Appendix A. The MDS method derivation.

Given n points {X;, X, ... X;,} in w-dimensional space, where
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And the Euclidean distance between node X; and X; should be
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Let M be an inner product matrix and m;; = X 7 Xj, where m;; is an inner product of X; and X;.
M is a symmetric matrix, therefor X{X; = X[ X;. The matric M is shown below:
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Assuming centered configuration to excluding the effect of coordinate translation:
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Expanding the formula for Euclidean distance:
df; = X[ X; + X X; — 2X[ X;
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Then, the formula (1) and (2) are derived:
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Expanding the formula of Euclidean distance for all d;;:
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Then, the formula (3) is derived:
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Solve the following equations by using formula (1)+(2)-(3)
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Bring dl-zj into formula (4):

my; = X[ X;
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Above formula can be translate into simple form, let b;; = dlzj, and then we can denote b; , b

and b  as following:



Therefore, we got following formulas:
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M is a symmetric matrix, which can be translate into following form:
M = UAU

Substituting U = I — %E directly into M = UAU:
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In metric MDS problem, the matrix M can be reconstructed based on the following spectral

decomposition and Cholesky decomposition:
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Where V is eigenvectors and C is diagonal matrix of eigenvalue. M is an inner product matrix,

which can be represented as following form:
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Therefore, we got new coordinates of all points X by following equation:
X =vVC



