
	

 
Flexible NLP Pipelines for 
Digital Humanities Research 
	
	
Janneke	M.	van	der	Zwaan	
j.vanderzwaan@esciencecenter.nl	
Netherlands	eScience	Center,	The	Netherlands	
	
Wouter	Smink	
w.a.c.smink@utwente.nl		
University	of	Twente,	The	Netherlands	
	
Anneke	Sools	
a.m.sools@utwente.nl	
University	of	Twente,	The	Netherlands	
	
Gerben	Westerhof	
g.j.westerhof@utwente.nl	
University	of	Twente,	The	Netherlands	
	
Bernard	Veldkamp	
b.p.veldkamp@utwente.nl	
University	of	Twente,	The	Netherlands	
	
Sytske	Wiegersma	
s.wiegersma@utwente.nl	
University	of	Twente,	The	Netherlands	
	
	

Introduction 
	 A	lot	of	Digital	Humanities	(DH)	research	involves	
applying	 Natural	 Language	 Processing	 (NLP)	 tasks,	
such	as,	sentiment	analysis,	named	entity	recognition,	
or	topic	modeling.	A	large	amount	of	NLP	software	is	
already	 available.	 On	 the	 one	 hand,	 there	 are	
frameworks	 that	 bundle	 software	 for	 different	 tasks	
and	languages	(e.g.,	NLTK	[Bird	et	al,	2009],	or	xtas1),	
and	 on	 the	 other	 hand	 there	 are	 tools	 that	 target	
specific	tasks	(e.g.,	gensim,	Rehurek	and	Sojka,	2010).	
As	 long	as	researchers	do	not	need	to	combine	 tools	
from	different	packages,	it	is	usually	relatively	easy	to	
write	 scripts	 that	 perform	 the	 task.	 However,	 for	
innovative	research,	combining	tools	often	is	required,	
especially	when	working	with	non-English	 text.	This	
abstract	 presents	work	 in	 progress	 on	 NLP	 Pipeline	
(nlppln),	an	open	source	tool	that	improves	access	to	

NLP	 software	 by	 facilitating	 combining	 NLP	
functionality	from	different	software	packages2.	
	 nlppln	 is	 based	 on	Common	Workflow	Language	
(CWL),	 a	 standard	 for	 describing	 data	 analysis	
workflows	and	tools	(Amstutz	et	al,	2016).	The	main	
advantage	of	using	a	standard	is	that	any	existing	NLP	
tool	can	be	integrated	into	a	workflow,	as	long	as	it	can	
be	 run	 as	 a	 command	 line	 tool.	 This	 flexibility	 is	
missing	 from	 existing	 frameworks	 for	 creating	 NLP	
pipelines,	 such	 as	 DKPro	 	 (Eckart	 de	 Castilho,	 and	
Gurevych,	2015)	using	the	UIMA	framework	(Ferrucci,	
and	 Lally,	 2004).	 In	 addition	 to	 improved	 reuse	 of	
existing	 software,	 CWL	 increases	 research	
reproducibility,	as	 it	provides	a	standardized,	 formal	
record	 of	 all	 steps	 taken	 in	 a	 processing	 pipeline.	
Finally,	CWL	workflows	are	modular.	This	means	that	
individual	processing	steps	can	easily	be	swapped	in	
and	out.		
	 To	 demonstrate	 how	NLP	 tools	 can	 be	 combined	
using	nlppln,	we	show	what	need	to	be	done	to	create	
a	 pipeline	 that	 removes	 named	 entities	 from	 a	
directory	of	text	files.	This	is	a	common	NLP	task,	that	
can	be	used	as	part	of	a	data	anonymization	procedure.	

The Software 
	 An	 NLP	 pipeline	 or	 workflow	 is	 a	 sequence	 of	
natural	language	processing	steps.	A	‘step’	represents	
a	 specific	NLP	 task,	 that	 is	 executed	by	a	 single	 tool.	
Tools	 require	 input	 and	 produce	 output.	 The	 basic	
units	 in	CWL	are	 command	 line	 tools	 (i.e.,	 tools	 that	
can	be	run	from	the	command	line).	In	order	to	be	able	
to	run	a	command	line	tool,	CWL	needs	a	specification.	
The	 nlppln	 software	 helps	 creating	 those	
specifications.	 In	 addition,	 nlppln	 provides	
functionality	to	convert	existing	NLP	tools	written	in	
Python	 to	 command	 line	 tools.	 Finally,	 the	 software	
helps	users	to	combine	(existing	and	new)	processing	
steps	to	pipelines.	
	 In	 the	 next	 section,	 we	 explain	 how	 nlppln	
facilitates	 creating	 NLP	 steps,	 and	 in	 “Constructing	
Pipelines”	 we	 demonstrate	 the	 creation	 of	 an	 NLP	
pipeline	for	data	anonymization.	

 Generating Steps 
	 nlppln	allows	users	to	generate	CWL	specifications	
for	 existing	NLP	 tools.	 To	 simplify	 the	 generation	 of	
CWL	specifications,	we	use	a	convention	for	NLP	tasks.	
The	convention	assumes	that	there	can	be	two	types	of	
input	parameters:	a	list	of	files	for	which	the	command	
should	be	executed,	and/or	a	file	containing	metadata	
about	 the	 texts	 in	 the	 corpus.	 Output	 parameters	
consist	 of	 a	 directory	 where	 output	 files	 are	 stored	



(usually	 there	 is	 one	output	 file	 for	 every	 input	 file)	
and/or	a	file	in	which	metadata	is	stored.	So	far,	almost	
all	steps	that	are	currently	available	in	nlppln	follow	
this	 convention.	 Be	 that	 as	 it	may,	we	would	 like	 to	
emphasize	 that	 it	 is	 possible	 to	 deviate	 from	 this	
convention;	 for	 example,	 when	 existing	 NLP	
functionality	 requires	 different	 parameters	 (e.g.,	 the	
name	of	a	directory	containing	the	input	files	instead	
of	a	 list	of	 input	 files).	This	does	however	mean	that	
the	user	has	to	adapt	the	CWL	specification	by	hand.	
	 In	 addition	 to	 CWL	 specifications,	 nlppln	 allows	
users	 to	 generate	 boilerplate	 Python	 command	 line	
tools.	 A	 boilerplate	 command	 line	 tool	 contains	
generic	 functionality,	such	as	opening	 input	 files	and	
saving	 output	 files,	 but	 lacks	 implementation	 of	 the	
specific	NLP	task.	The	generated	Python	command	can	
be	 used	 to	 turn	 existing	 NLP	 functionality	 into	
command	 line	 tools,	 and	 to	 create	Python	 command	
line	tools	for	new	NLP	tasks.	
	 Python	 commands	 and	 associated	 CWL	 steps	 are	
generated	using	a	command	line	tool	that	requires	the	
user	to	answer	a	sequence	of	yes/no	questions.	Listing	
1	 shows	 what	 that	 looks	 like	 for	 a	 (hypothetical)	
command	 ‘command’,	 that	takes	as	 input	a	metadata	
file	 and	multiple	 input	 files,	 and	 produces	 as	 output	
multiple	text	files	and	metadata.	
	

	
Listing 1: Generating a CWL specification and associated 

boilerplate Python command using nlppln. 

	

Constructing Pipelines 
	 To	 combine	 text	 processing	 steps	 into	 a	 CWL	
pipeline,	 nlppln	 provides	 an	 interface	 that	 allows	
users	to	write	a	simple	Python	script.	We	demonstrate	
this	 functionality	by	creating	a	pipeline	that	replaces	
named	 entities	 in	 a	 collection	 of	 text	 documents.	
Named	 entities	 are	 objects	 in	 text	 referred	 to	 by	
proper	 names,	 such	 as	 persons,	 organizations,	 and	
locations.	In	the	example	pipeline,	named	entities	will	
be	 replaced	 with	 their	 named	 entity	 type	 (i.e.,	 PER	
(person),	ORG	(organization),	LOC	(location),	or	UNSP	
(unspecified)).	The	pipeline	 can	be	used	as	part	of	 a	
data	anonymization	procedure.	
	 The	pipeline	consists	of	the	following	steps:	

1. Extract	named	entities	from	text	documents	
using	 frog	 (van	 den	 Bosch	 et	 al,	 2007),	 an	
existing	parser/tagger	for	Dutch	

2. Convert	 frog	 output	 to	 SAF,	 a	 generic	
representation	for	text	data3	

3. Aggregate	 data	 about	 named	 entities	 that	
occur	in	the	text	files	

4. Replace	 named	 entities	 with	 their	 named	
entity	type	in	the	SAF	documents	

5. Convert	SAF	documents	to	text	
	
All	 steps	 required	 for	 this	 pipeline	 are	 available	
through	nlppln.	Listing	2	shows	the	script	that	creates	
a	 CWL	 workflow	 for	 this	 pipeline.	 After	 importing	
nlppln	 (line	 1),	 a	 new	WorkflowGenerator	 object	 is	
created	(line	3),	and	the	available	NLP	steps	are	listed	
(line	4).	Next,	the	script	specifies	the	workflow	inputs	
(line	6).	In	this	case,	there	is	a	single	input,	which	is	a	
directory	 containing	 text	 files.	 This	 directory	 is	 the	
input	of	 the	 first	 step,	which	 is	 frog_dir	 (line	8).	The	
output	argument	txts	contains	the	internal	CWL	name	
of	the	input	parameter	(line	6).	By	assigning	its	value	
to	 the	 input	 argument	 dir_in	 of	 frog_dir	 (line	 8),	 the	
output	is	connected	to	the	input.	Steps	1	to	5	from	the	
pipeline	 description	 correspond	 to	 lines	 8	 to	 12	 in	
listing	 2.	 After	 the	 remaining	 steps	 steps	 of	 the	
workflow	 are	 added	 (lines	 9–12),	 the	 workflow	
outputs	are	specified	(line	14).	Finally,	the	workflow	is	
saved	to	a	CWL	file	(line	16).	
	

	
Listing 2: Python script for constructing the pipeline to 

replace named entities in text files. 

Conclusion 
 To	 help	 DH	 researchers	 to	 (re)use	 and	 combine	
existing	NLP	software,	we	presented	nlppln,	an	open	
source	 Python	 package	 for	 creating	 flexible	 and	
reusable	 NLP	 pipelines	 in	 CWL.	 nlppln	 comes	 with	
ready-to-use	NLP	steps,	facilitates	creating	new	steps,	
and	 helps	 combining	 steps	 into	 standardized	
workflows	that	are	portable	across	different	software	
and	 hardware	 environments.	 Compared	 to	 existing	
frameworks	 for	 creating	 NLP	 pipelines,	 CWL	 and	



nlppln	 add	 flexibility	 and	 improved	 research	
reproducibility.		
	 nlppln	 is	 a	 work	 in	 progress.	 An	 important	
challenge	 that	needs	 to	be	addressed	 is	 the	 fact	 that	
there	is	no	standard	data	format	for	representing	text	
and/or	 information	 extracted	 from	 text.	 This	means	
that	 we	 will	 have	 to	 add	 NLP	 steps	 that	 convert	
different	data	formats	(cf.	Eckart	de	Castilho,	2016)).	
For	future	work,	we	plan	to	implement	additional	NLP	
steps	 and	 pipelines,	 including	 functionality	 that	
targets	 more	 languages.	 We	 would	 also	 like	 to	 add	
visualizations	 of	 pipelines	 and	 allow	 users	 to	 run	
pipelines	directly	from	nlppln. 
	

Bibliography 

Amstutz,	P.,	Crusoe,	M.	R.,	Tijanić,	N.,		Chapman,	B.,		
Chilton,	J.,		Heuer,	M.,		Kartashov,	A.,	Leehr,	D.,	Mé-
nager,	H.,	Nedeljkovich,	M.,	Scales,	M.,	Soiland-
Reyes,	S.,	and		Stojanovic,	L.	(2016).		Common	Work-
flow	Language,	v1.0,.	

	
Bird,	S.,	Loper,	E.,		and		Klein,	E.	(2009)	Natural	Language	

Processing	with	Python.	O’Reilly	Media	Inc.	
	
van	den	Bosch,	A.,	B	Busser,	B.,	Dealemans,	G.	J.,	and	

Canisius,	S.	(2007)	An	efficient	memory-based	mor-
phosyntactic	tagger	and	parser	for	Dutch.	In	Proceed-
ings	of	the	17th	Meeting	of	Computational	Linguistics	in	
the	Netherlands,	pages	191–206,	2007.	

	
Eckart	de	Castilho,	R.	(2016).	Interoperability	=	f(commu-

nity,	division	of	labour).	In	Proceedings	of	the	Workshop	
on	Cross-Platform	Text	Mining	and	Natural	Language	
Processing	Interoperability	(INTEROP	2016)	at	LREC	
2016,	pages	24–28,	2016.	

	
Eckart	de	Castilho,	R.,	and	Gurevych,	I.	(2014).	A	broad-

coverage	collection	of	portable	NLP	components	for	
building	shareable	analysis	pipelines.	In	Proceedings	of	
the	Workshop	on	Open	Infrastructures	and	Analysis	
Frameworks	for	HLT	(OIAF4HLT)	at	COLING	2014,	pages	
1–11.	

	
Ferrucci,	D.,	and	Lally.,	A.	(2004)	UIMA:	an	architectural	

approach	to	unstructured	information	processing	in	the	
corporate	research	environment.	Natural	Language	En-
gineering	10.3-4,	pages	327–348.	

	
Rehurek,	R.,		and	Sojka,	P.	(2010).	Software	Framework	

for	Topic	Modelling	with	Large	Corpora.	In	Proceedings	
of	the	LREC	2010	Workshop	on	New	Challenges	for	NLP	
Frameworks,	pages	45–50.	

	


