
Appendix A. The MDS method derivation. 

Given n points 𝑋 , 𝑋 … 𝑋  in w-dimensional space, where 
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And the Euclidean distance between node 𝑋  and 𝑋  should be 
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Let M be an inner product matrix and 𝑚 𝑋 𝑋 , where 𝑚  is an inner product of 𝑋  and 𝑋 . 

M is a symmetric matrix, therefor 𝑋 𝑋 𝑋 𝑋 . The matric M is shown below: 
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Assuming centered configuration to excluding the effect of coordinate translation: 
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Expanding the formula for Euclidean distance: 
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Then, the formula (1) and (2) are derived: 
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Expanding the formula of Euclidean distance for all 𝑑 : 
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Then, the formula (3) is derived: 
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Solve the following equations by using formula (1)+(2)-(3) 
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Bring 𝑑  into formula (4): 
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Above formula can be translate into simple form, let 𝑏 𝑑 , and then we can denote 𝑏 _, 𝑏_  

and 𝑏__ as following: 
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Therefore, we got following formulas: 

𝑚 𝑏 𝑏 _ 𝑏_ 𝑏__ 
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M is a symmetric matrix, which can be translate into following form: 
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Substituting 𝑈 𝐼 𝐸 directly into 𝑀 𝑈𝐴𝑈: 
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In metric MDS problem, the matrix M can be reconstructed based on the following spectral 

decomposition and Cholesky decomposition:  

𝑀 𝑉𝐶𝑉 𝑉√𝐶√𝐶𝑉 √𝐶𝑉 √𝐶𝑉  

Where V is eigenvectors and C is diagonal matrix of eigenvalue. M is an inner product matrix, 

which can be represented as following form: 
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Therefore, we got new coordinates of all points X by following equation: 
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