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SUPPLEMENTAL RESULTS8

To compare the classification performance of SHIMR with that of CORELS (Angelino et al. (2017)),9

we ran CORELS on the same data set of 14 plasma proteins used to generate the classification results10

by SHIMR (Table S5). We used 13,926 mined antecedents (binary features and conjunctions of binary11

features with minimum support 1 which is equivalent to normalized support of 0.01). The same minimum12

support = 1 (normalized support = 0.01) is used in case of SHIMR. First we ran CORELS with the13

default parameters which try to find optimal rule list by prioritizing several bounds and setting the14

symmetry-aware map flag to one (-p 1). The results are shown in Table S3. The mean and standard15

deviation (SD) results of each performance metric (SN: Sensitivity, SP: Specificity and ACC: Accuracy)16

for five-fold cross validation are reported after running CORELS for ten iterations. This default setting17

causes a heavy pruning of the search space to ensure high efficiency of the algorithm. Hence, with18

this default setting CORELS always ensures to generate minimum sized rule list even after tuning the19

regularization parameter to a small value (- r 0.005). Here one can observe that as we reduced the amount20

of regularization(r=0.03→ r=0.005), the accuracy dropped (acc=0.64→ acc=0.61) due to the effect of21

model overfitting.22

In another setting, we ran CORELS to prioritize by the objective (-c 3) and at the same time we23

excluded the minimum support bounds (-a 1), but used the permutation map bound (-p 1). This allows24

CORELS to refrain from aggressive pruning based on several bounds. The results of this customized25

parameters setting are shown in Table S4. The mean and standard deviation (SD) results of each26

performance metric (SN: Sensitivity, SP: Specificity and ACC: Accuracy) for five-fold cross validation27

are reported after running CORELS for ten iterations. From Table S4, one can see that with this custom28

setting, CORELS captures more number of rules with increased classification accuracy. The best result is29

found for regularization parameter lambda=0.02. However, even with this custom setting, the CORELS30

could not capture more than 7 rules on average due to the upper bound of prefix length which is controlled31

by the current best objective and the value of regularization parameter lambda (for details please refer to32

the ”Section 3.5 Upper bound on prefix length” of CORELS paper, Angelino et al. (2017)). As the lambda33

value is decreased, the classification accuracy drops owing to model overfitting. Now, comparing with the34

classification performance of SHIMR (Table S5), it can be observed that accuracy of SHIMR (acc=0.79)35

is much higher than the best achieved accuracy (acc=0.69, lambda=0.02) obtained by CORELS.36

SUPPLEMENTAL METHODS37

The loss function of SHIMR can be written as

φ(z) = max{0,(1− z)}+ 1−2d
d

max{0,−z}

= (1− z)++
1−2d

d
(−z)+

(1)

In terms of slack variables, the learning objective can be written as

Minimize
ξi,γi

φ(z) = ξi +
1−2d

d
γi,

Subject to ξi ≥ (1− zi) and γi ≥−zi,

and 0.5≥ d ≥ 0

(2)

Now handling the problem of class imbalance by choosing different regularization parameters separately38

for positive (C+) and negative (C−) classes, the primal objective of the above learning problem can be39

written as40
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Primal Objective:

min
a,b,ξ ,γ

m

∑
j=1

(a+j +a−j )+C+
n

∑
{i|yi=+1}

(
ξi +

1−2d
d

γi

)
+C−

n

∑
{i|yi=−1}

(
ξi +

1−2d
d

γi

)
Such that

yi

( m

∑
j=1

(a+j −a−j )Hi j +b
)
+ξi ≥ 1, ∀i = 1, · · · ,n

yi

( m

∑
j=1

(a+j −a−j )Hi j +b
)
+ γi ≥ 0, ∀i = 1 · · · ,n

ξi ≥ 0, γi ≥ 0, ∀ i = 1, · · · ,n
a+j ≥ 0, a−j ≥ 0, ∀ j = 1 · · · ,m

(3)

Hij = hj(xi) is the hypothesis of the ith sample, generated based on only the jth complex feature41

vector. Therefore, considering all the samples and all the feature vectors, the hypothesis matrix H can42

be represented as a n by m matrix, where each column H·j is the output of the jth hypothesis on the43

training data. A typical hypothesis function can be defined as Hi j = 2I( j ⊆ xi)− 1, where, I(·) refers44

to the indicator function. I(·) = 1, if the condition inside holds true and 0 otherwise. Therefore, each45

hypothesis can assume either −1 or +1. Directly solving the primal objective is difficult due to large46

number of parameters. However, the dual objective can be solved efficiently using column generation47

based simplex method.48

49

Dual Objective:

W = max
P,Q

n

∑
i=1

Pi

s.t.

∣∣∣∣∣ n

∑
i=1

(Pi +Qi)yiHi j

∣∣∣∣∣≤ 1, ∀ j = 1, · · · ,m

0≤ Pi ≤C+, ∀i = 1, · · · ,n|yi =+1

0≤ Pi ≤C−, ∀i = 1, · · · ,n|yi =−1

0≤ Qi ≤
1−2d

d
C+, ∀i = 1, · · · ,n|yi =+1

0≤ Qi ≤
1−2d

d
C−, ∀i = 1, · · · ,n|yi =−1

n

∑
i=1

(Pi +Qi)yi = 0

(4)

The column generation based simplex method is an iterative procedure to find a subset Ĥ of the
columns of H by using a base learning algorithm and then solve the restricted master problem until
the optimum solution is reached. In each iteration the goal is to find the most violated constraint
|∑n

i=1(Pi +Qi)yiHi j| ≤ 1 based on the current values of P and Q and add it to the hypothesis set to solve
the restricted master problem. In our case, finding the most violated constraint corresponds to searching for
a complex feature that maximizes the classification gain (g(j)=|∑n

i=1(Pi +Qi)yiHi j|) as given in equation
(5). To find the most violated complex feature (or hypothesis) in every iteration we used weighted LCM
(Linear time Closed itemset Miner). Since our algorithm is a sparse convex linear optimization problem,
global optimum solution is achieved. Our algorithm is summarized in Algorithm 1.

j∗← max
j∈m

∣∣∣∣∣ n

∑
i=1

(Pi +Qi)yiHi j

∣∣∣∣∣ (5)
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Algorithm 1: SHIMR

1: Let, ui = Pi +Qi. Initialize u← ( 1
n , · · · ,

1
n )

2: d = 0.5
3: loop:
4: {j} ← LCM(u,s,X)
5: Find weak hypothesis (or feature set) using equation (5).
6: if(|∑n

i=1(Pi +Qi)yiHi j| ≤ 1) then
7: break . No more hypothesis
8: end if
9: H← H ∪{ j∗} . Update hypothesis

10: (a,b,P,Q)← solve (4) for a fixed value of ’d’.
11: s← max(g+( j),g−( j))
12: end loop
13: Decrease d(0.5≥ d ≥ 0) and repeat step (3).
14: Choose the best ’d∗’ corresponding to the maximum gain,

d∗← argmax
d

g({ j}) = argmax
d
|∑m

j=1 ∑
n
i=1(Pi +Qi)yiHi j|.

15: return (a∗,d∗).
16: end

Derivation of Dual:
The Lagrangian of the primal objective function can be written as

min
a,b,ξ ,γ

L =
m

∑
j=1

(a+j +a−j )+C+
n

∑
{i|yi=+1}

(
ξi +

1−2d
d

γi

)
+C−

n

∑
{i|yi=−1}

(
ξi +

1−2d
d

γi

)

+
n

∑
i=1

Pi

[
1−ξi− yi

( m

∑
j=1

(a+j −a−j )Hi j +b
)]

+
n

∑
i=1

Qi

[
− γi− yi

( m

∑
j=1

(a+j −a−j )Hi j +b
)]

−
n

∑
i=1

Riξi−
n

∑
i=1

Siγi−
m

∑
j=1

T+
j a+j −

m

∑
j=1

T+
j a−j

=
n

∑
i=1

Pi +
m

∑
j=1

a+j

[
1−

n

∑
i=1

(Pi +Qi)yiHi j−T+
j

]
+

m

∑
j=1

a−j

[
1+

n

∑
i=1

(Pi +Qi)yiHi j−T−j

]
−b

n

∑
i=1

(Pi +Qi)yi +
n

∑
{i|yi=+1}

ξi

[
C+−Pi−Ri

]
+

n

∑
{i|yi=−1}

ξi

[
C−−Pi−Ri

]

+
n

∑
{i|yi=+1}

γi

[
1−2d

d
C+−Qi−Si

]
+

n

∑
{i|yi=−1}

γi

[
1−2d

d
C−−Qi−Si

]
To solve the above minimization problem, we take the partial derivatives of L with respect to the

variables a,b,ξ ,γ .

∂L
∂a+j

= 0 ⇒ 1−
n

∑
i=1

(Pi +Qi)yiHi j−T+
j = 0

∂L
∂a−j

= 0 ⇒ 1+
n

∑
i=1

(Pi +Qi)yiHi j−T−j = 0

⇒

∣∣∣∣∣ n

∑
i=1

(Pi +Qi)yiHi j

∣∣∣∣∣≤ 1, [T+
j ,T−j ≥ 0], ∀ j = 1, · · · ,m

∂L
∂b

= 0 ⇒
n

∑
i=1

(Pi +Qi)yi = 0
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∂L
∂ξi

= 0 ⇒ C+−Pi−Ri = 0, ∀i = 1, · · · ,n|yi =+1

and C−−Pi−Ri = 0, ∀i = 1, · · · ,n|yi =−1

⇒ 0≤ Pi ≤C+, [Ri ≥ 0], ∀i = 1, · · · ,n|yi =+1

and 0≤ Pi ≤C−, [Ri ≥ 0], ∀i = 1, · · · ,n|yi =−1

∂L
∂γi

= 0 ⇒ 1−2d
d

C+−Qi−Si = 0, ∀i = 1, · · · ,n|yi =+1

and
1−2d

d
C−−Qi−Si = 0, ∀i = 1, · · · ,n|yi =−1

⇒ 0≤ Qi ≤
1−2d

d
C+, [Si ≥ 0], ∀i = 1, · · · ,n|yi =+1

and 0≤ Qi ≤
1−2d

d
C−, [Si ≥ 0], ∀i = 1, · · · ,n|yi =−1

Therefore, substituting the results of above partial derivatives, the dual objective becomes:50

51

W = max
P,Q

n

∑
i=1

Pi

s.t.

∣∣∣∣∣ n

∑
i=1

(Pi +Qi)yiHi j

∣∣∣∣∣≤ 1, ∀ j = 1, · · · ,m

0≤ Pi ≤C+, ∀i = 1, · · · ,n|yi =+1

0≤ Pi ≤C−, ∀i = 1, · · · ,n|yi =−1

0≤ Qi ≤
1−2d

d
C+, ∀i = 1, · · · ,n|yi =+1

0≤ Qi ≤
1−2d

d
C−, ∀i = 1, · · · ,n|yi =−1

n

∑
i=1

(Pi +Qi)yi = 0
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