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1 Extended abstract 
	  
Metagenomics is an approach for characterizing environmental microbial communities in situ, 

it allows their functional and taxonomic characterization and to recover sequences from 

uncultured taxa. A major aim is to reconstruct (partial) genomes for individual community 

members from metagenomes. For communities of up to medium diversity (e.g. excluding 

environments such as soil), this is often achieved by a combination of sequence assembly and 

binning, where sequences are grouped into ‘bins’ representing taxa of the underlying 

microbial community from which they originate. If sequences can only be binned to higher-

ranking taxa than strain or species, these bins offer less detailed insights into the underlying 

microbial community. Therefore, assignment to low-ranking taxonomic bins is an important 

challenge for binning methods as is scalability to Gb-sized datasets generated with deep 

sequencing techniques. Due to the importance of a match of the training data to the test 

dataset in machine learning for achieving high classification accuracy, one of the best 

available methods for the recovery of species bins from an individual metagenome sample 

(Patil et al., 2011; Pope et al., 2011) is the expert-trained PhyloPythiaS package, where a 

human expert identifies the ‘training’ sequences directly from the sample using marker genes 

and contig coverage information and based on data availability decides on the taxa to 

incorporate into the composition-based taxonomic model. The sequences of a metagenome 

sample are consequently assigned to these or higher ranking taxa by PhyloPythiaS. Because 

of the manual effort involved, this approach does not scale to multiple metagenome samples 

and requires substantial expertise, which researchers who are new to the area may not have. 

Other methods for draft genome reconstruction use multiple related metagenome samples as 

input (Albertsen et al., 2013; Imelfort et al., 2014) or are not distributed as a software package 

(Iverson et al., 2012). 

	  

With these challenges in mind, we have developed PhyloPythiaS+, a successor to our 

previously described method PhyloPythia(S) (McHardy et al., 2007; Patil et al., 2011). The 

newly developed + component performs the work of the human expert. It screens the 

metagenome sample for sequences carrying copies of one of 34 taxonomically informative 

marker genes (Wu & Scott, 2012) (Section 3.3). Identified marker genes are taxonomically 

classified using an extensive reference gene collection. The + component then decides which 

taxa to incorporate into the composition-based taxonomic model based on the amount of 
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available sequence data identified from the metagenome sample, genome and draft genome 

reference sequence collections (Figure 1). 

 

We evaluated PhyloPythiaS+ on metagenome datasets of assembled simulated reads with 

Illumina GAII error profiles generated from a log-normal or uniform abundance distribution 

over 47 strains, and two real metagenome datasets from human gut and cow rumen samples 

(Tables 2–3, S6–S7, Sections 3). PhyloPythiaS+ had substantially higher overall precision 

and recall than the generic PhyloPythiaS model, because of the better match of the 

composition-based taxonomic model to the sequenced microbial community (Figs 2 and S1–

S4, Section 3.9). It performed similarly well to an expert-trained PhyloPythia model without 

requiring manual effort (Figure 3, Table 4). Comparisons to sequence-similarity-based 

methods such as the popular MEtaGenome ANalyser (MEGAN, version 4) (Huson et al., 

2011) and our own taxator-tk (Dröge, Gregor & McHardy, 2014) software showed a 

substantial increase in correct assignments to low taxonomic ranks for PhyloPythiaS+, while 

maintaining acceptably low error rates (Figs 2 and S1–S5). The largest improvement in 

comparison to the other methods was observed for taxa from deep-branching lineages, such as 

from genera or families without sequenced genomes but with marker gene data for the strain 

or species available (Fig. S1–S4, Table 1: Test Scenarios 2–4). This is currently the case for 

39,201 species represented in our 16S reference gene collection.	  

	  

PhyloPythiaS+ includes a new k-mer counting algorithm based on the Rabin Karp string 

matching algorithm. The algorithm accelerated k-mer counting 100-fold and reduced the 

overall execution time of the software by a factor of three in comparison to the original 

PhyloPythiaS release (Figure 4). We found that 500 and 360 Mb/hour could be assigned by 

PhyloPythiaS+ on a single CPU core of a standard compute server and a laptop, respectively. 

Our software thus allows to analyze Gb-sized metagenomes with inexpensive hardware, and 

to recover species or genera-level bins with low error rates in a fully automated fashion. 

PhyloPythiaS+ is distributed in a virtual machine and is easy to install for all common 

operating systems. 
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2 The evaluation of the k-mer counting algorithms 
	  
The	   main	   advantage	   of	   our	   method	   is	   that	   we	   do	   not	   use	   additional	   helper	   data	  

structures	  such	  as	  suffix	   trees,	   since	  we	  work	  directly	  with	  arrays	   that	  represent	  DNA	  

sequences.	  The	  only	   larger	  data	  structure	   that	   is	  necessary	   is	  a	  one-‐dimensional	  array	  

that	   contains	   the	   counts	   of	   individual	   k-‐mers.	   The	   algorithm	   also	   processes	   one	  

sequence	   at	   a	   time	   and	   thus	   there	   is	   no	   need	   to	   store	   all	   the	   sequences	   in	   the	  main	  

memory,	  which	  makes	  the	  algorithm	  memory-‐efficient	  (e.g.	  less	  than	  one	  MB	  of	  the	  main	  

memory	  in	  the	  scenario	  used	  in	  PPS+).	  To	  compute	  the	  next	  index	  from	  a	  previous	  index,	  

we	  need	  to	  perform	  only	  two	  bit	  shift	  operations,	  one	  addition,	  one	  subtraction	  and	  one	  

read	  operation	  (of	  a!!!).	  This	  ensures	  complexity	  O(n),	  where	  n	  is	  the	  length	  of	  the	  DNA	  

sequence	  that	  is	  being	  considered.	  

	  

Our	  k-‐mer	  counting	  algorithm	  was	  compared	  to	  Jellyfish	  (version	  1.1.1),	  Jellyfish	  (version	  

2.2)	   (Marcais	   &	   Kingsford,	   2011)	   and	  KAnalyze	   (version	   0.9.7)	   (Audano	   &	   Vannberg,	  

2014)	  (Table	  S1).	  All	  programs	  were	  run	  for	  k-‐mers	  $𝑘 ∈ [4,… , 9].	  

	  

	  Jellyfish	  (version	  1.1.1)	  was	  run	  with	  default	  parameters	  as:	  	  	  	  

jellyfish	  count	  -‐m	  $k	  -‐c	  3	  -‐s	  10000000	  -‐t	  1	  -‐-‐both-‐strands	  -‐o	  OUTPUT.txt	  INPUT.fasta	  

	  

Jellyfish	   (version	   2.2.)	   was	   run	   with	   the	   following	   parameters,	   as	   this	   yielded	   better	  

runtimes	  as	  the	  default	  parameters:	  

jellyfish	  count	  -‐m	  $k	  -‐c	  16	  -‐s	  1000000	  -‐-‐both-‐strands	  -‐o	  OUTPUT.txt	  INPUT.fasta	  

	  

KAnalyze	  (version	  0.9.7)	  was	  run	  as:	  

count	  -‐k	  $k	  -‐d	  1	  -‐f	  fasta	  -‐r	  -‐o	  OUTPUT.txt	  INPUT.fasta	  

	  

Our	  k-‐mer	  counting	  algorithm	  was	  run	  as:	  

fasta2kmers	  -‐i	  INPUT.fasta	  -‐f	  OUTPUT.txt	  -‐j	  $k	  -‐k	  $k	  

However,	  for	  the	  simultaneous	  counting	  of	  k-‐mers	  4,	  5,	  and	  6,	  the	  program	  was	  run	  as:	  	  

fasta2kmers	  -‐i	  INPUT.fasta	  -‐f	  OUTPUT.txt	  -‐j	  4	  -‐k	  6	  
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3 Benchmark settings 
 

3.1 Simulated datasets details and generation 
	  
Our simulated mock community comprised 47 strains from 45 different species (37 different 

genera) defined at all major taxonomic ranks, i.e. at superkingdom, phylum, class, order, 

family, genus and species rank. Two simulated datasets were generated with different 

abundance profiles, one with a uniform distribution and one with a log-normal distribution 

(µ=1, σ=2). 

 

A custom read simulator was used which utilizes position- and nucleotide-specific 

substitution patterns derived from experimental datasets. This allowed us to generate reads 

with more realistic error profiles than we would with read simulators such as pIRS (Hu et al., 

2012), ART (Huang et al., 2012) or MetaSim (Richter et al., 2007). Furthermore, we could 

thus specify and test different species abundance distributions for the microbial community 

and generate very large datasets due to the parallelization of the simulation program. We did 

not use the simulated datasets from Mavromatis et al. (Mavromatis et al., 2007), as these are 

substantially smaller than the current metagenome datasets. 

 

Both simulated datasets were generated based on Illumina GAII error profiles where the 

standard library preparation method was used. The insert size distribution was also based on 

the experimental dataset. For each dataset, 15 million paired-end reads of 90 bp were 

generated with an average insert size of 291 bp. The first 10 bp of the 100 bp reads in the 

experimental dataset were trimmed because of fluctuations in the nucleotide distributions at 

the starting positions, which indicated partial remains of the barcode sequence. The read 

simulator produces output in FASTA format, which was converted into a pseudo-FASTQ 

format for the downstream analysis with uniformly high quality scores. The reads were then 

assembled with Metassembler (Debruijn, 2014) using Velvet (Zerbino & Birney, 2008), run 

with different k-mer sizes ranging between 19 and 75, and were subsequently merged with 

Minimus2 (Treangen et al., 2011). This assembly procedure resulted in a larger assembled 

dataset than assembly with SOAPdenovo2 (Luo et al., 2012), Metavelvet (Namiki et al., 2012) 

or Newbler (Roche, 2014). Contig sequences longer than 1000 bp were considered further. 

The contigs were subsequently mapped with BLAST (Camacho et al., 2009) onto the reference 

genomes to recover their taxonomic identifiers.  
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Properties of the simulated datasets: 

Distribution Contigs Mb 

Uniform 14,393 137 

Log-normal 13,284 66 

 

List of strains used to generate simulated datasets: 

Strain name Accession number 

Acidobacterium capsulatum ATCC 51196  CP001472.1 

Akkermansia muciniphila ATCC BAA-835  CP001071.1 

Archaeoglobus fulgidus DSM 4304  AE000782.1 

Bacteroides thetaiotaomicron VPI-5482  AE015928.1 

Bacteroides vulgatus ATCC 8482  CP000139.1 

Bordetella bronchiseptica RB50  BX470250.1 

Caldicellulosiruptor bescii DSM 6725  CP001393.1 

Caldicellulosiruptor saccharolyticus DSM 8903  CP000679.1 

Chlorobium limicola DSM 245  CP001097.1 

Chlorobium phaeobacteroides DSM 266  CP000492.1 

Chlorobium phaeovibrioides DSM 265  CP000607.1 

Chlorobium tepidum TLS  AE006470.1 

Chloroflexus aurantiacus J-10-fl  CP000909.1 

Clostridium thermocellum ATCC 27405  CP000568.1 

Deinococcus radiodurans R1 

 AE001825.1   

 AE000513.1 

Dickeya dadantii 3937  CP002038.1 

Dictyoglomus turgidum DSM 6724  CP001251.1 

Enterococcus faecalis V583  AE016830.1 

Fusobacterium nucleatum subsp. nucleatum ATCC 25586  AE009951.2 

Gemmatimonas aurantiaca T-27  AP009153.1 

Herpetosiphon aurantiacus DSM 785  CP000875.1 

Hydrogenobaculum sp. Y04AAS1  CP001130.1 

Ignicoccus hospitalis KIN4/I  CP000816.1 

Methanocaldococcus jannaschii DSM 2661  L77117.1 

Methanococcus maripaludis C5  CP000609.1 

Methanococcus maripaludis S2  BX950229.1 

Nitrosomonas europaea ATCC 19718  AL954747.1 

Pelodictyon phaeoclathratiforme BU-1  CP001110.1 

Persephonella marina EX-H1  CP001230.1 
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Porphyromonas gingivalis ATCC 33277  AP009380.1 

Pyrobaculum aerophilum str. IM2  AE009441.1 

Pyrobaculum calidifontis JCM 11548  CP000561.1 

Rhodopirellula baltica SH 1  BX119912.1 

Ruegeria pomeroyi DSS-3  CP000031.1 

Salinispora arenicola CNS-205  CP000850.1 

Salinispora tropica CNB-440  CP000667.1 

Shewanella baltica OS185  CP000753.1 

Shewanella baltica OS223  CP001252.1 

Sulfolobus tokodaii str. 7  BA000023.2 

Sulfurihydrogenibium sp. YO3AOP1  CP001080.1 

Thermoanaerobacter pseudethanolicus ATCC 33223  CP000924.1 

Thermotoga neapolitana DSM 4359  CP000916.1 

Thermotoga petrophila RKU-1  CP000702.1 

Thermotoga sp. RQ2  CP000969.1 

Thermus thermophilus HB8  AP008226.1 

Treponema denticola ATCC 35405  AE017226.1 

Zymomonas mobilis subsp. mobilis ZM4  AE008692.2 

 

3.2 Real datasets 
	  
For the evaluation using real metagenome samples from actual microbial communities, we 

used two metagenome samples from the guts of obese human twins (Turnbaugh et al., 2010) 

and the dataset of a lignocellulose-degrading community from within a cow rumen (Hess et 

al., 2011). 

 

3.2.1 Human gut dataset 
	  
The contigs from both samples, TS28 and TS29, were pooled. In the same way, scaffolds 

from TS28 and TS29 were pooled. All scaffolds were longer than 1000 bp. The dataset was 

generated with a 454 GS FLX Titanium sequencer. 

 

Properties of the real human gut dataset: 

FASTA file Sequences Mb 

Contigs 153,564 255.2 

Contigs ≥ 1000 bp 63,399 187.1 

Scaffolds 18,172 164.4 



Rapid Metagenome Binning to Low Taxonomic Ranks	  
	  

	   8	  

 

3.2.2 Cow rumen dataset 
 

The same dataset as in Dröge et al. (Dröge, Gregor & McHardy, 2014) was used. As the 

scaffolds of the assembled contigs were of lower quality than the contigs, scaffolds were split 

into contigs at all gaps consisting of at least 200 “N” characters. We subsequently split the 

resulting contigs of at least 10 kb into ‘chunks’ of 2000 bp, resulting in at least five chunks 

for each contig. The dataset was generated with Illumina GAIIx and Illumina HiSeq 2000 

sequencers. 

 

Properties of the real chunked cow rumen dataset: 

FASTA file Sequences Mb 

Contigs 159,263 318.5 

Scaffolds 12,192 369.4 

 

3.3 Reference data 
	  
The NCBI taxonomy (Federhen, 2011), downloaded on 11/22/2012, was used as the reference 

taxonomy. The following reference databases from the NCBI were pooled to generate our 

reference sequence (RS) collection: NCBI genomes (downloaded on 11/22/2012), NCBI draft 

bacterial genomes (downloaded on 11/22/2012), the NCBI human microbiome project 

(downloaded on 10/16/2012) and NCBI RefSeq (Sayers et al., 2008) microbial version 56. 

Subsequently, duplicate sequences were removed to make the RS collection non-redundant. 

This RS collection contained sequences for 841 different genera, 2543 different species and 

4516 different strains. The total size of the RS collection was 16 Gb. 

 

In the marker gene (MG) analysis, the following MG sequence collections and HMM profiles 

were used: For the 16S and 23S MG analysis, bacterial and archaeal reference sequences from 

the SILVA database (Pruesse et al., 2007) were retrieved (version 111, released on 

7/27/2012). The corresponding taxonomic identifiers were mapped onto the NCBI taxonomy. 

The resulting collection contained 126,742 sequences for 39,201 different species (199 Mb in 

total). 
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For the 5S MG analysis, MG sequences were retrieved from NCBI on 2/8/2013 via Maglott et 

al. (Maglott et al., 2004); the collection contained 12,424 sequences for 1278 species (5.8 Mb 

in total).  

 

In addition, reference sequences for the following 31 bacterial marker gene families were 

retrieved from NCBI on 2/8/2013 via Maglott et al. (Maglott et al., 2004): dnaG, infC, pgk, 

rpoB, tsf, frr, nusA, pyrG, rpmA, smpB, rpsC, rpsI, rpsK, rpsS, rpsB, rpsE, rpsJ, rpsM, rplA, 

rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS and rplT. This MG collection 

contained 63,530 sequences for 1380 different species (52 Mb in total). 

 

HMM profiles for the 16S, 23S, and 5S marker genes were retrieved from Huang et al. 

(Huang, Gilna & Li, 2009) HMM profiles trained on the protein families for the 31 bacterial 

MG were retrieved from Wu & Scott. (Wu & Scott, 2012) 
 

3.4 Test environments 
	  
The benchmarks were run on different hardware configurations. When measuring runtime, 

Hardware Configurations 1 or 2 were used if not stated otherwise. 

 

1. Server: AMD Opteron Processor 6386 SE, 2.8 GHz; 512 GB RAM; local SSD 

storage; Debian GNU/Linux 7.1. 

2. Laptop: Intel i5 M520 2.4 GHz; 4 GB RAM; 7200 rpm laptop storage; Windows 7 

64-bit, Ubuntu 12.04 64-bit; Oracle VirtualBox 4.2.12: 2 GB RAM, 8 GB swap, 140 

GB HDD, Ubuntu 12.04 64-bit. 

3. Server: Intel Xeon CPU X5660, 2.8 GHz; 73 GB RAM; network storage; Debian 

GNU/Linux 6.0.7. 

4. Server: AMD Opteron Processor 6174, 2.2 GHz; 100 GB RAM; local storage; Debian 

GNU/Linux 6.0.7. 

5. Laptop: Intel i5 2557M 1.7 GHz; 4GB RAM, SSD storage, OS X 10.7. 

 

3.5 MEGAN4 configuration 
	  
NCBI BLAST (version 2.2.27+) was used to generate alignments (Section 3.4, HW 

Configuration 1), using 15 threads; the tabbed output format (7) was used. MEGAN4 (4.70.4) 
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(Huson et al., 2011) was used for taxonomic assignment on a laptop (Section 3.4, HW 

Configuration 2) using the following settings: minsupport=5, minscore=2, toppercent=20, 

mincomplexity=0.44. The runtime of MEGAN4 was just a few seconds, as the LCA algorithm 

it uses is simple and fast. Construction of the BLAST database from the reference sequence 

collection required 6 h 55 m, with the size of the database being 4 GB. To simulate the new 

strain, species and genus scenarios (Table 1: Test Scenarios 5, 8 and 9), the corresponding 

alignments of sequences present in both the test and reference data were removed from the 

BLAST output. 

 
Runtimes of BLAST for the different metagenome datasets: 

Dataset Runtime 

Simulated uniform 52 m 11 s 

Simulated log-normal 19 m 18 s 

Chunked cow rumen (contigs) 43 m 29 s 

Chunked cow rumen (scaffolds) 42 m 56 s 

Human gut (contigs) 44 m 05 s 

Human gut (scaffolds) 25 m 37 s 

 

3.6 Taxator-tk configuration 
	  
LAST (version 287) (Frith, Hamada & Horton, 2010) was used to produce alignments using 

one thread, output format 1 (maf). Constructing the LAST database for the reference sequence 

database required 81 h 29 min. The size of the resulting database was 91 Gb (Section 3.4, HW 

Configurations 1 and 4).  

Taxator-tk (Dröge, Gregor & McHardy, 2014) was then employed to process metagenome 

sequence fragments using 15 threads and to produce taxonomic assignments using one thread 

for the input sequences (Section 3.4, HW Configuration 4). For the simulated datasets, the 

corresponding alignments of sequences present in both the test and reference data were 

removed to simulate the new strain, species and genus scenarios (Table 1: Test Scenarios 5, 8 

and 9). 

 

Commands 

LAST command: 

lastal	  -‐f	  1	  lastDb	  query.fna	  |	  lastmaf2alignments.py	  |	  sort	  |	  gzip	  >	  alignments.gz	  
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BLAST command: 

blastn	  -‐db	  blastDb	  -‐query	  query.fna	  -‐num_threads	  15	  -‐outfmt	  '6	  qseqid	  qstart	  qend	  qlen	  sseqid	  sstart	  

send	  bitscore	  evalue	  nident	  length'	  -‐out	  alignments.blast	  

 

Produce fragments: 

cat	  alignments.blast	  |	  alignments-‐filter	  -‐b	  50	  |	  taxator	  -‐a	  rpa	  -‐q	  query.fna	  -‐f	  ref.fna	  -‐g	  ref_all.tax	  -‐p	  15	  

|	  sort	  >	  fragments.gff3 

 
Produce assignments: 

cat	  fragments.gff3	  |	  binner	  >	  assignments.tax	  	  

 

Runtimes of LAST for the different metagenome datasets: 

Dataset Runtime (HC 1) Runtime (HC 4) 

Simulated uniform 9 h 56 m 27 s 12 h 10 m 57 s 

Simulated log-normal 5 h 02 m 03 s 6 h 16 m 02 s 

Chunked cow rumen (contigs) 12 h 23 m 29 s 15 h 39 m 24 s 

Chunked cow rumen (scaffolds) 15 h 15 m 20 s 19 h 15 m 12 s 

Human gut (contigs) 10 h 29 m 12 s 13 h 48 m 57 s 

Human gut (scaffolds) 7 h 41 m 05 s 10 h 16 m 20 s 

 

Runtimes of taxator-tk for different metagenome datasets: 

Dataset Process fragments Bin 

Simulated uniform 36 h 54 m 02 s 17.4 s 

Simulated uniform (new strain) 8 h 53 m 20 s 18.2 s 

Simulated uniform (new species) 4 h 44 m 27 s 18.1 s 

Simulated uniform (new genus) 54 m 39 s 17.5 s 

Simulated log-normal 25 h 25 m 49 s 16.8 s 

Simulated log-normal (new strain) 3 h 09 m 16 s 17.9 s 

Simulated log-normal (new species) 2 h 06 m 29 s 17.4 s 

Simulated log-normal (new genus) 36 m 34 s 16.9 s 

Chunked cow rumen (contigs) 3 h 03 m 07 s 24.9 s 

Chunked cow rumen (scaffolds) 46 m 59 s 19.2 s 

Human gut (contigs) 6 h 38 m 56 s 22.5 s 

Human gut (scaffolds) 2 h 47 m 50 s 18.6 s 
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3.7 PPS+ and PPS generic model configurations 
	  
PPS+ benchmarks were run using one thread (Section 3.4, HW Configuration 3). The PPS+ 

configuration file contained in the VM distribution specifies the default values of the 

parameters used (configuration file name: config_ppsp_vm_refNCBI20121122_example.cfg). 

 

PPS was run using one thread (Section 3.4, HW Configuration 3). PPS was trained to include 

the 200 most abundant genera in the reference sequences (Section 3.3). The PPS models were 

built down to the genus rank, as this is the default setting of PPS. 

3.8 Kraken configuration 

	  

Kraken	   (version	  0.10.5)	   and	   its	   dependency	   Jellyfish	   (1.1.11)	  were	   installed	   on	   a	   high-‐

performance	   server	   (Section 3.4, HW Configuration 1). Four Kraken databases were built 

using our custom reference data collection (Section 3.3). For the real datasets (Section 3.2) 

and the simulated datasets (Sections 3.1) – for the first scenario (Table 1: Test Scenarios 1), 

kraken_db_all database was built from all the reference sequence data (Section 3.3). To 

simulate the new strain, new species and new genus scenarios (Table 1: Test Scenarios 5, 8 

and 9), we generated corresponding Kraken databases kraken_db_new_strain, 

kraken_db_new_species and kraken_db_new_genus. For instance, kraken_db_new_strain 

database does not contain the strains from which the simulated datasets were generated. When 

we use the kraken_db_new_strain database, we simulate the scenario in which all strains of a 

metagenome sample are unknown, i.e. (Table 1: Test Scenarios 5). This approach ensures that 

all the methods in comparison use the same reference data for the classification in respective 

test scenarios (Table 1). For instance, to create the Kraken kraken_db_all database, we 

performed the following steps: 

 

1. Create directory for_kraken_all containing all the reference sequences that are used to 

build a custom reference database. Note that the sequence names in the FASTA files 

have to be in the format specified in the Kraken documentation. 

2. Create empty directory kraken_db_all for the generated database.  

3. Inside directory kraken_db_all, create directory taxonomy and place there the 

following NCBI taxonomy files: gi_taxid_nucl.dmp,  names.dmp,  nodes.dmp. 

4. Switch to directory for_kraken_all and run the following command to add all the 

reference sequences to the Kraken database kraken_db_all: 
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for	  file	  in	  *.fna;	  do	  kraken-‐build	  -‐-‐add-‐to-‐library	  $file	  -‐-‐db	  kraken_db_all	  -‐-‐threads	  40;	  

done	  

5. Set the PATH variable to contain also the installation bin directory of Jellyfish. 

6. Build the Kraken kraken_db_all database: 

kraken-‐build	  -‐-‐build	  -‐-‐db	  kraken_db_all	  -‐-‐threads	  40	  

7. Perform taxonomic assignment of contigs contained in FASTA file contigs.fna and 

store the results in contigs_lab.csv: 

kraken	  -‐-‐preload	  -‐-‐db	  kraken_db_all	  -‐-‐threads	  40	  contigs.fna	  >	  contigs_lab.csv	  

3.9 Assignment quality measures 
 

3.9.1 Micro-averaged precision and recall 
	  
To assess the quality of the taxonomic assignments for the simulated datasets, we evaluated 

the micro-averaged precision (sometimes also known as the micro-averaged specificity) and 

the micro-averaged recall (sometimes also known as the micro-averaged sensitivity) of 

taxonomic assignments for the different methods, as detailed below. Both measures were 

calculated based on the number of assigned bp for each taxonomic rank, instead of per 

assigned fragment, as the correct assignment of larger sequence fragments is more beneficial 

for the retrieval of “draft genome” bins than for short fragments.  

 

The micro-averaged precision was defined as: 

𝑝! =   
!"!

!!!
!

!!!

!"!
!  !  !"!

!!!
!

!!!

; 

 

and micro-averaged recall was defined as: 

 𝑟! =    !"!
!!!!

!!!

  !"!
!!  !"!

!!!
!

!!!

, 

 

where l denotes the taxonomic rank evaluated, such as species, genus, family, order, class, 

phylum or superkingdom; (TPi
l + FNi

l) is the number of bp from taxon i; (TPi
l + FPi

l) is the 

number of bp assigned to taxon i and TPi
l is the number of bp correctly assigned to taxon i. 

The precision is micro-averaged over all bins Np
l to which a sequence fragment was assigned 

and the recall is micro-averaged over all Nr
l taxa present in the simulated dataset at rank l. 
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The micro-averaged precision is the fraction of correctly assigned bp from all predictions for 

a particular taxonomic rank and represents a measure of confidence for the predictions of a 

method. The micro-averaged recall is the fraction of correct assignments of the test sample for 

a particular taxonomic rank. To avoid an uninformative increase of the micro-averaged recall 

by having unassigned sequences, which belong to no taxon at a given rank, our test datasets 

were generated from sequenced isolates with taxa defined at all major taxonomic ranks. Note 

that for simplification, we denoted the micro-averaged precision as ‘precision’ and the micro-

averaged recall as ‘recall’ in this document. 

3.9.2 Taxonomic assignment correction for assessment of bin quality 
 

Often, a species within a metagenome sample is not directly represented among the reference 

sequences; however, this respective species is closely related to a species for which there is 

enough data in the RS or MG collections. In this case, the species from the sample may be 

consistently assigned to the closely related species. This error does not impact draft genome 

reconstruction in terms of reconstructing a bin as a set of sequences originating from the same 

sample population, but the assigned identifier itself is incorrect. To quantify the binning 

performance independently from taxonomic label assignment, we applied a correction 

procedure and re-computed the corrected precision and recall values: If most of the sequences 

(i.e. at least (correctLabelThreshold * 100)% bp) from one taxon were consistently assigned 

to a false identifier, their identifiers were changed to the correct one, and precision and recall 

were re-computed. The default setting for the configuration parameter correctLabelThreshold 

was 0.9. The precision and recall were always calculated with and without this correction.  

 

3.10 Scaffold-contig consistency definitions 
	  

3.10.1 Comparison of scaffold and contig assignments 
	  
To assess the consistency of scaffold and contig assignments for a metagenome sample, we 

define the following measures at all major taxonomic ranks (i.e. superkingdom, phylum, 

class, order, family, genus and species). The idea of these measures is that each contig is 

assigned up to two taxonomic identifiers: one from the contig assignment and the other from 

the scaffold assignment. These two taxonomic labels are then compared. If we considered 

contigs with two identical taxonomic labels to be correctly assigned and contigs with two 
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distinct taxonomic labels to be as incorrectly assigned, then “% agreement” resembles a 

measure of precision (i.e. correctly assigned bp ÷ correctly and incorrectly assigned bp), while 

“kb agreement” indicates recall (i.e. the total number of correctly assigned bp). 

 

Let us assume that a metagenome sample consists of m scaffolds 𝑠!,… , 𝑠!!! and n contigs 

𝑐!,… , 𝑐!!!, where scaffold 𝑠! consists of 𝑛! contigs 𝑐!(!),… , 𝑐!(!!  !  !). Let function l denotes 

the taxonomic identifier of a contig or a scaffold at the taxonomic rank being considered, i.e. 

𝑙(𝑐!) is a label of the ith contig and 𝑙(𝑠!) is the label of the kth scaffold. The lengths of contig 

𝑐! and scaffold 𝑠! are denoted by 𝑙𝑒𝑛(𝑐!) and 𝑙𝑒𝑛(𝑠!), respectively. Now, we can define the 

consistency measures ‘kb agreement’ (Def. 0a) and ‘% agreement’ (Def. 0b) as: 

 

0a) ‘kb agreement’: 

𝑎!" =    𝑙𝑒𝑛(𝑐!)!  ∈ ! ! ,…,! !!!! ,      ! !!   !"#  ! !!   !"#$%"!,      ! !! !! !!     
!!!
!!! ; 

0b) ‘% agreement’: 

𝑎% =    !!"
!"#(!!)!!!

!!!
. 

 

In other words, in ‘kb agreement’ (Def. 0a), the index k goes over all scaffolds, the index j 

goes over all contigs within a corresponding scaffold. If both labels of scaffold k and contig j 

are defined and assigned to the same taxa, then the length of contig j is added to the overall 

sum of lengths of consistently assigned contigs. 

    

3.10.2 Taxonomic scaffold-contig assignment consistency 
	  
To provide more detailed insights into the evaluation of the binning results of real 

metagenome datasets, we introduced new detailed measures of the scaffold-contig 

consistency (described below). 

 

We assume that all contigs c0,…,cn-1 of a particular scaffold originated from the same 

organism and thus should be assigned the same taxonomic identifier. Let us denote an 

identifier of contig ci as li. Each path pi from the root of the taxonomy to identifier li 

represents a hypothesis about the identifier of the whole scaffold. We base our definition on 

the assumption that the most representative identifier of a scaffold corresponds to the path to 

which the identifiers of all taxonomically assigned contigs that do not lie on the path have the 
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shortest collective weighted distance. Note that we do not have to consider the path pi from 

the root to li as a potential taxonomic identifier if there is a path pj from the root to the 

taxonomic identifier lj of another contig cj for which li lies on pj and i ≠ j, as the shortest 

collective weighted distance of all contigs of a scaffold to path pj is always lower than the 

collective weighted distance to path pi. Let us denote the length of contig ci as |ci| (counted in 

bp). Let us define the weight of contig ci as 𝑤! =
|!!|
|!!|!!!

!!!
. Let tax_dist(li, pj) be the taxonomic 

distance (i.e. the number of edges in the reference taxonomy) between identifier li and the 

closest identifier lk that lies on path pj (i.e. this is simply the distance between identifier lk and 

path pj). The weighted distance from path pj to all other identifiers li is defined as: 𝑑𝑖𝑠𝑡 𝑝! =

   𝑤! ∗ 𝑡𝑎𝑥_𝑑𝑖𝑠𝑡(𝑙! ,𝑝!)!!!
!!! . Let pk be the path with the minimum weighted distance (dist) 

from all other identifiers. All contigs ci that lie on path pk are considered to be consistently 

assigned within the scaffold; all contigs cj that do not lie on the path are considered to be 

inconsistent. The consistency of the scaffold is then defined as: 

 

1) Proportion of consistently assigned contigs: 
| !!     !!  !"  !!}|
| !!     !!!…!!!}|

; 

 

2) Proportion of consistent contigs in bp: 
|!!|!     !!  !"  !!}

|!!|!!!
!!!

; 

 

3) Average distance to the path: 
!"#_!"#$(!!,      !!)

!!!
!!!

!
; 

 

4) Average weighted distance to the path: 

𝑑𝑖𝑠𝑡(𝑝!); 

 

5) Average distance to the scaffold identifier: 
!"#_!"#$(!!,      !!)

!!!
!!!

!
; 

 
6) Average weighted distance to the scaffold identifier: 

𝑤! ∗ 𝑡𝑎𝑥_𝑑𝑖𝑠𝑡(𝑙! , 𝑙!)!!!
!!! . 



Rapid Metagenome Binning to Low Taxonomic Ranks	  
	  

	   17	  

 

The first definition is the coarsest measure and the last is the finest for taxonomic assignment 

consistency.  

 

We can also group the scaffolds using lk and compute the measures for individual taxa. 

However, these groups do not correspond to the assigned bins, as a scaffold’s taxonomic 

identifier does not always correspond to the taxonomic identifier of the lowest assigned contig 

of that scaffold. 

 

The consistency of the entire sample can also be defined as the (weighted) average of these 

measures. Let s0, …, sm-1	  be	  all scaffolds in the sample, where if a contig is not assigned to a 

scaffold, an artificial scaffold that contains this one contig is created. We can also consider 

only scaffolds that contain only a certain number of contigs or those that are at least x bp long, 

for example. 

 

Thus if we compute these measures for two different binning methods, we can assess the 

consistency of the respective taxonomic assignments at six different levels. However, be 

aware that it is recommended to also look at the number of bp assigned at different taxonomic 

ranks by each method, since the consistency of a method that assigns everything to the root of 

the taxonomy seems to be perfect according to these scaffold-contig consistency definitions. 

 

4 Detailed results for the simulated datasets 
	  
This section provides a detailed description of the results of the benchmarks with simulated 

datasets in nine different test scenarios (Table 1). PPS+, PPS generic model, MEGAN4 and 

taxator-tk were compared to each other in terms of precision and recall (Section 3.9). The 

nine different scenarios evaluate assignment performances for different evolutionary distances 

between the sample sequences and the available reference sequences. For instance, in (Table 

1: Test Scenario 6), all sequences from the species included in the simulated communities 

were excluded from the reference sequence collection and all sequences of the same strains 

were excluded from the marker gene sequence collection. 
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4.1 Uniform dataset 
	  
For PPS+, a drop in both precision and recall was only observed for low-level taxonomic 

assignments when removing reference data from the same strain, species or genera from the 

reference sequence (RS) collection and also from the MG collection (Table 1: Test Scenarios 

2, 3 and 4 versus Test Scenarios 5, 8 and 9), which demonstrated that for microbial 

community members that have been profiled by 16S sequencing but which have no sequenced 

genomes available, PPS+ can perform highly accurate low-level taxonomic assignments, 

unlike from all other tested methods (Figs S1a and S1c–S1f). 

 

In more detail, PPS+ showed substantially higher precision and recall than the PPS generic 

model for all test scenarios (Fig. S1a–S1d, Table 1: Test Scenarios 1–9). PPS+ also showed 

substantially higher precision and recall than MEGAN4 for the assignment of sequences from 

new strains, species and genera (Figs S1a and S1e, Table 1: Test Scenarios 2–4), when these 

were represented in the reference collection as marker genes. An exception was the unrealistic 

case, when all of the simulated metagenome data were available in the reference sequence 

collection (Table 1: Test Scenario 1). 

 

Simulating the situation where the microbial community members have not been observed in 

profiling before, we removed these strains from the MG collection and the reference 

sequences (RS) for the strains, species or genera of the simulated metagenome datasets (Table 

1: Test Scenarios 5, 6 and 7). We removed more data from the reference sequence (RS) 

collection than from the MG collection to simulate the situation where a closer relative can be 

found among the marker genes and a more distant one among the sequenced genomes, as 

many taxa have been profiled but have not had their genomes sequenced. PPS+ assignment 

quality (both precision and recall) dropped in comparison to the situation where strains have 

been profiled (Fig. S1a,b). However, it was still better than MEGAN4 (Figure S1e) for all 

ranks, except for the lowest-level assignment (species), when the strains were removed from 

the RS collection only (Table 1: Test Scenario 5). As the removal of strain-level data in many 

cases also removed all data for the respective species from the RS collection, both methods 

made false assignments to related species in these scenarios.  

 

When we removed even more reference data from the MG collection to simulate the binning 

of microbial community members for which no members of the same species or genera have 
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been profiled or sequenced before (Figure S1c, Table 1: Test Scenarios 8 and 9), the precision 

for ranks above remained high (Table 1: Test Scenario 8, genus rank: 88.5%; Test Scenario 9, 

family rank: 73.2%), while the recall dropped moderately. However, PPS+’s assignments 

were still substantially better than those of MEGAN4 for these ranks (Figure S1e, Test 

Scenario 8, genus rank: 81.6%; Test Scenario 9, family rank: 58.9%). For lower ranks for 

which all reference data were removed, both methods had low precision and recall due to 

false positive assignments. 

 

Taxator-tk showed a lower recall than PPS+ across all tested scenarios (Figs S1a–S1c and 

S1f), but showed outstanding precision for the order rank and above (close to 100%), and 

never dropped below 89% at lower ranks. Thus this method could also be used for taxonomic 

profiling to determine the presence of particular taxa reliably in a given sample. 

 

4.2 Log-normal dataset 
	  
Even though the log-normal dataset was more challenging for all the tools, this benchmark 

yielded similar conclusions as the benchmark with the uniform dataset.  

 

PPS+ performed substantially better than the generic PPS model in terms of the precision and 

recall in all test scenarios (Fig. S3a–S3d, Table 1: Test Scenarios 1–9).  

 

At low taxonomic ranks (i.e. family, genus and species), PPS+ outperformed MEGAN4 in 

terms of precision and recall in almost all test scenarios (Figs S3a–S3c and S3e, Table 1: Test 

Scenarios 2–9), except at the family rank in the ‘new strain’ scenario, where MEGAN4 had 

slightly better precision (96.7%) than PPS+ (94.8%) (Figs S3b, S3c and S3e, Table 1: Test 

Scenario 5). In the unrealistic case, where all reference data remained in the reference (RS 

and MG) collections, MEGAN4 had better precision and recall (Figs S3a–S3c and S3e, Table 

1: Test Scenario 1).    

 

Overall, PPS+ showed substantially better recall than taxator-tk, whereas taxator-tk showed 

mostly better precision (Figs S3a–S3c and S3f, Table 1: Test Scenarios 1–9). Moreover, in the 

case where microbial community members have been profiled by 16S but have no sequenced 

genomes, PPS+ showed a very high precision at low taxonomic ranks (i.e. family, genus and 

species) 99.5–89.6% (Figs S3a and S3f, Table 1: Test Scenarios 2–4). In several cases, PPS+ 
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showed better precision than taxator-tk; for example, at the family rank, the precision was 

98.1% for PPS+ vs 91.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenario 4) and at 

the genus rank, it was (scenario 2) 96.1%, (scenario 3) 96.3% for PPS+ vs (scenario 2) 91%, 

(scenario 3) 86.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenarios 2, 3). 

4.3 Benchmarks with corrections 
	  
In the test scenarios when the reference data were excluded from the MG database (Table 1: 

Test Scenarios 5–9), the precision of PPS+ for low taxonomic ranks (i.e. genus and species) 

was lower than the precision of taxator-tk because of the way PPS+ chooses the taxa that are 

modeled. If the sequences from the same strains as those of the simulated metagenome 

samples were removed from the MG reference database at the strain, species or genus ranks, 

the marker gene analysis assigned sequences of the metagenome sample that would otherwise 

have a very good match to the respective MG database sequences to corresponding closely 

related taxa.  

 

In the subsequent PPS training phase, the sample-derived data were used to train closely 

related clades; moreover, reference sequences from closely related clades were used as 

training data as well. However, for the draft genome reconstruction, it is necessary to infer 

consistent bins from a metagenome sample. The actual identifiers of the bins are of lower 

importance. Therefore, we recomputed the precision and recall measures with a correction to 

account for the phenomenon described above (Section 3.9, Figs S2a–S2f and S4a–S4f, Table 

1: Test Scenarios 1–9). 

 

The corrected precision of PPS+ was substantially better than it was without the correction 

for all scenarios. The difference for the other methods is not that pronounced, since they 

choose clades to which metagenome sequences are assigned in a different way. When 

comparing PPS+ to MEGAN4 using these corrections, PPS+ showed higher precision and 

recall. When comparing PPS+ to taxator-tk, PPS+ had higher recall; however, neither 

method was consistently more precise. 
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5 Detailed results for the real datasets 

5.1 Taxonomic scaffold-contig assignment consistency  
	  

To assess the quality of taxonomic assignments for these samples, we evaluated the 

consistency of taxonomic assignments for contigs originating from the same scaffold using a 

set of measures (Section 3.10.2). These measures assessed the degree to which the taxonomic 

identifiers of scaffolds and their constituent contigs were consistent relative to each other. 

This method looked beyond identical identifiers (Section 3.10.1) by taking the relative 

distances between two taxa in the reference taxonomy into account (Table S6 and S7).  

 

The basic idea of these measures is that a scaffold is assigned to a taxonomic identifier of one 

of its constituent contigs, such that the collective distance of all contig assignments for the 

respective scaffold to path p in the taxonomy defined by the scaffold identifier is the shortest. 

The consistency of individual contig assignments is then assessed relative to path p: If a 

contig lies on p, it is considered to be assigned consistently; if it does not lie on p, it is 

assigned inconsistently. These measures were computed for the assignments of the chunked 

cow rumen and the human gut datasets.  

 

Overall, PPS+ performed better in terms of the consistent assignment of sequences to low 

taxonomic ranks for the chunked cow rumen dataset and the human gut dataset than the 

generic PPS model and MEGAN4 (Table S6 and S7, Def. 6). For both datasets, taxator-tk 

showed the highest consistency according to almost all measures; however, it assigned fewer 

data to lower taxonomic ranks (family, genus and species) than the other methods.  

 

For the chunked cow rumen dataset, the generic PPS model assigned more contigs 

consistently than PPS+ (Table S6, Def. 2); however this came at the cost of many contigs 

being assigned to higher taxonomic ranks by PPS (Table S6, Defs 0a, 6). MEGAN4 showed a 

higher overall consistency than PPS+ (Table S6, Def. 2) but this was mostly due to many 

contigs being assigned at higher taxonomic ranks (Table S6, Def. 6). For lower taxonomic 

ranks or when also taking sequence length into account (instead of the number of assigned 

sequences), MEGAN4 was less consistent than PPS+ (Table S6, Defs 0b, 3–6). 
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For the human gut dataset, PPS+ performed better than the generic PPS model according to 

all measures (Table S7, Def. 0–6). PPS+ was again more consistent than MEGAN4 when 

taking sequence lengths into account (Table S7, Defs 2, 4, 6). These measures are more 

informative for taxonomic binning than the sequence-count based measures (Table S7, Defs 

1, 3, 5), as obtaining large bins is desirable. These results also imply that MEGAN4 assigned 

substantially more (predominantly short) sequences to lower taxonomic ranks than PPS+ 

(Table S7, Def. 0a). 

 

5.2 Evaluation summary 
 

Our evaluation showed that PPS+ performed substantially better than the generic PPS model 

(Tables 2–3, S6–S7). Moreover, the results of PPS+ were comparable to a sample-derived 

model generated according to expert specifications (Table 4). Taxator-tk had the highest 

consistency of all the methods; however, it assigned substantially fewer sequences to low 

taxonomic ranks than the other methods (Tables 2–3, S6–S7). Our benchmark experiments 

also confirmed that if the metagenome sequences were closely related to the reference 

sequences, such as for the human gut dataset, the homology-based methods assigned more 

sequences correctly to low taxonomic ranks than they did across larger taxonomic distances, 

as was the case for the cow rumen dataset (Tables 2–3, S6–S7). PPS+ was not that sensitive 

to this distance. For PPS+, only few taxonomically informative marker genes have to be 

identified from the sample, for which a substantially larger marker gene reference collection 

exists than that for genome and draft genome sequences, in terms of the number of species 

represented in the reference collection. PPS+ often made more consistent assignments than 

MEGAN4 and often assigned the most sequences of all the tested methods to lower taxonomic 

ranks (Tables 2–3, S6–S7). 

 

5.3 Throughput comparison 
 

The throughput of the individual methods for contig assignments of the human gut sample 

was calculated as either Mb or the number of sequences assigned per hour with one thread 

using the same reference sequences (Sections 3.3 and 3.4). PPS and PPS+ directly use 

sequences in FASTA format as references, while for MEGAN4 and taxator-tk BLAST or LAST 

databases were initially constructed. Database construction took 6 h 55 m and 81 h 29 min on 
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our servers, respectively for BLAST and LAST, and was not considered in runtime 

comparisons. As most time in PPS+ is spent with model construction, assignment can be 

further accelerated when reusing models to classify multiple metagenome samples. In this 

setting, where we consider only the prediction phase of PPS+, PPS+ was more than 7 times 

faster (up to 0.5 Gb/h) than the homology-based methods (Figure 4). As only a relatively 

small reference sequence database of 16 Gb was used, runtimes of BLAST and LAST searches 

in the homology-based tools would proportionally increase when using larger reference 

collections. 

Unlike the homology-based tools, for which similarity searches require the use of more 

hardware with more CPUs and main memory, PPS+ can run on a standard laptop computer. 

PPS+ on a laptop with an Intel i5 M520 2.4 GHz processor and 4 GB of RAM was ~1.5–4 

times slower than it was on the server with an AMD Opteron 6386 SE 2.8 GHz processor and 

512 GB of RAM, mainly due to insufficient RAM on the laptop installed, which caused 

extensive use of the swap space.  

	  

6 External tools 
	  

6.1 HMMER 3 
The search command (hmmsearch) of the HMMER 3 (Eddy, 2011) package with e-value cut-

off set to 0.01 is used. 

 

6.2 MOTHUR 
The MOTHUR (Schloss et al., 2009) Naïve Bayes classifier with the following default 

parameters is used. The number of bootstrap replicas is set to 300. The corresponding 

confidence score cut-off is set to 80. For the 16S analysis (i.e. 3 (5S, 16S, 23S) out of 34 

marker genes), a small part of the code from (Huang, Gilna & Li, 2009) was used. 

 

7 Evaluation of the CLARK software 
	  
CLARK (Ounit et al., 2015) is a straightforward, fast, taxonomy-free, k-mer based binning 

tool for metagenome reads and contigs. It is a taxonomy-free tool, since a user has to first 
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decide, on which taxonomic rank s/he would like to assign sequences of a metagenome 

sample, and then a taxonomic identifier is assigned to all input sequences at a particular 

taxonomic rank. However, this is different from taxonomic binning tools such as PPS+, 

taxator-tk (Dröge, Gregor & McHardy, 2014), MEGAN (Huson et al., 2011), or Kraken 

(Wood & Salzberg, 2014), since a taxonomic binning tool first has to automatically decide on 

a taxonomic rank on which a sequence will be assigned and then it assigns a taxonomic 

identifier to the sequence at a particular rank. In CLARK, the first step has to be done 

manually, which makes the tool unsuitable for the analysis of metagenome samples 

originating from novel environments. For instance, if a metagenome sample contained 

species, that were all novel species and a user decided to assign all the sequences of the 

sample at the species rank, then all the assignments would have been incorrect. Therefore, it is 

an indispensable feature of a taxonomic metagenome binning tool to also automatically and 

correctly determine a taxonomic rank of an assignment. This makes the application of CLARK 

limited only to the environments that has been well studied, for which there have been many 

reference (draft) genomes sequenced, and that does not contain novel taxa. For such, well 

studied, environments, CLARK offers a substantial speed-up in comparison to, e.g. BLAST 

(Camacho et al., 2009). Nevertheless, it is unsuitable for the analysis of metagenome samples 

originating from novel environments. 

 

We have evaluated CLARK in the  “new strain”, “new species”, and “new genus” scenarios 

with a simulated dataset with uniform distribution (Section 3.1). For the “new strain” 

scenario, we have excluded all the strains of the simulated dataset from the reference 

sequence collection and built the CLARK reference database at the species rank. In this “new 

strain” scenario, the precision of CLARK at the species rank was 36.8% and recall 24.7%. The 

corrected measures were 57.3% and 37.6%, respectively (Section 3.9).  

For the “new species” scenario, we have excluded all the species of the simulated dataset 

from the reference sequence collection and built the CLARK reference database at the genus 

rank. In this “new species” scenario, the precision at the genus rank was 83.2% and recall 

57.9%. The corrected measures were 85.1% and 59.6%, respectively.  

For the “new genus” scenario, we have built the CLARK reference database at the family 

rank. In this “new genus” scenario, the precision at the family rank was 57.3% and recall 

33.3%. The corrected measures were 57.6% and 33.8%, respectively.  

Note that these precision and recall values cannot be directly compared to the results of other 

taxonomic binning methods, as we have manually determined, on which taxonomic rank the 
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assignments were made by building the CLARK reference database at a particular rank. 

However, if the CLARK was extended from taxonomy-free binning software to a taxonomy 

binning software, its performance would be similar to Kraken, as both methods are based on 

the occurrences of long k-mers (k≈31). 
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