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PRIORS9

The prior distribution can be interpreted as expression of previous knowledge, which in turn can be10

expressed in terms of previous observations. In this sense, the Laplace (or flat) prior is equivalent to11

two previous observations for each prevalence (φ ), true positive rate (TPR) and true negative rate (TNR),12

which is usually a questionable assumption. Since sample size (N) is small in some of the examples13

discussed in this study, this assumption could have an impact on the posterior distribution. Nevertheless,14

we consider this prior to be the most suitable objective prior. Haldane’s prior, Beta(α = 0,β = 0), is not15

adequate since it yields an improper posterior if any entry of the confusion matrix (CM) is zero, which is16

often the case. Jeffreys prior, Beta(α = 0.5,β = 0.5), does not have this problem but leads to implausible17

U-shaped priors for some metrics (Figure S2).18

MARGINALS OF THE CONFUSION MATRIX19

There are three scenarios for the marginals of the CM. In principle, the marginals of the columns and rows20

of the CM could both be fixed, which would mean that φ and the number of positive/negative predictions21

are known exactly beforehand. Fisher’s exact test was designed to evaluate whether a binary classifier22

performs better than random guessing for this specific case. Fisher (1922) It remains popular, yet the23

underlying assumption is usually violated. McElreath (2018); Gelman (2003)24

A fixed φ and an unspecified marginal on the predicted labels is more common. For instance, in25

a controlled study, test sets may be curated to include 50% patients suffering from a disease and 50%26

healthy subjects in a control group. In this example there is no uncertainty in φ , but it is fixed at φ=0.5.27

If φ in the test set is not deliberately chosen before the compilation, it must be determined from the28

data set. For small sample sizes, φ is uncertain like all other metrics. In the present study, we infer φ from29

the CM but our method also copes with fixed φ .30
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Figure S1. Priors on the metrics if Laplace priors are used for φ , TPR, TNR
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Figure S2. Priors on the metrics if Jeffreys priors are used for φ , TPR, TNR
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LITERATURE EXAMPLES31

Table S1. Literature examples of classifiers with small sample size (N). Citations were recorded on
Google Scholar on June 16th, 2020 at 12:55 pm CEST.

DOI Location TP FN TN FP N Citations

1 10.1080/10629360903278800 Table 2 5 0 3 0 8 10
2 10.1021/ci200579f Table 3 10 0 3 1 14 48
3 10.1021/ci020045 Table 5 6 0 7 1 14 51
4a 10.1155/2015/485864 Table 4 5 1 10 1 17 10
4b 10.1155/2015/485864 Table 5 4 2 10 1 17 10
5a 10.1016/j.ejmech.2010.11.029 Table 6 16 1 3 2 22 86
5b 10.1016/j.ejmech.2010.11.029 Table 10 8 9 4 1 22 86
6a 10.1016/j.vascn.2014.07.002 Table 2 2 12 19 1 34 77
6b 10.1016/j.vascn.2014.07.002 Table 3 10 4 20 0 34 77
7a 10.5935/0103-5053.20130066 Table 2 26 0 6 2 34 61
7b 10.5935/0103-5053.20130066 Table 3 24 2 6 2 34 61
8 10.1016/j.scitotenv.2018.05.081 Table 2 28 9 3 4 44 18
9a 10.4314/wsa.v36i4.58411 Table 2 19 3 18 10 50 14
9b 10.4314/wsa.v36i4.58411 Table 2 21 1 20 8 50 14
10 10.1016/j.bspc.2017.01.012 Figure 2 31 5 24 4 64 80
11 10.1039/C7MD00633K Figure 3 40 7 15 8 70 9
12 10.3389/fnins.2018.01008 Figure 3 31 9 20 13 73 1
13a 10.4315/0362-028X-61.2.221 Table 3 79 14 19 0 112 52
13b 10.4315/0362-028X-61.2.221 Table 3 89 4 16 3 112 52
14a 10.1016/j.ancr.2014.06.005 Figure 6.3 136 2 2 12 152 7
15a 10.1016/j.saa.2016.09.028 Table 2 3 12 150 0 165 65
15b 10.1016/j.saa.2016.09.028 Table 2 6 9 150 0 165 65
16 10.1021/acs.analchem.7b00426 Table 3 188 0 13 2 203 28
14b 10.1016/j.ancr.2014.06.005 Table 3 253 27 11 59 350 7
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PROOF THAT VARIANCE OF METRIC DISTRIBUTIONS CALCULATED FROM32

SYNTHETIC CONFUSION MATRICES IS SYSTEMATICALLY TOO LARGE33

For a confusion probability matrix (θ) following a Dirichlet distribution with parameter vector α34

θ ∼ Dirichlet(α) (S1)

where α is the sum of the CM and the prior, the expected value and variance are35

E [θi] =
αi

α0
(S2)

Var [θi] =
αi

α0

(
1− αi

α0

1+α0

)
(S3)

where α0 = ∑αk. The expected value and variance of the entry Vi of a confusion matrix generated by a36

multinomial distribution37

V = [VTP,VFN,VTN,VFP]∼Multinomial(θ,N) (S4)

is given by38

E [Vi] = N
αi

α0
= NE [θi] (S5)

Var [Vi] = N(N +α0)
αi

α0

(
1− αi

α0

1+α0

)
= N(N +α0)Var [θi] (S6)

From this, we can calculate the expected value and variance for the proportion of i, Vi
N39

E
[

Vi

N

]
=

1
N

E [Vi] = E [θi] (S7)

Var
[

Vi

N

]
=

1
N2 Var [Vi] =

(
1+

α0

N

)
Var [θi] (S8)

Whereas E
[

Vi
N

]
is independent of N, Var

[
Vi
N

]
is not. In Caelen’s approach, N ≈α0. Therefore, the variance40

will be overestimated by approximately a factor of two. Since the variance of Vi
N are overestimated w.r.t.41

θi, the same holds for V
N w.r.t. θ and metrics calculated on V

N and θ, respectively.42

If N was increased beyond α0, it would converge towards the true variance43

lim
N→∞

Var
[

Vi

N

]
= Var [θi] . (S9)

RULE FOR SAMPLE SIZE DETERMINATION OF METRICS MODELED BY44

A BETA DISTRIBUTION45

For a normal distribution, approximately 95% of the density are within two standard deviations σ from the46

mean. Therefore, the length of the 95% highest posterior density interval will be close to 4σ . According47

to the central limit theorem, beta distributions behave for large sample sizes like normal distributions. The48

standard deviation σ of a beta distribution is given by49

σ =

√
α ·β

(α +β )2(α +β +1)
. (S10)
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where α and β are the counts of observations per class, where the meaning of “class” depends on the50

studied metric. As discussed in the main text, if one is looking at accuracy (ACC), α denotes correct51

classifications (TP + TN) and β denotes wrong classifications (FP + FN). In the case of TPR, α counts52

the number of true positives (TPs) whereas β counts false negatives (FNs).53

To make explicit the dependency on sample size N, we express α as a ·N and β as b ·N with fractions54

a = α

N ,b = β

N of the two classes.55

σ =

√
a ·N ·b ·N

(a ·N +b ·N)2(a ·N +b ·N +1)
(S11)

σ =

√
N2 ·a ·b

N2(a+b)2(N(a+b)+1)
(S12)

σ =

√
a ·b

(a+b)2(N(a+b)+1)
(S13)

Since α +β = N, we know that a+b = 1. Now we can simplify Equation S13 to56

σ =

√
a ·b

N +1
(S14)

For large N, this approximates to57

σ ≈
√

a ·b
N

(S15)

σ is largest if a = b = 0.5.58

σmax ≈
√

0.5 ·0.5
N

(S16)

σmax ≈
0.5√

N
(S17)

In the main text, we have defined metric uncertainty (MU) as the length of the 95% highest posterior59

density interval. Therefore, its upper limit can be approximated as 4σ ≈ 2√
N

. If one cannot reject the60

possibility that a = b = 0.5, one will need 4
MU2 samples to obtain the desired MU.61

SIMULATED CLASSIFIER62

We have simulated a classifier with known properties. φ is 50%, TPR equals 80%, and TNR is 60%.63

Bookmaker informedness (BM) is therefore 40%. We calculate θTP, θFN, θTN, and θFP as described in64

subsection 2.1. Confusion matrices of varying sizes are generated according to a multinomial distribution65

Mult(θ={θTP,θFN,θTN,θFP},N). Posterior distributions of BM are determined as usual and compared to66

the true value and the point estimate from the confusion matrices (Figure S3).67
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Figure S3. Metric uncertainty (MU) at varying sample sizes for a simulated classifier with known
properties
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