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Abstract: Magnetic hydrogels are becoming increasingly demanded for technical and 

biomedical applications, especially for tissue engineering purposes. Among them, 

alginate-based magnetic hydrogels emerge as one of the preferred formulations, due to 

the abundance, low cost and biocompatibility of alginate polymers. However, their 

relatively slow gelation kinetics provokes strong particle settling, resulting in 

nonhomogeneous magnetic hydrogels. Here we study magnetic hydrogels prepared by 

a novel two-step protocol that allows obtaining macroscopically homogeneous 

systems, consisting of magnetic microparticles embedded within the alginate network. 

We describe a comprehensive characterization (morphology, microstructure and 

mechanical properties under shear stresses) of the resulting magnetic hydrogels. We 
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pay special attention to the effects of particle volume fraction (up to 0.33) and strength 

of the magnetic field on the viscoelastic properties of the magnetic hydrogels. Our 

results indicate that magnetic hydrogels are strongly strengthened against shear 

stresses as magnetic particle concentration and applied field intensity increase. Finally, 

we report an adaptation of the two-step protocol for the injection of the magnetic 

hydrogels that might be adequate for implementation in vivo. Interestingly, injected 

magnetic hydrogels present similar morphology and mechanical properties to non-

injected hydrogels. To conclude, we report magnetic alginate hydrogels with adequate 

homogeneity and injectability character. These characteristics, together with the broad 

range of their mechanical properties, make them perfect candidates for cutting-edge 

technology. 

1. Introduction 

Hydrogels are cross-linked networks of hydrophilic polymer chains dispersed in a 

continuous aqueous medium [1]. Due to their soft consistency and flexibility, their high 

water content, and the versatility of their mechanical properties, hydrogels have found 

diverse applications in technology and biomedicine [1-8]. Current basic research within 

this field largely focus on stimuli-responsive hydrogels, characterized by changes of 

their properties in response to a stimulus, such as temperature, chemicals or pH [9]. This 

smart behavior allows applications of hydrogels for the detection of analytes or as 

reservoirs for the controlled release of a drug [10-12].  

Magnetic gels or ferrogels constitute one of the most important categories among 

stimuli-responsive gels [13-14]. They consist of suspensions of magnetic particles 

embedded within a polymer network swollen by liquid solutions [15-17]. Because of 
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their composition, magnetic gels combine in a single material the paramagnetic 

behavior provided by the particles and the softness of the polymer network. As a 

consequence they possess the unique feature among soft matter of responding to applied 

magnetic fields, a characteristic that can be used for example for inducing shape 

changes, modifing the mechanical properties, or provoking the controlled release of 

absorbed drugs or cells [18-21].  

The specific properties of any given magnetic gel depend mainly on the polymer 

network and the embedded magnetic particles. The rigidity of hydrogels is mainly pre-

defined by the polymer network, with networks built by chemical bonding being rather 

rigid, whereas physical networks (built by ionic bonding, H-bonding) tend to be more 

flexible and even injectable [22]. The size of the particles also plays a relevant role, 

with small (nanosized) particles only experiencing a weak attraction between 

themselves under moderate magnetic fields, whereas large (micronsized) particles 

interact strongly even at low magnetic fields [23]. Accordingly, strong magnetic field-

induced changes of the elasticity of magnetic hydrogels consisting of micronsized 

magnetic particles have been previously reported –see for example Ref. [24].  

Among polymers used for the preparation of magnetic hydrogels, alginate stands as 

the preferred choice for many researchers. This is motivated by the low cost and 

biocompatibility of alginate salts, together with the ease of preparation of ionic alginate 

hydrogels [25]. However, the preparation of magnetic field-responsive alginate 

hydrogels with homogeneous cross-linking density and homogeneous distribution of the 

magnetic particles within the polymer network is an open field of research. 

Furthermore, within the same context, the preparation of injectable magnetic hydrogels 
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is of the greatest relevance, since injectability is one of the main requirements for 

minimally invasive procedures, particularly in tissue engineering and drug delivery 

applications. 

Bearing this in mind, we designed a novel two-step protocol for the preparation of 

homogeneous magnetic hydrogels consisting of micronsized iron particles embedded 

within an alginate polymer network. Our protocol allows obtaining homogeneous 

hydrogels containing as much as 0.33 volume fraction of magnetic particles, that 

demonstrated strong magnetic field-responsive behavior. We report this protocol in this 

paper and present a comprehensive characterization of the morphology, microstructure 

and mechanical properties of the resulting magnetic hydrogels. Finally, we describe an 

adaptation of the protocol for the injection of the magnetic hydrogels that might be 

suitable for implementation in vivo. 

2. Materials and Methods  

2.1. Preparation of the hydrogels and magnetic hydrogels 

The simplest approach for the preparation of magnetic alginate hydrogels is the 

dispersion of magnetic particles in a solution of sodium alginate, followed by the 

addition of a source of calcium ions (Ca2+). Each calcium ion bonds by ionic interaction 

to two negatively charged alginate chains (valence -1), giving rise to the formation of an 

ionic polymer network [25]. When the source of calcium ions is a highly soluble salt, 

such as CaCl2, the resulting hydrogels lack homogeneity due to inhomogeneous cross-

linking density, which is appreciably higher close to the place of addition of the calcium 

source [26]. This inhomogeneity can be prevented by using poorly soluble salts (e.g. 

CaCO3) as source of calcium ions, which gives rise to a slow gelation kinetics that 
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results in homogeneous cross-linking density [27]. However, a slow gelation kinetics 

should be avoided in the case of magnetic hydrogels based on micronsized magnetic 

particles –note that these particles possess a high mass density and negligible Brownian 

motion that provoke particle settling in water-based solutions and, therefore, undesired 

strong particle gradients, and even phase separation, in the resulting hydrogels if 

gelation kinetics is slow. In order to simultaneously solve the lack of homogeneity in 

the density of cross-linking (if highly soluble calcium salt is used) and the strong 

particle gradients (if poorly soluble calcium salt is used) we designed a novel two-step 

protocol that, by contrast to one-step protocols, allows obtaining magnetic hydrogels 

with homogeneous distribution of particles and cross-linking density.  

For this aim, we followed a standard sample preparation procedure in order to 

ensure reproducibility of the results. First of all, we prepared a polymer network using 

sodium alginate (empirical formula (C6H7NaO6)n) obtained from the extracellular 

matrix of brown algae, with a molecular weight of 176.10 g/mol (Sigma Aldrich, USA). 

The sodium alginate was dissolved in distilled water at a concentration of 1% w/v. 

Then, calcium carbonate (CaCO3) was used in combination with D-glucono-δ-lactone 

(GDL) (Sigma Aldrich, USA) as a source of calcium ions to initiate gelation –note that 

GDL hydrolyses in water to gluconic acid, which enhances the solubility of CaCO3 as a 

consequence of the resulting acidification of the medium. For a final volume of 5 mL of 

the sodium alginate solution, we added 7.5 mg of CaCO3 and 26.7 mg of GDL, and we 

stirred the mixture by a vortex mixer until it was macroscopically homogeneous. Then, 

we placed the mixture in a Petri dish and we left it at rest at room temperature in a 

water-saturated atmosphere for gelation. In order to get a magnetic hydrogel, we broke 

the gelling mixture by a vortex mixer 90 min after the gelation was initiated. After 
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breaking the hydrogel, we added the magnetic phase and we sonicated the resulting 

mixture for 10 min before placing it at rest again in a Petri dish. As magnetic phase 

(iron particles) we used Fe-CC powder and Fe-HQ powder, both supplied by BASF 

(Germany) –note that unless specified otherwise, Fe-CC powder was used for the 

experiments shown in this manuscript. The thin silica coating of the Fe-CC powder is 

the main difference between both powders. These powders consisted of spherical 

micronsized particles of diameter 1.4 ± 0.6 µm (Fe-CC) and 0.9 ± 0.3 µm (Fe-HQ), as 

obtained by electron microscopy images, and had volumetric mass densities of 7.71 ± 

0.19 g·cm-3 (Fe-CC) and 7.88 ± 0.16 g·cm-3 (Fe-HQ), as measured by a pycnometer. 

Both powders presented a typical paramagnetic behavior with saturation magnetization 

𝑀𝑆 = 1587 ± 2 𝑘𝐴 𝑚−1 for Fe-CC and 𝑀𝑆 = 1721 ± 2 𝑘𝐴 𝑚−1 for Fe-HQ, as 

measured by SQUID magnetometry. Finally, we added 5 mL of calcium chloride 

(CaCl2) (Sigma Aldrich, USA) at a concentration of 45 mM to the magnetic sample 

previously placed in a Petri dish and we kept it overnight at a room temperature in a 

water-saturated atmosphere. For comparison, we prepared nonmagnetic hydrogels 

following the same protocol without particle addition. 

2.2. Macroscopic appearance, swelling and microscopic structure of hydrogels 

We analized the macroscopic appearance of the hydrogels by direct observation and 

optical photography with a digital camera. Swelling tests were carried out in order to 

obtain information about the cross-linking density and porous structure of the 

hydrogels. For this aim, we proceeded as it follows. First of all, we placed the hydrogels 

in dry Petri dishes and we measured their mass by means of a digital microbalance. 

Then, we dried the hydrogels for 24 hours at room temperature in contact with blotting 
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paper in order to obtain their mass after dehydration. Finally, we rehydrated the 

hydrogels again by submerging them in water for some additional 24 hours and 

obtained their mass. The microscopic structure of the hydrogels was analized by ESEM 

(Enviromental Scanning Electron Microscopy) images, which were perfomed using a 

FEI Quanta 400 ESEM equipped with a Peltier effect cooling stage. 

2.3. Rheological characterization of the hydrogels under shear 

We determided the rheological properties under shear of both magnetic and non-

magnetic hydrogels by using a rotational (magneto)rheometer (Physica MCR 300) with 

a plate-plate geometry of 20 mm of diameter and at a constant temperature of 25 ± 0.1 

ºC. For this aim, we placed the disk-like samples obtained at the end of the two-step 

protocol in the measuring system of the rheometer, with the bottom surface of the 

samples in contact with the lower plate of the measuring system. In some specific 

experiments, and in order to investigate the potential influence of the existence of a 

vertical gradient in concentration of magnetic particles within the hydrogel, we turned 

up-and-down the samples prior to their placement in the mesuring system of the 

rheometer –i.e., in these cases, the top surface of the disk-like hydrogels (as viewed with 

reference to the direction of gravity during cross-linking) was placed in contact with the 

lower plate of the measuring system. 

First we determined the linear viscoelastic region (LVR) of the different hydrogels, 

by subjecting them to deformation amplitude sweep tests at a constant frequency of 1 

Hz and stepwise increasing shear strain amplitude, γ0. From these measurements we 

obtained the values of the storage (G’) and loss (G’’) moduli as a function of γ0. From 

the resulting curves we calculated the characteristic G’ and G’’ values within the LVR 



8 
 

by averaging for the total extension of the LVR. Afterwards, we performed frequency 

sweep tests at a fixed shear strain amplitude (γ0=0.03%) within the LVR, and increasing 

frequency in the range 0.15 to 15 Hz. From these measurements we obtained the values 

of G’ and G’’ as a function of frequency. Both amplitude and frequency sweeps were 

carried out under the application of magnetic fields of different intensity within the 

range 0-282 kA/m. 

Finally, we subjected the samples to magnetic field sweep tests. For this aim, we 

subjected the samples to an oscillatory strain of fixed amplitude (γ0=0.03%) and 

frequency (1 Hz) and increased stepwise the intensity of the applied magnetic field from 

0 to 282 kA/m. For the total duration of the experiment (300 s) we monitored the values 

of the viscoelastic moduli as a function of time.  

We imposed a constant compressive normal force of 0.1 N during measurements to 

ensure that there was always contact between the upper plate of the rheometer and the 

hydrogels –note that magnetic hydrogels experience magnetostriction, which for a fixed 

gap might result in loss of contact between the upper plate and the sample. Differences 

in the gap thickness within an amplitude or frequency sweep were always smaller than 

10%. Furthermore, we created a water-saturated atmosphere around the sample to avoid 

solvent loss, and used a fresh sample for each experiment to discard the influence of 

changes in the microstructure. 

2.4. Injectability study. Protocol and characterization after injection 

Finally, we analyzed the potential injectability of the magnetic hydrogel. For this 

aim, we chose magnetic hydrogels containing 0.046 volume fraction of magnetic 
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particles and subjected them to an injection protocol with potential to be implemented in 

in vivo applications. This protocol consisted in the following steps.  

i. Magnetic alginate hydrogels were prepared inside syringes by following the 

protocol described above in the subsection 2.1, except for the final addition of the 

calcium chloride solution. A stock of these magnetic hydrogels might be stored 

for several days until their use was required. For the present study, we stored them 

overnight in a water-saturated atmosphere at room temperature. 

ii. Prior to injection, we partially dehydrated the hydrogels until they lost about 20 % 

of their total mass. For this aim, we extracted them from the syringes (by their 

rear opening) and placed them in Petri dishes inside an oven at 35 ºC for two 

hours. The reason for this partial dehydration was to gain some space for the extra 

solution that was required to be added after injection. Otherwise, if we did not 

perform this partial dehydration, some supernatant solutions (not absorbed in the 

hydrogels) remained, something undesired from the viewpoint of in vivo 

applications. 

iii. Afterwards, we placed the hydrogels back inside syringes (note that the hydrogels 

maintained their shape during partial dehydration) and injected them where 

desired. 

iv. At some given time (ranging from 0 to 120 minutes) after their injection, we 

added by injection a total volume equal to the volume of water lost during the 

partial dehydration (step ii) of a solution of CaCl2. The concentration of CaCl2 in 

this solution was adjusted so that the final molarity of CaCl2 in the hydrogel was 

22.5 mM –remark that this is the same molarity as in the protocol described in 

subsection 2.1. 
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We evaluated by a simple laboratory study the feasibility of injection of the 

magnetic hydrogel in a macroporous structure, which represented an approximate model 

of a biological tissue. For this aim we used a commercial polyurethane foam (Procusur, 

Spain) having an approximate compressive modulus of 4600 ± 100 Pa. We drilled a 

cup-like hole of approximately 1 cm in diameter and 2 cm in depth in the foam. Then, 

we covered the surface of the foam having the hole with an additional foam of the same 

size, and maintained them in contact for the total length of the experiments. Afterwards 

we followed the protocol described above for the injection of the magnetic hydrogel in 

the drilled space between the two foams. At the end of the experiment we separated the 

foams and recovered the magnetic hydrogel from the hole. 

In all cases, we recovered the resulting magnetic hydrogels after 24 hours of the 

addition of the CaCl2 solution. Then, we analyzed their macroscopic integrity by direct 

observation and optical microscopy with a digital camera. We also characterized the 

viscoelastic properties of the injected hydrogels. For this aim, we followed the protocol 

described above for the injection of the magnetic hydrogel in a Petri dish, in order to 

obtain a dish-like hydrogel, following afterwards the same rheological protocols 

described above in subsection 2.3 for the characterization. 

2.5. Statistics 

For each set of experimental conditions we measured at least 3 different samples. In 

the case of rheological measurements we performed 3 different repetitions for each 

sample. Thus, in total we have at least 3 values in swelling experiments and 9 in 

rheological measurements for each set of experimental conditions. An exception to this 

were magnetic sweep tests for which we did not perform repetitions. In this manuscript 
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we provide the corresponding mean values and standard deviations of performed 

experiments. 

3. Results and discussion 

3.1. Macroscopic appearance, swelling and microscopic structure of hydrogels 

Both nonmagnetic and magnetic hydrogels retained the shape of the disk-like 

container used for their preparation (Figure 1). Nonmagnetic hydrogels were transparent 

and presented a homogeneous macroscopic appearance. Magnetic hydrogels were black 

in color and also presented a homogeneous macroscopic structure, even for a volume 

fraction of magnetic particles (Φ) as high as 0.33. Note that the hydrogels maintained 

their shape and integrity under the manipulation and measurements performed in this 

work. An exception for this was magnetostriction of the magnetic hydrogels under high 

enough intensity of applied magnetic field (Table 1). Besides magnetostriction, for 0.09 

particle volume fraction or higher, the hydrogels suffered irreversible macroscopic 

breakage when subjected to shear strains out of the LVR under applied magnetic field 

(Figure 1c). 
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Figure 1. (a) Nonmagnetic hydrogel; (b) Magnetic hydrogel containing 0.29 

volume fraction of magnetic particles –magnetic hydrogels containing different 

concentrations of particles presented a similar aspect; (c) Magnetic hydrogel 

containing 0.17 volume fraction of magnetic particles after being subjected, 

under the presence of an applied magnetic field of 282 kA/m, to an amplitude 

sweep test with maximum amplitude of shear strain, γ0-max=100 %. 

Table 1.Maximum change in height experienced by the magnetic hydrogels 

under the maximum applied magnetic field under study (282 kA/m). 

Fe-CC volume 

fraction 
0.046 0.09 0.17 0.23 0.29 0.33 

Approx. height 

increment 

(magnetostriction) 

< 10% < 10% 50% 50% 50% 70% 

 

We also analyzed the swelling behavior of the hydrogels (Table 2, Figure 2). 

Fully hydrated hydrogels presented strong differences in masses due to the mass of 

the embedded particles, the amount of absorbed water being similar in all cases. 

The amount of absorbed water is directly related to the porosity of the hydrogels 

and thus we can conclude that the porosity of the hydrogels was not affected by the 

presence or content of the magnetic particles. Note that the porosity of hydrogels 

plays an important role in biomedical applications. For example, when hydrogels 

are used as scaffolds for tissue regeneration, a large porosity and porous size is 



13 
 

required for the diffusion of cells, nutrients and oxygen, as well as for the removal 

of waste.  

Table 2. Experimental data corresponding to the swelling characterization of 

the hydrogels. Wi is the initial mass of the hydrogel, Wd is the hydrogel mass 

after dehydration, and Wr the mass after rehydration. 

Fe-CC 

volume 

fraction 

𝑾𝒊 (mg) 𝑾𝒅 (mg) 
𝑾𝒅/𝑾𝒊 

(%)  
𝑾𝒓 (mg) 

𝑾𝒓/𝑾𝒊 

(%) 

0 440±70 7.6±0.5 1.7±0.3 84.9±0.3 19±3 

0.046 399±19 160±10 40±3 269±17 67±5 

0.09 700±70 330±30 47±6 440±40 63±8 

 

For all hydrogels there was considerable loss of mass when they were 

dehydrated. The mass loss was about 98% of the initial mass in the case of non-

magnetic hydrogels and about 50% of their mass for a magnetic hydrogel 

containing 0.09 volume fraction of magnetic particles. These results make sense 

taking into account that, apart from magnetic particles, water was the main 

compound of hydrogels in terms of mass. After dehydration, we tried to rehydrate 

hydrogels by immersing them in water. However, for both nonmagnetic and 

magnetic hydrogels there only was a marginal rehydration, with most of the 

increase in mass due to water adsorption (superficial) on the hydrogels instead of 

the desired water absorption (bulk) –see some examples in Figure 2b and 2d. Note 

also that the rehydration was similar for the different hydrogels in terms of the mass 
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recovered. This reduced capacity of rehydration of alginate hydrogels is an 

indication of the formation of stable hydrogen bonding among polymer chains by 

drying [28]. 

 

Figure 2. Nonmagnetic hydrogel (a) after the dehydration process and (b) after 

the rehydration process. Magnetic hydrogel containing 0.046 volume fraction 

of magnetic particles (c) after the dehydration process and (d) after the 

rehydration process –other magnetic hydrogels presented a similar aspect. 

With respect to the microstructure, nonmagnetic alginate hydrogels presented a 

dense homogeneous web-like microstructure (Figure 3a). On the other hand, 
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magnetic hydrogels presented a web-like microstructure disrupted by the presence 

of the magnetic particles (Figures 3b-d). As observed, the particles seem to be 

mainly encapsulated within the alginate polymer network (Figure 3c), although 

linkage between the polymer strands and the surface of the particles seems to take 

place (see Figure 3d). Note finally that due to the much larger size of the particles 

in comparison with the pore size of the polymer network, the latter can be 

considered as a continuous medium with respect to iron microparticles (Figure 3b). 

 

 

Figure 3. Scanning electron microscopy images of hydrogels. (a) Nonmagnetic 

hydrogel; (b), (c) and (d) magnetic hydrogels containing 0.01 volume fraction 

of Fe-CC particles. Note the presence of some polymer strands linked to the 
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surface of the particles, more evident in part (d). Scale bar length: (a), (c), (d) 4 

µm; and (b) 30 µm. 

 

3.2. Rheological characterization of the hydrogels under shear 

3.2.1. Rheological characterization in the absence of an applied magnetic field 

Firstly we analyzed the dependence of the storage (G’) and loss (G’’) moduli as a 

function of the strain amplitude in oscillatory measurements of fixed frequency of 1 Hz. 

For both nonmagnetic and magnetic hydrogels the experimental curves showed a typical 

trend of a viscoelastic solid-like material, characterized by G’ values much larger than 

G’’ values at low strain amplitude (Figure 4). As observed, both viscoelastic moduli 

presented an initial plateau-like region, which is identified with the LVR. Then, as the 

strain amplitude increased, G’ experimented a sharp decreased, which was accompanied 

by an initial increase of G’’, up to a maximum (peak value), followed by a sharp 

decrease at higher values of the strain amplitude. This region where the plateau values 

of G’ and G’’ are no longer maintained is known as nonlinear viscoelastic region. 

Within this region, the internal structure of the hydrogels suffered from irreversible 

deformation and breakage, which provoked the observed decrease of elasticity 

(evidenced by the decrease of G’). Concerning the trend for G’’, the peak value 

corresponded to a yielding point, at which the dissipation of energy (and thus the 

irreversible destruction of the gel) is maximum [29]. The relevance of the G’’ peak, in 

comparison with the neighboring values, decreases strongly with the concentration of 

magnetic particles. In fact, the gels containing a volume fraction higher than 0.30 did 

not show any peak (values not shown here for brevity). This can be taken as an evidence 
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of the connection of the peak with the flexible polymeric structure of the gel –very 

likely the peak reflects destruction of the polymer structure, which becomes relatively 

less important as the concentration of magnetic particles increases. Concerning the 

value of the strain at which the peak took place, it decreased abruptly when particles 

were included in the formulation with respect to the nonmagnetic gel. Then, this 

magnitude showed a trend to increase slightly with concentration of magnetic particles 

(Figure 5a). 

 

 

Figure 4. Storage (■) and loss (▲) moduli as a function of strain amplitude for 

oscillatory measurements at a frequency of 1 Hz. (a) Nonmagnetic hydrogel; 

(b) magnetic hydrogel containing 0.046 volume fraction of magnetic particles. 

The comparison between measurements for magnetic hydrogels containing Fe-

CC particles placed on the rheometer plate without turning (solid symbols) and 

after turning up-and-down (open symbols) is included in (b). Results for 

magnetic hydrogels containing Fe-HQ particles (crossed symbols) are also 

included for comparison in (b). Note that the same axis scales are used in both 

parts. 
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As evidenced from curves of Figure 4, the inclusion of magnetic particles within 

the composition of the hydrogels resulted in an enhancement of the viscoelastic moduli 

(similar results were obtained for other concentrations of particles, not shown here). In 

order to better analyze this effect, we plotted the average values of G’ and G’’ 

corresponding to the LVR as a function of the concentration of magnetic particles 

(Figure 5b). At this point it is important to note that different criteria can be found in the 

literature to define the extension of the LVR [30]. In this work we used the criteria of 

[31], which defined the limit of the LVR as the point where the storage modulus 

deviates 10 % from the plateau value. The value of this limit as a function of the volume 

fraction of magnetic particles showed a sharp decrease around 0.05-0.10 and almost flat 

trends above and below this concentration range –data not shown here for simplicity. 

Concerning the trends of G’ and G’’, as observed there is an increase of both 

magnitudes with particle concentration (Figure 5b). The effect of solid inclusions on 

mechanical properties of composite materials is a subject studied from the theoretical 

and experimental viewpoints [32]. In particular, it has been shown that due to full 

equivalence between equations of motion of the incompressible elastic solid and of the 

incompressible viscous fluid, the concentration dependence of the shear moduli of the 

former has exactly the same form as the concentration dependence of the shear viscosity 

of the latter under restriction of the same spatial and orientational distribution of 

particles in both media. In the case of perfectly rigid spherical inclusions, at low 

concentration of the disperse phase, the classical Einstein’s formula gives a good 

prediction. As the concentration of the disperse phase is increased Batchelor’s formula 

[33] first (up to volume fraction of 0.09) and Krieger-Dougherty (KD) equation [34] for 

even higher concentration become adequate expressions for the prediction of the change 



19 
 

in the storage modulus of the composite material with particle content. Under 

hypothesis of incompressible hydrogel, which is expected to hold since the hydrogel is 

mostly composed of water (incompressible liquid) and of rigid metallic particles, 

prediction of KD equation for the storage modulus of a continuous medium with rigid 

spherical inclusions reads as it follows [34]: 

𝐺′ = 𝐺′0(1 − 𝛷/𝛷𝑚)−[η]𝛷𝑚;   𝐺′′ = 𝐺′′0(1 − 𝛷/𝛷𝑚)−[η]𝛷𝑚  
(1) 

Here 𝛷 is volume fraction of the inclusions (individual microparticles or their 

aggregates), 𝛷𝑚 is their maximum-packing volume fraction, 𝐺′0,𝐺′′0 are respectively 

the storage and loss moduli of the alginate matrix, and [η] is a parameter that for rigid 

spherical inclusions takes the value [η] = 2.5 [35]. 

 

Figure 5. (a) Strain amplitude corresponding to the peak value in loss modulus 

(G’’); (b) Storage (■) and loss (▲) moduli as functions of the volume fraction 

of iron particles in the magnetic hydrogels –values represent the average of G’ 

and G’’ corresponding to the LVR, as determined by amplitude sweep tests.  

The continuous lines represent the best fits to equation (2). 



20 
 

The validity of this expression has been previously demonstrated for magnetic 

hydrogels. For example, for magnetic hydrogels consisting of carrageenan polymer and 

carbonyl iron microparticles, Mitsumata et al. (2012) reported a good agreement 

between the prediction of KD equation and the experimental increase of the storage 

modulus with particle content up to a volume fraction of 0.23 [24]. On the contrary, we 

recently demonstrated that the enhancement of the mechanical properties with particle 

content largely exceeded such predictions in the case of magnetic hydrogels based on 

magnetic nanoparticles and fibrin polymers [17]. For these hydrogels, we found that the 

nanoparticles served as nuclei for the cross-linking of the fibrin polymer network, 

increasing hugely the number of polymer strands ending at a single cross-linking point 

(functionality of the cross-linking).  

For the magnetic hydrogels of the present work, there is not a good fit with KD 

equation with all physically relevant values of the parameters [η] and 𝛷𝑚 and the 

discrepancy is higher at medium and high concentration of particles (fit not shown 

here). Similarly to the case of our previous work [17], we might be tempted to interpret 

this in terms of changes at the microscopic level in the polymer arrangement of the 

alginate network. However, alginate ions are negatively charged, whereas silica (coating 

of the surface of Fe-CC particles) is also negatively charged in water above pH 3 [36]. 

Thus, electrostatic repulsion rather than electrostatic attraction is expected between the 

Fe-CC particles of the present work and the alginate strands. Nevertheless, weak 

hydrogen bonds between alginate macromolecules and silica-covered particles are 

expected even at opposite charges of both species [37]. These bonds just ensure some 

cohesion between the particles and the polymer strands. In fact, electron microscopy 
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observations show the presence of polymer fibers attached to the surface of the 

particles, without changes in the polymer arrangement at the global scale (see Figure 3).  

The question arising at this point is whether this cohesion between particles and 

alginate strands could positively contribute to the increase of the viscoelastic moduli of 

magnetic alginate hydrogels. To investigate this possibility, we also used bare (without 

silica coating) iron particles (Fe-HQ), for which alginate ions should show more 

affinity. As observed, for the same concentration of iron particles, the viscoelastic 

moduli exhibited by the magnetic hydrogels containing Fe-HQ particles were higher 

than these exhibited by the magnetic hydrogels containing Fe-CC particles (Figure 4b). 

Therefore, we can conclude that a stronger cohesion between particles and alginate 

strands (as in Fe-HQ sample) gives a stronger increase of the viscoelastic moduli. Note 

however that KD equation is based on non-slipping condition (i.e., strong cohesion) 

between particles and the polymer matrix, and consequently a stronger cohesion cannot 

result in experimental curves above the prediction of KD equation. 

Another phenomenon that might have some influence on the measured values of the 

viscoelastic moduli is the existence of a gradient in concentration of magnetic particles 

within the hydrogel due to some gravitational settling during cross-linking. To 

investigate it, we measured the hydrogels containing iron particles turning up-and-down 

the samples prior to measurement. As observed, although the values of the viscoelastic 

moduli obtained for samples turned up-and-down were smaller than these of unturned 

samples, in general (and especially for the values of the storage modulus) there is a 

significant overlap of error bars of both data sets (Figure 4b). Therefore, even though 
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the effect of a gradient in concentration of magnetic particles cannot be excluded, it 

does not seem to be relevant.  

 

Figure 6. Optical microscopy images of diluted suspensions of Fe-CC particles 

in water: (a) and (b) represent images of different aliquots. Scale bar length 50 

µm. 

Finally, discrepancies with respect to KD equation could be a consequence of the 

existence of some kind of aggregation between particles, which could form clusters 

appearing because of colloidal interactions and/or remnant magnetization of particles. 

The formation of clusters was in fact corroborated by SEM micrographs of the 

hydrogels (Figures 3b-d) and by observations by optical microscopy of diluted 

suspensions of iron particles in water (Figure 6). The existence of particle clusters 

would give rise to a higher effective concentration of rigid inclusions within the 

hydrogels than this of the true solid content –note that volume of a cluster is higher than 

the total volume of the particles constituting it. This hypothesis would justify the 

underestimation of the KD equation with respect to the experimental results. To account 

for this effect, we found that the following empirical equation (that still has some 
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mathematical similarity with KD equation) fitted reasonably well our experimental 

concentration dependencies: 

𝐺′ = 𝐺′0�1 − α′ × 𝛷𝑛′�
−β′

;𝐺′′ = 𝐺′′0�1 − α′′ × 𝛷𝑛′′�
−β′′

 (2) 

where β’, β’’, α’, α’’ and n’, n’’ are adjustable parameters, whose values are 

β’=β’’=1.6, α’=α’’=1.06±0.02, n’=0.19±0.03 and n’’=0.13±0.03. As inferred from 

Figure 5b, Equation (2) provided a reasonably good fit of the concentration 

dependencies of the shear moduli in the range of particle volume fractions 0.05-0.33. 

However, this equation does not reproduce a linear concentration dependency expected 

at lower concentrations, while extrapolation to higher concentrations does not have 

sense because of impossibility to prepare and handle the hydrogels above a particle 

volume fraction of approx. 0.35.  

We also analyzed the dependence of the viscoelastic moduli (G’ and G’’) as a 

function of frequency within the LVR. Some typical curves for nonmagnetic and 

magnetic hydrogels are shown in Figure 7 –similar results were obtained for other 

concentrations. As observed, both G’ and G’’ increase slightly with the frequency of 

oscillation for the range of frequencies under study. Furthermore, in all cases G’ was 

considerably larger than G’’. These tendencies are typical of cross-linked polymer 

systems [38]. In addition, results of Figure 7 corroborate the same tendencies and 

conclusions extracted above from amplitude sweep measurements (Figure 4) for the 

effects of modification of particle surface (Fe-HQ particles vs. Fe-CC particles) and 

existence of particle gradients. 
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Figure 7. Storage (squares) and loss (triangles) moduli for nonmagnetic 

hydrogels and magnetic hydrogels (0.046 volume fraction of iron particles) 

as a function of the frequency of oscillatory measurements of fixed 

amplitude (0.03%) within the LVR. □: nonmagnetic hydrogels; ■: magnetic 

hydrogels containing Fe-CC particles without turning; ◨: magnetic 

hydrogels containing Fe-CC particles after turning up-and-down. ☒: 

magnetic hydrogels containing Fe-HQ particles. 

 

3.2.2. Rheological characterization in the presence of an applied magnetic field 

We analyzed the dependence of the storage (G’) and loss (G’’) moduli of magnetic 

hydrogels as a function of the strain amplitude in oscillatory measurements at fixed 

frequency of 1 Hz, under application of magnetic fields of different strength. Similarly 

to the case in the absence of field, the experimental curves showed a typical trend of a 

viscoelastic solid-like material, characterized by an initial plateau-like region, which is 

identified as the LVR, and a sharp decrease of both moduli at large strain amplitude 

(Figure 8). From the analysis of Figure 8, we can conclude that the application of an 
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external magnetic field resulted in an enhancement of the viscoelastic moduli, which 

became higher when the intensity of the magnetic field increased. This phenomenon is 

known as magnetorheological (MR) effect [39]. The enhancement of the viscoelastic 

moduli with the intensity of the applied magnetic field was also confirmed by 

measurements of the viscoelastic moduli as a function of frequency (frequency sweeps, 

not shown here). Besides, results of frequency sweeps under a magnetic field 

demonstrated similar trends of G’ and G’’ with frequency to those obtained in the 

absence of an applied magnetic field (Figure 7). Furthermore, as observed by 

comparison of curves in parts (a) and (b) of Figure 8, the storage modulus was much 

higher than the loss modulus for all the intensities of the applied field.  

 

Figure 8. (a) Storage modulus and (b) loss modulus of magnetic hydrogels 

containing 0.046 volume fraction of magnetic particles (Fe-CC), as functions 

of the strain amplitude for oscillatory measurements at a fixed frequency of 1 

Hz. Magnetic field strength, H: ■ 0 kA/m, ● 156 kA/m and ▲ 282 kA/m. Note 

that the same axis scale is used in both parts. 

In order to analyze the MR effect as a function of the concentration of 

particles, we plotted the average values of G’ corresponding to the LVR as 

functions of the concentration of magnetic particles both in the absence of 
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magnetic field and in the presence of the strongest magnetic field under study, 

H=282 kA/m  (Figure 9). As observed, the larger the concentration of magnetic 

particles, the higher the resulting enhancement of G’ under application of a 

magnetic field. Obviously, this enhancement must be related with the magnetic 

character of the Fe-CC particles, which get magnetized and attract each other 

under the application of a magnetic field –note that these particles are 

multidomain from the magnetic point of view. MR effect in liquid media (i.e., 

MR fluids) is characterized by magnetic field-induced aggregation of the 

magnetizable particles, giving rise to particle column-like structures aligned in 

the direction of the magnetic field. These particle structures oppose to the 

deformation induced by the shear forces, resulting in enhanced rheological 

moduli under a field [39].  

 

Figure 9. Storage modulus (G’) corresponding to the LVR as a function of the 

concentration of Fe-CC particles in the magnetic hydrogels. Values represent 

the average of G’ corresponding to the LVR, as determined by amplitude 

sweep tests. Magnetic field strength, H: ■ 0 kA/m, ● 282 kA/m. Here, the 

storage modulus for nonmagnetic hydrogels is G’=4800±200 Pa. 
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In the present case of the viscoelastic alginate matrix, formation of column-

like structures is expected to be partially hindered by the matrix elasticity. 

However, the matrix cannot completely avoid the relative motion of 

neighboring magnetic particles. Since the hydrogel storage modulus in the 

presence of field is much higher than in the absence of field (Figures 8a and 9), 

magnetic interactions between particles or clusters are expected to be quite 

strong as compared to elastic forces and the particles are expected to displace 

towards each other at distances a few times higher than those dictated by the 

global applied strain in the absence of field. If the local stress generated by the 

particle displacement is below the hydrogel yield stress, the particle 

displacement should be reversible with respect to the magnetic field 

application, and the particle space distribution under applied shear and 

magnetic fields is expected to be governed by the minimum of the sum of the 

elastic and magnetic parts of the hydrogel free energy [40], while the hydrogel 

moduli- by the energy change with respect to the strain. It is therefore clear that 

increasing magnetic field will provide stronger local displacement of particles, 

which will result in stronger anisotropy of field-induced spatial distribution of 

particles and, along with increasing magnetic forces between particles, this will 

increase the hydrogel elastic moduli, as observed in Figure 10. At the same 

time, increasing particle concentration means shortening the average distances 

between magnetic particles and thus enhancement of magnetic interactions 

between them. Since at relatively large particle displacements (that might occur 

thanks to magnetic interactions even at low global strains) the local elastic 

moduli decrease with local strain, we might expect a quite strong increase of 
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the local particle displacements with increasing particle concentrations and 

fields that can explain the two following observed effects: (a) a stronger 

concentration dependence of shear moduli in the presence of field (Figure 9) as 

compared to relatively weak slightly non-linear concentration dependence of 

the MR effect in MR fluids; (b) a decrease of the extension of the LVR 

(described by the critical strain that marks the onset of the non-linear regime) 

with increasing magnetic field (Figure 11a) caused by increase of local strains 

because of larger displacement of particles. At this point, it is worthy to 

mention that X-ray tomography has previously been used for the investigation 

of the microstructure formation in MR elastomers [41]. This technique might 

provide valuable information regarding the formation and evolution of particle 

aggregates under an applied magnetic field in magnetic hydrogels, and thus, it 

might be used for the investigation of competition between elastic and 

magnetic forces at the microscopic level. Future works in this sense might be 

relevant for the development of realistic microstructural models of the MR 

properties of magnetic hydrogels. 
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Figure 10. Storage modulus as a function of the applied magnetic field for 

magnetic hydrogels containing 0.046 volume fraction of magnetic particles. ◨: 

Values represent the average of G’ corresponding to the LVR, as determined 

by amplitude sweep tests; note that a new sample was used for each value of 

the applied field. ■, □: Results for magnetic field sweep using one sample 

along the sweep –results for two different samples are shown; full symbols and 

open symbols represent different samples. Lines represent best fits to equation 

(3). 

Let us now analyze in more details the influence of the magnetic field on the 

storage modulus. For this aim we characterized the rheological behavior of the magnetic 

hydrogels containing 0.046 volume fraction of magnetic particles under magnetic fields 

of different intensity (Figure 10). We performed the analysis in two different ways. 

Firstly, by using a new sample for each value of the applied magnetic field and 

subjecting it to an amplitude sweep test under the selected value of magnetic field 

(Figure 10). Secondly, by subjecting a given sample to a sweep of magnetic field 

strength, starting at zero field (Figure 10). In both cases we obtained a stronger than 

linear enhancement of the storage modulus with the magnetic field strength. Note also 

that the MR effect obtained by using a new sample for each value of the magnetic field 

was slightly higher than this obtained by sweeping the field for a given sample. This 

difference might be connected to the differences in the protocols (i.e., sample’s 

histories) used for fresh samples and samples subjected to magnetic sweep tests (see 

subsection 2.3). 
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Various theoretical approaches are suggested in literature for the description of the 

rheological properties of magnetic gels –see for example Ref. [42] and the overviews in 

Refs. [13-14]. However, the model in Ref. [42] deals with the case when the particles 

cross-link the gel network and, therefore, the particle size is smaller than the typical size 

of the net cell. In contrast, in the case of the present magnetic alginate hydrogels, the 

size of the particles is much larger than that of the net cell, and thus the gel can be 

considered as a continuous medium with respect to the particles. Our analysis shows 

that none of the other microscopic models reported in literature (see Refs. [13,14])  can 

describe the experimental results shown in Figure 10. Because of this reason, in this 

manuscript we focus only on the phenomenological description of the MR effect 

exhibited by magnetic alginate hydrogels. 

From a qualitative viewpoint, the observed strong MR effect can be explained by 

unification of the particle clusters (evidenced in Figure 6), into chain-like, column-like 

or other heterogeneous structures, under the action of the applied magnetic field. A 

similar field-induced particle aggregation takes place in MR fluids, for which various 

theoretical and experimental studies demonstrate power-law dependencies of relevant 

rheological parameters (e.g., storage modulus) on the magnetic field strength, H [23, 

43]. Based on this consideration, we used the following equation to fit the experimental 

results of G’ shown in Figure 10: 

𝐺′ = δ × 𝐻𝑝 + 𝐺′0 (3) 

Here 𝐺′0 is the storage modulus in the absence of an applied magnetic field, and δ, p are 

fitting parameters. As observed in Figure 10, equation (3) fits well to the experimental 

results. The best-fit values for the exponent are p = 1.6 ± 0.2 for the curve representing 
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the average of G’ corresponding to the LVR, and p = 1.84 ± 0.03, p = 1.69 ± 0.07 for 

the curves representing magnetic sweep tests. These exponents lie in the range 1≤p≤2, 

whose lower bound (p=1) was predicted by the model in Ref. [43] of affine 

displacement of particles with non-linear magnetization in a linear chain and whose 

upper bound (p=2) is predicted by a point dipole approximation applied to low magnetic 

fields [23].   

 

Figure 11. (a) Critical strain amplitude and (b) critical stress amplitude that 

mark the onset of the nonlinear viscoelastic regime as a function of the 

intensity of the applied magnetic field for magnetic hydrogels containing 0.046 

volume fraction of Fe-CC particles. 

Other rheological parameters may also depend on the intensity of the applied 

magnetic field. It is the case of the critical strain amplitude and critical stress amplitude 

that mark the onset of the nonlinear viscoelastic regime. Using the same criterion as in 

subsection 3.2.1 for the limit of the LVR, we obtained that the critical strain decreased 

as the magnetic field was increased (Figure 11a). As for the critical stress, it was 

considerably higher under an applied magnetic field than in its absence, although there 

were not significant differences for the different intensities of the applied field (Figure 

11b). These results for the critical strain and stress in combination with the previously 
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discussed enhancement of the storage modulus indicate that the magnetic hydrogels 

became stronger, but more fragile, as the magnetic field strength increased. The increase 

in fragility was likely due to the particles undergoing a stronger relative displacement 

under an applied magnetic field, which should lead to higher local strains and thus 

higher fragility.  

 

Figure 12. (a-b) Injected magnetic hydrogel after 24 hours of CaCl2 addition. 

Picture (a) corresponds to a magnetic hydrogel injected in a Petri dish. Picture 

(b) corresponds to a magnetic hydrogel injected through foam (also shown) in 



33 
 

a previously pierced cup-like hole –note that there was not diffusion of the 

hydrogel to surrounding areas. Time (taCa) of addition of the CaCl2 solution: 30 

minutes –a similar aspect was obtained for different values of taCa. (c) Storage 

(■) and loss (▲) moduli, representing the average corresponding to the LVR, 

of magnetic hydrogels as a function of taCa. Volume fraction of magnetic 

particles was 0.046 in all cases. 

3.3. Injectability study 

As described in subsection 2.4, we recovered the injected magnetic hydrogels after 

24 hours of the addition of the CaCl2 solution, and immediately afterwards we analyzed 

their macroscopic integrity and rheological properties. It should be noted that although 

the resulting hydrogels presented a lumpy appearance, each of them consisted of one 

solid-like piece that could be manipulated without fracture (Figure 12a-b). Concerning 

their rheological properties, we obtained the storage modulus (G’) and loss modulus 

(G’’) corresponding to the LVR and plotted them as a function of the time (taCa) elapsed 

from the moment of addition of the CaCl2 solution (Figure 12c).  

As observed, for the whole range of taCa the resulting hydrogels presented a solid-

like viscoelastic behavior, characterized by G’ values larger than G’’ values. 

Concerning the role of taCa, it was negligible on the magnitude of G’’, whereas in the 

case of G’ a maximum value was obtained for taCa= 30 min. Furthermore, in all cases 

the values of G’ and G’’ were of the same order of magnitude than those reported in 

subsection 3.2.1 for magnetic hydrogels not subjected to injection –e.g., G’ = 10200 ± 

400 Pa for the hydrogel not subjected to injection and an average of G’ = 22000 ± 6000 

Pa for the injected hydrogels. Therefore, the defined protocol of injection demonstrated 
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to be adequate for retaining the morphology and mechanical characteristics of magnetic 

alginate hydrogels and might be adequate for implementation in vivo. At this point note 

that ideal injectable medical hydrogels should meet several general requirements 

including biocompability and biodegradability, as well as ease injection through a 

syringe to alleviate the pain of the patient, and rapid gelation after injection to avoid 

diffusion to surrounding areas [44-45]. Furthermore, for certain applications other 

specific requirements are needed, such as similar mechanical properties to target tissues 

in tissue engineering applications.  

4. Conclusions 

We have reported a comprehensive analysis of the structure and mechanical 

properties of magnetic alginate hydrogels, consisting of micronsized iron particles 

embedded within an ionic alginate polymer network. We have designed a two-step 

protocol that allows obtaining macroscopically homogeneous magnetic alginate 

hydrogels containing as much as 0.33 volume fraction of iron microparticles. However, 

from the microscopic analysis we have found that iron microparticles are aggregated 

into clusters with number of particles per aggregate being of the order of ten. These 

clusters are nevertheless homogeneously dispersed within the polymer network.  

From the rheological analysis under shear in the absence of applied magnetic field 

we have found that the hydrogels, both nonmagnetic and magnetic, presented a typical 

behavior of a cross-linked polymer system, characterized by values of the storage 

modulus higher than these of the loss modulus within the linear viscoelastic region. 

What is more, our experimental results have demonstrated an intense enhancement of 

the viscoelastic moduli with the concentration of magnetic particles. At a first glance, 

this enhancement seems stronger than this expected for composites of hard spheres 
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within a polymer matrix according to classical laws, such as Krieger-Dougherty (KD) 

law. However, based on experimental evidences, we have proven that the strong 

concentration behavior does not come from changes in the polymer network induced by 

inclusion of particles, as it was the case in our previous study with fibrin-based 

hydrogels [17]. In the present study, the particle concentration dependence of the 

viscoelastic moduli is likely due to the formation of particle clusters, whose volume is 

larger than the total volume of the particles. We have found that an empirical equation 

that has some mathematical similarity with the KD equation fits well to the 

experimental dependence of the viscoelastic moduli on the particle concentration.  

The analysis of the rheological behavior under applied magnetic fields has shown 

an intense strengthening of the magnetic hydrogels (increase of viscoelastic moduli) 

with the intensity of the magnetic field, especially at high volume fraction of magnetic 

particles (higher than 0.15). We have demonstrated that this strengthening follows a 

power law with the magnetic field, with exponent p in the range 1<p<2, corresponding 

to the predications of the Ginder’s model [43] (valid for intermediate magnetic fields) 

and of the point dipole approximation [23] (valid at low magnetic fields). In the case of 

the magnetic hydrogels of the present work, the strengthening of the hydrogels with the 

magnetic field (i.e., the MR effect) is expected to be due to the appearance of strong 

magnetic forces between neighboring particle clusters. The relatively strong 

concentration dependence of the MR effect is explained by the synergy of the two 

following effects: (a) appearance, at the stage of the synthesis of the magnetic 

hydrogels, of dense particle clusters that under a magnetic field interact more strongly 

than separate particles; (b) increase of the local cluster displacements within the alginate 

matrix (resulting in stronger interactions) with increasing particle concentrations.  
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Finally, we have proposed a protocol for the injection of magnetic alginate 

hydrogels. The starting point is a partially dehydrated magnetic hydrogel that can be 

injected using a syringe. The subsequent injection of a solution of CaCl2 gives rise to a 

macroscopically homogeneous magnetic hydrogel that presents viscoelastic moduli of 

the same order of magnitude that magnetic hydrogels prepared by the two-step protocol 

reported in the present work.  

To conclude, we have reported protocols for the preparation and injection of 

homogeneous magnetic hydrogels, and extensively explored their versatile mechanical 

properties. From the fundamental viewpoint, future work will be required to construct 

microstructural models that describe accurately the MR effects developed by soft 

magnetic hydrogels like these studied in the present manuscript. From another 

perspective, the results of our work should constitute a reference for authors working on 

technological or biomedical applications of magnetic hydrogels. Future studies with 

laboratory animals are needed to fully evaluate the potential of our two-step protocol to 

be implemented in vivo. 
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