions between the different regions are: 

( 65) 

(66) 

(67) 

(68) 

( 69) 

(70) 

(71) 

(72) 

(73) 
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?! (4) l 
= ~A (r,z-z ) I or . o _J 

~r 
0 

+ µIO(z-z ) 
0 

(74) 

If we multiply both sides of Equation (69) by cosa' (z-z ) and integrate 
. 0 

from zero to infinity, we obtain: 

x [cosa(z-z ) cosa' (z-z )) ctn: d(z-z ) (75) 
0 0 . 0 

We can reverse the order of integration and use the orthogonality 

properties of the cosine integral or use the Fourier integral theorem: 

1 00 co 
- f f(a)[J cosa(z-z ) cosa' (z-z ) d{z-z )] da = f(a') no o o o o (76) 

Thus, we can solve the integral equations {69) through (74). We shall use 
. .L 1 

a 1 and a 2 to designate (a2 + jwµcr1 )2 and (a2 + jwµo 2 )2 . We shall use primes 

to designate derivatives with respect to the argument. We get :t'rom the 

integral equations (69) through (74): 

( 77) 

(78) 

(79) 

( 80) 

( 81) 

( 82) 
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Now we have six equations with six unknown constants. The equations 

may be· solved to give the constants. We define: 

The constants are 

µr IK1 (ar ) c 0 0 
1 = abrrD 

µr IK
1
(ar) 

D2 = 
0 

brrD 
0 

[(a2r 1 (a1a)I
0

(a2a) - a 1I 1(a2a)I
0

(a1a)] 

µIr K1 (ar) 
c - 0 0 2 brrD 

c3 = 
µIr K (ar ) 

0 l 0 
rr 

' 
I1(a2b) [a2Ko(a2a).I1(a1a) + a1K1(a2a)Io(a1a)] + I1(ab)J 

bD 

( 84) 

( 85) 

( 86) 

( 87) 

( 88) 
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We can now write for the vector potential in each region: 

(90) 

X K1 (a2r) + [a2K
0

(a2a)I1 (a1 a) + a1K1 (a2a)I
0

(a1a)]I1 (a2r)} coscx(z-z
0

) aa 

(91) 

Ii (ab)] } + K1 (ar) cosa(z-z ) da 
K;i, (ab) o 

( 92) 

( 93) 

Equations (90) through (93) are the equations for the vector poten­

tial oi' a de.lta f'urtction coil encircling a Lwo-eumluctor rod.. We will 

now consider the superposition of the delta function coils to form "real"· 

coils. 
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Coils of Finite Cross Section 

We have the equations for the vector potential produced by a single 

delta function coil. We can now approximate any coil such as the ones 

shown in Figs. 3 and 4 by the superposition of a number of delta function 

coils. 

ORNL- DWG 67- 2523 

I 

- ..:--=-- --

- =--r-- ...:_ - z =1.2 

I - I I 

-.=r:-=--~:.....L...J- - ~ --- z=,f1 

. ~ ]1 ==-=--_--_=-II .L 2 

Fig. 3. Re.ctangular Cross-Section Coil above a Two-Conductor Plane. 
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Ill 
IV 

IV 

Fig. 4. Rectangular Cross-Section Coil Encircling a Two-Conductor Rod. 

In general, we have: . 

J1., n ,.----., 

A(r,z)(total) = ~1(r,z) = ~(r,z,.ei,ri) 
i=l i=1 
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This equation is good for coils of any cross section. If we let the 

current distribution in the delta function coils approach a continuous 

current distribution, we obtain: 

A(r,z)(total) = J 
coil 

A(r,z,r ,£) d(area) 
0 

cross section 

( 95) 

where A(r,z,£,r ) is the vector potential produced by an applied current 
0 

density i (£,r ). If the coil has a rectangular cross section, as in 
0 0 

Figs. 3 and 4, we have; 

r2 £2 

A(r,z)(total) = }' J A(r,z,r
0

,£) 

rl £1 

dr d£ 
0 

We will now assume that the applied current density i (£,r ) is a 
0 0 

constant over the dimensions of the coil; that is, the current in.each 

loop has the same phase and amplitude. We shall apply these results to 

Equation (56), the case of a probe coil above a two-conductor plane. 

:r·2 

After reversing the order. of integration, we wd.t.e: 

-a(£+z) { 2n.£ e e 

We shall express the integral over r as: 
0 

0:!2 (1._r 2 

dr 
0 

d£ 

( 96) 

( 97) 

1-· 

J r J (cxr )dr 
0 l 0 0 

= a~ J. ar 
0

J 1 (ar
0 

)dar
0 

ar
0
=ar1 

= ~ J .. xJ 1 ( x) dx = 1
2 

I ( r , r ) 
a2 a 2 l 

r =r 
0 l 

x=ar1 
(98) 
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The integral over £ is: 

Upon applying Equations (98) and (99), the equations for the vector 

potential in the various regions for a rectangular cross-section coil 

become: 

A (l) (r, z) = µ~Q f:. r(r 2,r1) J 1 (ar) e-az {eu£2 - ea£, - (e-ru2 - e-a.£1) 
Q . 

M 

A ( 4 
) ( r; z ) = µi 

0 
}' ~3 I ( r 

2
, r 

1 
) J 

1 
( ar) ( e -a,P, l. - e -a,P, 2) 

0 

(100) 

(103) 
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Equation (100) for A(l) is valid in the region above the coil and 

Equation (101) for A( 2
) is valid for the region below the coil. We have 

to give special treatment to region I-II, between the top and bottom of 

the coil. 

A( 1 )(r,z) 

A( 2 )(r,z) 

For a point (r,z) in region I-II, we can use the equation 

for the portion of the coil from z down to £1 and the equation 

for the portion of the coil from z up to £2 • If we substitute 

£2 = z in Equation (100) and £1 = z in Equation (101) and add the two 

equations, we get: 

A( 1
'

2 )(r,z) 
µi 

0 

2 

w 

fa\ 
0 

We now have the equations for the vector potential in all the 

regions. 

CALCUIATION OF PHYSICAL PHENOMENA 

-az + e 

-~ 104) 

· Once we have determined the vector potential, we can calculate any 

physically observable electromagnetic induction phenomenon. We shall now 

give the equations and perform the calculations for some of the phenomena 

of interest in eddy-current testing. 

Induced Eddy Currents 

We have, from Ohm's law: 

__. __. 
J = aE = 

From the axial symmetry, Equation (105) becomes: 

J = - .i wcrA ( r, z) 

(105) 

(106) 

where A(r,z) is given by either Equation (102) or (103), depending on the 

region of interest. 
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lnduced Voltage 

We have, for the voltage induced in a length of wire,: 

r,,> --+ 
V = jWJA• ds 

For an axially symmetric coil with a single loop of radius r, 

Equation (107) becomes: 

V = jw 2nr A(r,z) 

The total voltage induced in a coil of n turns is then: 

n 
" '} . . 

V - j ~nw / r.A.\r. ,z.) 
L-.J l. l. l. 

i=o 

We can approximate the above summation by an integral over a turn 

density of N turns per unit cross-sectional area: 

V ""'j 21lw JJ·. rA(r,z) Ndrdz 

coil 
cross section 

(107) 

(108) 

(109) 

(110 

For coils with a constant number of turns per unit cross-sectional area: 

j 2nw n 
v -

coil cross section 
j j rA(r,z) drdz 
coil 

cross section 

This is the equation for the voltage induced in a coil by any 

coa.xia.J_ coiJ_. 

When the two coils are one and the same, with cross-sectional area 

equal to (£ 2 - £1 )(r2 - r 1 ), the self-induced voltage is: 

v = 

;, 2 r2 

j 2nw n j, j .. rA ( 1 ' 2 ) ( r, z) drdz 

(£2-£1)Cr2-r1) £
1 

r
1 

(111) 

(112). 
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Coil Impedance 

From the self-induced voltage, we can calculate the coil impedance 

v 
V = ZI, or Z = I 

The current in a single loop is related to the applied current density, 

i ' by: 
0 

i 
0 

n I 

The coil impedance becomes: 

z = 
1 

+­
a 

( 113) 

(114) 

( 115) 

This equation can be made more general by normalizing all the dimensions 

in terms of a mean coil radius~ r. 

r =- ( 116) 

All lengths are divided by rand all a's are multiplied by r. 

Upon normalization, Equation (115) becomes: 
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1 
+­

a 

(117) 

Tbe ;i,mpedance may be normalized by dividing it by the magnitu~e cf 

the air impedance. For the air impedance a 1 =e:x 2:a and: 

z . = air 

Flaw Impedance 

Once the eddy-current density is known, we can simulate a flaw by 

superimposing a small current i'lowing in the op}'.loSi te cti:rection. The 

normalized impedance change due to a small, spherical defect not too 

close to the surface (Burrows 20 ) is: 

Z' "" ~ a vol ( defect 
(A )2 

2 , I 
(119) 

where Adefect is the vector potential at the ~efect, given by the equa­

tions for efther A( 3
) and A(4

) and "vol" is the volume of the defect. 

Coil Inductance 

The coil inductance is related to the magnitude of the air impedance 

by: 

2 °Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection, 
University Microfilms, Inc., Ann Arbor, Michigan, 1964. 
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(120) 

or 

L = 

( 121) 

Mutual Inductance 

The voltage generated in a "pickup" coil with dimensions r;, r~, .e;, 
' £1 by a current I flowing in a "driver" coil with dimensions r2, r 1 , .e 2 , 

£1 is: 

V = M &._ = ju.MI 
dt 

or 

v 
M=­

jwI 

Using Equatfon (J_ll) to calculate the voltage we have: 

M= 
(coil 

2rc n' t • . ; ff rA(:r.,z) 
cross sec .ion) . . 

(coil 

drdz 

cross section)' 

The equation for A will vary, depending on the region where the 

pickup coil is located. If the pickup coil is located in region I-II, 

the mutual induct~mce ii'>: 

(122) 

( 123) 

( 124) 
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µ:n: n n' r 

This is the mutual inductance between the driver coil and the pickup 

coil in the presence of a clad conductor. By the reciprocity theorem, 

this is equal to the mutual inductance between the -pickup coil and the 

driver coil. 

Evaluation of Integrals 

The normalized impedance has been calculated using a C-E-I-R time­

sharing computer to evaluate integral equations (117) and (118). The 

solutions have been programmed for any rectangular coil dimensions and 

lift-off as well as for a metal of any conductivity clad (in varying 

thickness) onto a base metal of any conductivity. The programs, in 

"BASIC" language, and their descriptions are given in Appendix B. 

Figure 5 shows how the normalized impedance varies as a function 

of clad thickness. 

EXPERIMENTAL VERIFICATION 

A family of four coils was constructed with different mean radii 

but all with the same normalized dimensions. The coil impedance was 

measured at various values of normalized lift-off and at various values 

of r 2 wµcr. The values of the experimental normalized coil impedance and 
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BASE MATERIAL 
·-2 

0.72 1-----;-- wµr = :l66 
c =CLAD THICKNEss/r -+---\·-+---.----1 0.71 

0.70 
I LIFTlOFF I 

.t, =MEAN COIL RADIUS =0.0476 

0.025 ~ 0.69 1----1--~..__ _ __,_ __ +---
o BASE MATERIAL 
~ Wj.1-0-F

2
=40.00 

8 0.68 f----1---l-' -----!----1!----l-----l 

w 
> ;::: 
(.) 

;J 0.67 
a: 

0.66 

. 0.65 1----+--

0.64 0.30 
0.25 .... ---r 

0.63 '-----'---'"-----'----'"-----'----"'------' 
0.09 0.10 0.tt 0.12 0.13 0.44 0.45 0.16 

RESISTIVE COMPONENT 

Fig. 5. Variation of Normalized Impedance with Clad Thickness. 

the calculated normalized coil impedance are plotted in Fig. 6. The 

agreement between the calculated and measured values is excellent at the 

higher frequencies. At the lower frequencies the measurements are very 

difficult to make, and the accuracy of the measured values becomes very 

poor. (Because of this, few eddy-current tests are made at these freq­

uencies.) Thus the theory is in excellent agreement with experimental 

values at the frequencies of interest in eddy~current testing. 

ACCURACY OF CALCULATIONS 

This technique, like most others used in engineering, is "exact, 

except for a few assumptions we have to make in order to work the 

problem." We will now discuss the probable errors in some of these 

assumptions. 



I-z 
w 
z 
0 a. 
::;: 
0 
u 

w 
> 
i'.= 
u 
<l 
w 
Ir 

30 

ORM.-DWG 67-8500 

0.8 

0.6 

329.8 
0.0476 A 8~2 .8 

"8.630 
I 

-o- CALCULATED VALUES 
0.5 f-----+-- ,. El!rERIMCPITAb VA~Vli:il 

--- Wf-L<T r l= CONSTANT 

r - MEAN COIL RADIUS 

..!1 = LIFT-OFF/i' 

0.4 '-------~-----''--------'------~ 
0 0.05 O,t Q.t5 n? 

nCGIGTIV[ COMf'lOMli:MT 

Fig. 6. Variation of Experimental and Calculated Values of Normal­
ized Impedance with Frequency and Lift-Off. 

Axial Symmetr.v 

This is a very good assumption, but we cannot easily wind coils that 

have perfect axial symmetry. This error will vary with the winding tech­

nique and will decrease as the number of turns on the coil and the coil­

to-conductor spacing increases. This error will be effectively reduced 

when normalized impedance is calculated. For a typical coil it should 

be ~ess than 0.01%. 

Current Sheet Approximation 

This error arises because we have assumed a current sheet, while we 

actually have a coil wound with round, insulated wire. Some correction 
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formulas are given by Rosa and Grover 21 for the inductance of a coil in 

air. From Equations (87) and (93) by Rosa and Grover, we have calculated 

the following correction formula: 

DJ, [0.5058r 2 - 0.2742r1 + 0.44 (£ 2-£ 1 )] ( D ) (126) 
L"'" = n £n d + 0.155 

where all dimensions are normalized by the mean coil radius. The symbols 

D and d are the wire diameters with and without insulation, respectively. 

For a typical coil with 100 turns the change in inductance is 0.19%. The 

change in normalized impedance will be a small fraction of the change in 

inductance. 

High Frequency ~ffects 

These are probably the most serious sources of error in this calcu-

. lation technique. As the frequency increases, the current density ceases 

to be .uniformly distributed over the cross section of the wire but 

becomes concentrated near the surface. The resistance of the coil 

increases, anti. the inductance decreases. The current is capacitively 

coupled between the turns in the coil, tending to flow across the loops 

of wire rather than through them. Both the interwinding capacitance 

and the coil-to-metal sample capacitance increase. The coil-to-sample 

capacitance can be reduced by winding the coil such that the turn::; 

nearest the sample are electrically near alternating-current ground. 

The coil-to-sample capacitance will be much less than the interwinding 

capacitance. If the coil is used at frequencies where the interwinding 

capacitance has a small effect, the error in calculated normalized 

impedance will he a much smaller effect. 

21Edward B. Rosa and Frederick W. Grover, "Formulas and Tables for 
the Calculation of Mutual and Self-Inductance," Nat. Bur. Std. (U.S.), 
Tech. News Bull. ~(l), 1-237 (1912). 
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CONCLUSIONS 

This technique presents a quick and easy way to calculate the 

observed effects of actual eddy-current tests to a high degree of 

accu:racy. 
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APPENDIX A 

Li::;t of Symbols 

In the first column the symbol used is given, and in the second 

column the name. In the third column the meter-kilogram-second (MKS) units 

are given. In the last column the dimensions are given in terms of mass (M), 

length (L), time (T), and electric charge (Q). 

Symbol Name MKS Units Dimensions 

A · vector potential 
webers ML 
meter TQ 

magnetic induction 
webers M 

B 
meter 2 TQ 

c clad thickness meter L 

D electric displacement 
coulomb 9.... 
meter 2 L2 

electric intensity 
volt ML 

E 
meter T2Q 

H magnetic intensity 
ampere 9.... 
meter TL 

I applied cur:rent ampere 9: 
T 

i applied current density 
ampere .L 

0 meter 2 TL 2 

J current density 
ampere Q 
meter 2 TL2 

j square root of minus one 

L inductance henries 
ML.2 

Q2 

p, distance from metal to delta function coil meter L 

p, 2 distance from metal to top of the coil meter L 

£1 distance from metal to bottom of the coil meter L 
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Symbol Name MKS Units Dimensions 

N 
turns 1 turns per Uhit area meter 2 t2 

n number of turns turns 

r1 coil inner radius meters L 

r2 coil outer radius meters L 

r mean coil radius meters L 

t time second.s 'I' 

v voltage volt 
ML2 

T2Q 

z impedance ohms 
M12 

TQ2 

0: separation const.anL mi:ot.Pr-1 1 
L 

1 1 
0:. (o:2+jwµ.a. )2 meter-1 

1 1 L 

dielectric const.auL fo.ro.d 'T'2Q2 
€ 

meter ML3 

permeability llel'rry ML 
fl 

Q2 meter 

conductivity mho ·rQ2 
C1 

meter MLJ 

angular frequer1cy radians J_ 
w -

second T 
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APPENDIX B 

This appendix contains two "BASIC" programs which were used to calculate 

eddy-current coil impedance using the C-E-I-R time-sharing computer system. 

The first program, CLA.DT5, is the more general program and.will calculate the 

impedance of a coil of any rectangular cross section positioned any distance 

above one conductor of any conductivity clad on another conductor of any 

conductivity. The second program is a special case of the first program 

where the two metals have the same conductivity. While the integral over a 

is from o to oo, the integrals converge to within about 0.03~ of their final 

value for the integral of o to ex=35. 
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C LA.OT 5 9:27 CEI R 08/25167 

REM THIS IS P PROGRAM TO CPLCULATE EDDY CURRENT COIL IMPEDANCE 
2 REM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNER AND 
3 REM OUTEk kADII,Rl AND R2, AND THE SPACING OF THE BOTTOM AND 
~ REM TOP OF THE COIL ABOVE THE PLANE, Ll AND L2, MUST BE GIVEN. 
5 REM THE VALUE OF Ft2*MU*FR~O*COND iv;UST EE GIVEf-.J FOR 80TH THF BP.SE 
6 RH' MA.TERIAL, Ml, P.ND THE: CLAD MATERIAL, M2. THE THICKNESS, c, 
7 REM OF THE CLAD MATERIAL MUST ALSO BE GIVEN. 
1 0 
20 
30 
Lj Qi 

Se• 
60 
70 
80 
9 C?: 

1 (':0 
I 10 
1 ::>r-. 
1 3Ql 
1 Ll0 
1 5 9J 
1 60 
1 7~ 

urn 
l 9(i) 
200 
2Hl 
220 
230 
2 L1fl 

2 50 
260 
2 70 
280 
?90 
300 
310 
320 
330 
340 
3 5V.1 

36E· 
370 
38f1 
390 
4(iHJ 
L• 1 f?• 
Li20 
430 

LET Rl=.8333 
LFT R2=1·1667 
LET Ll=.0L!76 
LET L2=.3809 
LET Ml=77.05 
LET !V,2= L!f~ 
LET C=.05 
PRINT "k 1 ="; F<}, "R2="; R:?., "L 1=";L1, "L2="; L2 
PRINT "CLAD THICKNESS I.S ";C,''Ml=";1v;I,"1V12=";M2 

PRINT "X", "AIR VALUE", ''REAL P.P.RT", "IIV:/.\G PART" 
LET SI=IE-2 
LET .S2=5 
LE.T I6=0 
LFT 17=0 
LET 18=0 
LET 19 =0 
I. ET l:.n !! eJ 
LET R2 =S2 
FOR X = ~I +Sl/2 1D 82 STEP SI 
LET Z=R2*X 
LET Ql=R2 
GOSUB 79~; 

LET IP-=F2 
LET 7.:.::Rl:t.X 
LET 01=!"::1 
GOSUB 790 
LET ll=F2 
LET 13=12-Il 
LET 53=~1*13*13/X 
IF 2*X*L1>10 THEN 630 
LET Y2=.707107*SQRCSQRCX*X*X*X+M2*M2)-X*X) 
LET XI ; .707107*SQRC.SQRCX*X*X*X+Ml•Ml)+X*X> 
LET YI = .707107*SQRCSQRCX*X*X*X+Ml*Mll-X*X> 
IF 2*Xl*C>3n THEN 510 
LET X2 - .707107*S0RCSQR<X*X*X*X+M2*M2>+X~X> 

LET Y?=.707107*SOR<SOR<X*X*X*X+M2*M~>-X*X> 
LET X3=EXPC2•Xl*C) 
LET Y3=COS<2*Yl*C> 
LET Y4=SlNC2*Y1*C> 
LET A6=CX-Xll*<Xl+X2>+Yl*<Yl+Y2> 
LET A7=<X-Xl)•<Yl+Y2>-Yl*<Xl+X2> 
LETA5=CX+Xl)*<Xl-X2>-Yl*<YI-Y2>+CA6*Y3-A7*Y4>*X3 
LET B5=Yl•<Xl-X2l+CX+Xll*<Yl-Y2>+CA7*Y3+A6*Y4>*X3 
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440 LET C6=CX+Xl)*CXl+X2)-Yl*CYl+Y2) 
45C LET C7=Yl*CXI+X2)+CX+Xl)*CY1+Y2) 
460 LET C5=CX-Xl)*CXl-X2)+Yl*CY1-Y2)+CC6*Y3-C7*Y4)*X3 
470 LET D5=CX-Xl)*CY1-Y?.)-Yl*CX1-X2)+(C7*Y3+C6*Y4)*X3 
~80 LET Kl=CAS•CS+B5*D5l/CCS•C5+D5*D5> 
490 LET K2=CC5*65-A5*D5>1CCS*CS+D5*05) 
500 GOTO 560 
5 H .. LET {\5 =X-X l 
52~ LET E5=-Yl 
530. LET C5=X+X1 
540 LET D5=Yl 
-55e1 GOTO 480 
560 LET G=EXPC-2*X*Ll)+EXPC-2*X*L2)-2*EXPC-X*CLl+L2)) 
~i70 LET Gl=G*Kl 
580 LET G2 = c_:,*K2 
590 LET Al=S3•GI/C?•X> 
600 LET A2=S3*G2/C2*X> 
610 LET I6=I6+fl_l 
620 LET I8=18+P,2 
630 LET G3=EXPC-X*CL2-Ll))-1 
6~0 LET A3=S3*CG~/X+L2-Ll> 
650 LET 19=I9+P,3 
660 NE:XT X. 
670. LET Bl=Bl+S2 
680 LET B2=B2+S2 
69~ LFT Q3=X+Sl/2 
70~l LET 17=19+16 
710 PRINT Q3,19,11,rs 
7?.0 IF X < 3 THEN 190 
730 LET Sl=5E-2 
740 IF X < 30 TH~N 19~ 

750 LET Ql=-IB/19 
1f..C'.: LET 02=17/19 
770Pf.:lNT"NORt·~ALlZED !MAG PART .. ;G2,"NORtt.ALlZED REJ'.lL PPRT";Ql 
780 GOTO 940 
79G IFZ>3THEN 880 
800 LETL5=INTC2*Z>+3 
810 LETF1=·5*Ql*Ol*Z 
820 LFT F2=Fl/3 
830 FORN=lTOL5 
8~0 LETF1=-F1*·250*Z*Z/CN*N+N) 
850 LETF2=F2+Fl/C2*N+3) 
SM;. l\EXTN 
8 70 GOTO 930 
880 LET Pl=·R069*Zt.497+.1738*EXPC-.267S*Z> 
89~ LFT P2=5INCZ-2.340+·10G•EXPC-.06B*Z)+.32*EXPC-·3*Z>> 
90~ LET P3=·156*EXPC-·9*Z)*SINC2·2*Z-·31) 
910 LET P4=l 
92e LET F2=<Pl*P2+P3+P~>/CX•Xl 
9 3V." RETURN 
9 L!VJ END 
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CVD005 13:48 CEIR 08/18/67 

1 REM THIS IS A PROGRAM TO CALCULATE EDDY CURRENT COIL IMPEDANCE 
2 REM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNER AND 
3 REM OUTER RADII,Rl AND R2, AND THE SPACING OF THE BOTTOM AND 
4 REM TOP OF THE COIL ABOVE THE PLANE, LI AND L2, MUST BE GIVEN. 
5 REM THE VALUE OF Rt2*FREG•MU*COND MUST ALSO BE GIVEN. 
10 LET RJ=.8333 
20 LET R2=1·1667 
30 LET Lt=.0952 
Ll0 LET L2=.4285 
50 LET M=77.05 
60 LET Sl=lE-2 
70 LET S2=1 
80 PRINT"Rl=";Rl,"R2=";R2,"Ll=";Lt,"L2=";L2,"M=";M 
9 0 PR I NT "X", "AIR VALUE", "REAL PART" 1 ''!MAG PART" 
100 LET I3=0 
110LETI4=0 
120 LET 17=0 
130 LET I8=0 
140 LET 19 =0 
1 SP.· LET Bl =fl 
1 6[1 LET 82 =S2 
170 FOR X = 61 +Sl/2 TO 22 STEP Sl 
1Fi0 LET Z=R2*~< 
190 LET OJ::::R2 
~?~inGOSUB680 

2 1 G 
22V.1 
23~! 

2Ll0 
~?. '.:)~' 
n 
"· 60 
270 
LJ 3 f; 
Lj 40 
45~ 

Ll f,(i) 
Lj 7 (/j 
L;S G 
490 
5 r.;0 
51 0 
520 
53C 
5 L:r;i 
5 5(i 
560 
571'.Z; 
58Y.:· 
59\i) 

L~T I2;;;F'? 
LFT Z=Fl*X 
LET GJ1=Rl 
GO .$LIB 6t: (ri 

LET Il=F:? 
L ET I .3 = I ::: - l 1 
LET S3=Sl*I3*I3/X 
LE~ Xl=S0RCX*X*X*X4M*M> 
LET K1=1·~142l*X*SQRCX1-X*X>/M-1 
I.ET K2=<2*X-l.4142l*SORCX1+X*X))*X/M 
L E: T c-; =-EX P ( - ;;; :f: X ¥ L 1 > + EX P C - 2 * X :;: L 2 ) - 2 * t: X P < - ;>( l!! C L 1 + L :? ) ) 

LET G 1 = (';* l< 1 
LET G3=EXP<-X*CL2-L1))-J 
LET (;2 =G*f<2 
LET Al=S3*Gl/C2*Xl 
LFT A3=S3*CG3/X+L2-Ll> 
LET A2=S3*G2/C2*X) 
LF.T I7;;;I7+~1+~<3 

LE'T I9=I9+A3 
U:.:T I 8= I 8+A2 
NEXT X 
LET B1=6l+S2 
LET E2=E2+S2 
LET (~3=X+S 1/2 



600 P~INT Q3,I9,J7,I8 
610 IF X < 3 THEN 170 
620 LET S!=SE-2 
630 IF X < 30 THEN 170 
64f LET 01=-IR/19 
65\2; Lt:.:T '.;2=I7/I9 
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6 6'?.iPK Il'JT"NORi•iAL I ZED I i<J'.l.l1 ?Ai=:T"; Q2, "NO S:M.6.L I Z E:D F:Ef1.L PART"; 81 
670 C~OT0fi3S 

680 IF Z>3THEN770 
690 LET L5=INT<2*Zl+3 
7G0 LET F1=·5*8l*Ol*Z 
710 LET F2=Fl/3 
72C FOR f'l=ITOLS 
730 LET Fl=-Fl*·250*Z*Z/CN*N+N) 
740 LET F2=F2+Fl~C2*N+3) 

750 £>!EXT ['.! 

7 60 GO TOS2r'..'• 
77G LET Pl=.R069*Zt.497+.1738*EXP<-·2675*Z> 
780 LET P2=SINCZ-2·340+.106*EXPC-.068*Z)+.32*EXPC-·3*Zll 
790 LET P3=.156*D:PC-·9*Zl*Sii\JC2·2*Z-.31> 
800 LET PLJ=l 
610 LET F2=CP1*P2+P3+P4)/CX*X> 
828 f~ETUm~ 

8 30 END 
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