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General settings12

The models are calibrated on a time series of 10 equidistantly sampled data points13

generated. The MCMC algorithm was carried out in log space with a log-uniform14

prior distribution for the parameters with a cutoff (Grandison and Morris, 2008), in15

particular: p(log(θ)) = 1 for θ ∈ [10−6θ 0, 106θ 0], and p(log(θ)) = 0 elsewhere, with16

θ 0 an initial guess of the parameter value. For the illustrative example we used a uniform17

prior for better illustration of the confidence region. For the likelihood, we assumed18

Gaussian noise with σ = 0.1yd . The data was generated without noise in the simulations19

(Gutenkunst et al., 2007b), with θ PML equal to the true parameter values and also θ 0
20

was set to the true value.21

Time integrations were carried out in the Matlab environment using the ode15s22

command. DE-MCz was carried out with 4 chains, a thinning rate K = 10, and in total23

4 105 iterations of which 1 105 were used for burn-in. We used Gelman’s R̂ statistic to24

check for convergence (Gelman and Rubin, 1992).25

The Q distribution was computed using 1000 samples from π(θ). Q was computed26

in (7) using Riemann summation with 100 time points. Approximating the integral with27

only 30 points had practically no effect on the outcomes. When time integrations failed28

to converge, the Q95 value was set to zero and not displayed.29

Extremely low or high values of y can lead to extreme differences, which tend30

to dominate Q, sometimes even if yp(θ) and yp(θ
PML) render the same biological31

implication. To prevent this, we considered only y values within a range [ymin(t),ymax(t)]32

in which differences are assumed to be still biologically relevant. We used y(t)min = 10−6
33

and y(t)max = 106.34

Linearized covariance analysis35

LCA is based on a quadratic approximation of the log posterior using first order sen-36

sitivities of the predicted output towards parameter changes. For any time point t, the37



standard deviation on the maximum likelihood prediction y(t,θ ML) is estimated by38

(Gutenkunst et al., 2007a)39

σ
2(y(t,θ ML)) = ∑

i, j

∂y(t)
∂θi

(H−1)i, j
∂y(t)
∂θ j

∣∣∣
θ ML

. (1)

Here Hi, j(θ
ML) = d2χ2(θ ML)

dθidθ j
is the Hessian. This assumes a symmetric distribution of40

y(t) around the maximum likelihood prediction. Assuming a normal distribution, the41

95% confidence intervals of y(t) are then y(t,θ ML)±1.96σ(y(t,θ ML)). Replacing the42

linear derivatives in (1) with logarithmic derivatives gave similar results in Fig. 2D.43

The models from the BioModels database, and the data sets44

The following models were taken from the BioModels database (Li et al., 2010):45

BIOMD0000000229, -011, -003, -005, -035, and -021. Model 1 describes a pro-46

tein network that produces spontaneous oscillations in excitable cells of Dictyostelium47

(Laub and Loomis, 1998). It has 7 variables and 14 parameters. We took T = 15,48

and x(0) = [3.39,2.45,1.6,1.2,1.13,0.9,0.48]. Model 2 describes a signaling path-49

way, modeled as a basic 3- stage Mitogen Activated Protein Kinase (MAPK) cas-50

cade in solution (Levchenko et al., 2000). It has 22 variables and 30 parameters.51

We took T = 100 and x(0) =[0.4,0,0,0.3,0,0,0,0,0.2,0, 0.2,0,0,0,0,0,0.3,0.2,0,0.3,0,0].52

Model 3 describes a minimal cascade model for the mitotic oscillator involving cy-53

clin and cdc2 kinase (Goldbeter, 1991). It has 3 variables and 10 parameters. We54

took T = 25 and x(0) = [0.01,0.01,0.01]. Model 4 describes a model of the inter-55

actions of cdc2 and cyclin (Tyson, 1991). It has 6 variables and 8 parameters. We56

took T = 50 and x(0) = [0,0.75,0,0.25,0,0]. Model 5 describes a genetic circadian57

oscillator model (Vilar et al., 2002). It has 9 variables and 16 parameters. We took58

T = 50 and x(0) = [0,0,1,0,1,0,0,0,0]. Model 6 describes circadian oscillations of59

the PER and TIM proteins in Drosophila (Leloup and Goldbeter, 1999). It has 1060

variables and 44 parameters. We took T = 50 and x(0) =[0.0341,0.0341,0.0304,0.0304,61

0.0257,0.0257,0.2091,1.1551,0.1483,0.1483]. For models with oscillating dynamics we62

created data sets with a time span that covered less than two oscillations for all variables,63

to avoid loss of information on fast dynamics due to a fixed amount of time points. For64

multi-variable models, the time series of individual variables were concatenated. The65

data vector so obtained was used in the likelihood calculations.66

The influence of the size of prediction perturbations and base b on the67

range of Q0.9568

The range sizes in which the prediction uncertainties lie, is quite robust towards changing69

the conditions under which the predictions were generated. For each prediction a70

parameter is multiplied with a factor 100 or 0.01. We varied this factor. Repeating the71

simulation experiment (Fig. 3A) with factor 1000 and 0.001, and with factor 10 and 0.1,72

gave similar results. The sizes of the intervals, and the maximum prediction uncertainty73

for each model remained mostly of the same order of magnitude (Fig. S1).74

The choice of base b reflects which differences in a prediction are considered relevant75

and thus influences the magnitude of prediction uncertainty, but it does not change the76

range of uncertainties on a logarithmic scale as in Fig. S1. In this study we used b = 2 in77
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Figure 1. Influence of varying the perturbation factor. A) factor 10. B) factor 100. C)
factor 1000.

equation (7), allowing only relative errors of order 2 or higher to appreciably contribute78

to Q. Increasing the base from b to c (c > b) decreases Q - and therefore Qα - with a79

factor (logb(c))
2, but does not change the relative differences between the Qα values.80

Hence, the intervals shift downward. For example, increasing the base from 2 to 581

decreases Qα with a factor 5.4.82

Model order reduction83

The computational effort needed to sample π(θ) may be large due to the model integra-84

tions required to compute the likelihood χ2(θ). A reduction method that is commonly85

applied (Gutenkunst et al., 2007b,a; Brown and Sethna, 2003; Brown et al., 2004) is to86

circumvent the integration step by locally approximating the χ2 function with a second87

order Taylor expansion. In this way, time integrations only have to be carried out to88

compute the Hessian. The reduction works as follows. The maximum likelihood param-89

eter vector minimizes χ2(θ), so dχ2

dθ
(θ ML) = 0, and the second order Taylor expansion90

around θ ML reads91

χ
2(θ)≈ χ

2(θ ML)+
1
2

∆ logθ
T H(θ ML)∆ logθ , (2)

where ∆ logθ = log(θ)−log(θ ML) and Hi, j(θ
ML)= d2χ2(θ ML)

d log(θi)d log(θ j)
, the positive semidef-92

inite Hessian. The identity H = 2JT J, with Ji, j =
dyi

σid log(θ j
) simplifies numerical compu-93

tations (Brown and Sethna, 2003). It is recommended to use a logarithmic derivative94

(Gutenkunst et al., 2007b), since parameter values may vary over orders of magnitude.95

The parameters are approximately distributed as96

log(θ)∼ N(log(θ ML),2H(θ ML)−1), (3)

and a sample can be drawn directly from this distribution, i.e., without the need for97

MCMC sampling. We compared the prediction uncertainties estimated with and without98

the reduction (Fig. S2). As could be expected, the Q0.95 ranges are affected by the99

approximation errors. Especially for the Leloup model, the model order reduction100

induces large errors in the estimated prediction uncertainty. In practice, errors in101

estimating θ ML may further affect the estimated prediction uncertainty.102

Computational costs103

We used three different methods: full MCMC, model order reduction, and linearized104

covariance analysis (LCA). MCMC sampling time depends on the number of iterations,105
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Figure 2. A) Q0.95 values obtained via model integrations, and B) via model order
reduction.

and the time needed for drawing from a normal distribution depends largely on checking106

whether a draw is in or outside the region defined by the prior, which in turns depends on107

the size of the sample. The most time LCA and the model order reduction method need,108

is for the p time integrations to compute the Hessian, with p the number of parameters.109

This is much smaller than the number of iterations needed (here a factor of about 104.110

Robustness of prediction uncertainty with respect to size of the posterior111

sample112

Throughout this paper, Q0.95 is computed using 1000 samples representing π(θ). To113

check whether this does not influence the qualitative outcomes, the Q0.95 values are114

compared with those obtained via 400 samples (Fig. S3), using the approximation in (2)115

to reduce computational costs. The sizes and locations of the intervals hardly differ with116

the sample size.117
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Figure 3. A) Q0.95 values obtained with 1000 samples from π(θ). B) Q0.95 values
obtained with 400 samples.
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