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tic domination and Hendrik Lüthen for the implementation of some shapes to check,
whether or not they suffice to find a bound for the mixing time of the up/down Markov
chain M with the machinery presented in this work.

Chapter 3 is conjoint work with Stefan Felsner. We presented a preliminary version
of this work at the 7th International Conference on Lattice Path Combinatorics and
Applications [1] and got some feedback, which we really appreciate. We like to thank
for literature hints, remarks and further ideas, which partly were included here. In
particular, we thank Cyril Banderier, Christian Krattenthaler, and Helmut Prodinger
for their remarks.
Additionally, a version containing the same content as this chapter was accepted for
publishing by the Journal of Integer Sequences as [23] in December 2014.

Chapter 4 started as a simplification of an family of counter examples, which were pre-
sented in a preliminary version of [39]. Together with Stefan Felsner, we extended this
to the content, which is presented in this thesis. So far, only the authors of [39] received
an early preprint of this chapter.

As already pointed out, I owe advisor Stefan Felsner quite some gratitude. He ad-
vised me well. He pointed out the beauty of combinatorics to me and taught me some
”Wiener Gelassenheit”, when it comes to organize teaching. Thank you! In addition,
he created the Arbeitsgruppe, I was member of for more then five years. Besides the
people, I miss good riddles and good coffee most.

Besides the research, presented in this document, I was able to contribute to some
research of Kolja Knauer and Torsten Ueckerdt, who both were members of Stefan Fel-
sner’s group at the Technical University of Berlin. This research on Bend Numbers of
Graphs led to the publications [30] and [31], which was followed up by my two coauthors
with [35]. I thank both for their kindness and collaboration.

Last but not least I thank my children, Frederic Alexander, Felix Anton, and Lisa
Katharina for existence, gorgeous times and sleepless nights as well as my wife, Corinna
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Introduction

This body of work engages in two natural Markov chains, each living on a family of
finite distributive lattices and some somewhat related results on the enumeration of
lattice paths.

The interest in these Markov chains rose due to their state spaces, the sets they are
living on. Basic open questions for these sets are as simple as: How big is the set?,
How big is it asymptotically?, or How does a typical element in the set look like?. While
being finite, these sets are quickly to big to write down explicitly, so some machinery
is required to give at least some answers to this questions to some extend.

In [25] Felsner and Zickfeld considered the first two of these questions for α-orientations
and gave some bounds to the number of α-orientations for some families of graphs.
This work now continues somewhat their work and considers the third question or at
least, works somewhat into the direction to be able to answer it for some families of
graphs. To find a typical element of a set, sampling is an applicable method if you
have a Markov chain on these set, which mixes fast enough. Therefore, considering
Markov chains on these sets was an approach to work on these questions. Note, that
with reasonable nice Markov chains, one could even gather bounds on the size of their
state spaces, as stated in Chapter 3.2 of [33].

Due to the structure of the sets, there are some natural Markov chains to consider, so
the starting point for this work was the application of a coupling method – the block
coupling technique – to the of α-orientations of some families of graphs to investigate the
behaviour of the face flip Markov chain on these distributive lattices. An α-orientation
of an undirected plane graph is an orientation of its edges, such that every vertex v

has a by α prescribed outdegree α(v). The set of these orientations for a fixed α and
graph forms a distributive lattice, whose elementary moves are flips, i.e. reversing the
orientation of all edges of a directed cycle. For somewhat nice graphs and α, this can
be further restricted to face flips. This means it suffices to reverse facial cycles. Now
the face flip Markov chain somewhat uniformly at random reverses one of the oriented
facial cycles and wanders this way through the distributive lattice of α-orientations.
Chapter 2 covers the block coupling technique and its application to some families of
distributive lattices. These lattices are the sets of k-heights of some families of planar
graphs, mostly for k = 2. Here k-heights assign each face of a plane graph an integer
number between 0 and k, such that faces, having an edge in common, bear numbers,
which differ at most by 1. They are closely related to α-orientations (interpret the
assigned numbers as indication, how often this face has to be flipped, starting from
a fixed orientation), but the resulting lattices are more inoffensive towards the block
coupling method, so we were able to apply it there.
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Contents

The block coupling method relies on some enumeration, which we did with the help of
computers. As it happens quite often in combinatorics, they quickly showed us their
limits. Therefore this work wanders from the original subject to the enumeration of
somewhat 1-dimensional k-heights, or bounded lattice paths. I hoped to understand
the one dimensional behaviour and translate its essence back to the two-dimensional
case of planar graphs. This digression forms Chapter 3. It contains some results, which
are interesting on their own, but fail to contribute to the original goal, because I did
not make the way back to k-heights. Still, this chapter contains explicit formulas to
enumerate bounded Motzkin paths, which are the same as the set of k-heights of a
sequence of adjacent faces. This enumeration then made itself independent and covered
a lot of different integer sequences, of whom some looked quite independent beforehand.
Also, it applies nicely some graph theory and linear algebra to enumerate lattice paths,
which might be a method worth further investigation.

Finally, the fourth chapter, containing some original content covers α-orientations and
their face flip Markov chain. Although Chapter 4 does not make use of the block
coupling method, we were able to make some progress using tower moves. These moves
are another speed up technique which can be applied on top of path coupling in the
same manner as block coupling. Here, we were able to improve some known results:
Besides other results, the chapter lays out a family of quite harmless graphs, such that
the face flip Markov chain is not rapidly mixing the set of α-orientations of these graphs,
which in the end answers the original question to quite some extent, though not in a
positive way.
So, going back to the initial question, we were able to show, that sampling of α-
orientations works for some very constrained families of graphs (except for some hi-
larious coefficients, which might be improved in the future substantially) and does not
work for others. Still, on the way to these results, we will come across quite some other
results.
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1 Preliminaries

In the Introduction we already mentioned briefly the two main structures, which build
the foundation of this work. They are α-orientations and their distributive lattices on
the one hand and Markov chains and their mixing times on the other. We introduce
both very briefly in the next two sections and give some more of the required background
in situ in the following chapters:

1.1 α-Orientations

Let G = (V,E) be a simple plane graph with vertex set V and edge set E. Further, let
α ∶ V → N be a weight function, living on the vertices of G.

Definition 1 (α-orientations)
An α-oriententation G⃗ of G is an orientation of the edge-set of G, such that every vertex
v ∈ V has outdegree α(v). Denote the set of all α-orientations with Ωα,G or Ω for short,
if G and α cannot be mistaken. We call α feasible, if there exists an α-orientation.
Further, edges are called rigid, if they are oriented in the same way in all α-orientations
Ωα,G.

The notion of α-orientations was introduced by Felsner in [20] as a generalization of
3-orientations of planar triangulations, which are in bijection to Schnyder–woods. They
are on the other hand also a generalization of 2-orientations of the rectangle grid (or
plane quadrangulations). In the same paper Felsner showed, that for plane G and a
feasible α (i.e. one, such that there are α-orientations ofG) the set Ω forms a distributive
lattice and described explicitly the lattice’s edges as flips of the orientation of directed
essential cycles. Here, these essential cycles are exactly the facial cycles of all faces
which do not share an edge with the outer face. Again according to Felsner, the set
of α-orientations is in bijection with the set of α-potentials. These potentials basically
count the number of flips of every essential cycle, on a path from the lattice’s minimum
to the corresponding orientation.

Definition 2 (essential cycles and α-potentials)
More formally, a simple cycle C of G is an essential cycle if and only if

• C is cord-free

• the interior cut of C is rigid

• there exists an α-orientation X⃗ of G, such that C is oriented in X⃗

Further, let C be the set of essential cycles and G⃗min the minimum of Ω, then φ ∶ C → N

is an α-potential of G if

• ∣φ(C) − φ(C ′)∣ ≤ 1 for all C,C ′ ∈ C, which share an edge e

7



1.2 Markov chains

• φ(C) ≤ 1 if C is the only essential cycle containing an edge e

• if C l(e) and Cr(e) ∈ C are the cycles left and right of e in X⃗min, we have φ(C
l(e)) ≤

φ(Cr(e))

In the considered cases the set of essential cycles corresponds to the set of faces (or to
the cycles, defined by the faces), except the outer face and all faces sharing at least one
edge to the outer face.

1.2 Markov chains

The Markov chains in the following chapters always have a finite state space and are
discrete-time Markov chains. A nice introduction to this kind of Markov chains and
some remarkable applications of them to combinatorics, can be found in Jerrum’s book
[33]. A more recent overview is the book [38]. Jerrum’s definition of a Markov chain is
as follows:

Definition 3 (Markov chain)
Let Ω be a finite state space. A sequence (Xt ∈ Ω)

∞
t=0 of random variables is a Markov

chain on Ω if

Pr[Xt+1 = y ∣Xt = xt,Xt−1 = xt−1, . . . ,X0 = x0] = Pr[Xt+1 = y ∣ Xt = xt],
for all t ∈ N and xt, xt−1, . . . , x0 ∈ Ω. This means the next state only depends on the
current and not on the previous ones. In addition, as Jerrum does, we always assume
the Markov chain to be (time-) homogeneous, which means

Pr[Xt+1 = y ∣ Xt = x] = Pr[Xt′+1 = y ∣Xt′ = x]
for all t, t′ ∈ N. So a Markov chain is not aware of its history and has always the same
transition probabilities.

This lack of history allows to capture the whole chain with a transition matrix M ∈ RΩ×Ω

(i.e. a matrix ∈ R∣Ω∣×∣Ω∣ with entries indexed by Ω ), whereMx,y = Pr[Xt+1 = y ∣ Xt = x].
So the entry ofM associated with (x, y) is the transition probability from x to y (which
does not change with time). Note, that now the multiplication of a stochastic row vec-
tor v with M corresponds with the application of one step of the Markov chain M

to some random variable X distributed according to v (i.e. Xt is with probability vy
at y for all y ∈ Ω), i.e. v ⋅M is a stochastic row vector, describing the distribution ofXt+1.

Next, we can interpret M as adjacency matrix of a directed simple graph GP (with
loops), whereMx,y is the edge-weight of the edge from x to y. Now, a Markov chain
can be easily understood as a random walk on the Graph GP , where the wanderer on
vertex x chooses his or her next step, according to the weights of the edges, leaving x.
We continue with some properties, before we expose what we are up for:

Definition 4 (aperiodicity, irreducibility and stationary distributions of Markov chains)
Let M be a Markov chain on a finite state space Ω.
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1.2 Markov chains
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Figure 1.1: A wanderer at vertex v1 goes to v2 with probability 1
2
, to v3 with probability

1
3
and stays at v1 otherwise.

• We say, M is aperiodic, if (some advance assumed), we are able to be at any
element of the state space at any time (assuming strong connectivity). Formally,
if gcd{t ∣Mt

x,x > 0} = 1 for all x ∈ Ω.

• We say, M is irreducible, if there is a path of edges with positive weight from
every x ∈ Ω to every y ∈ Ω (i.e. GM is strongly connected). Formally, if for all
x, y ∈ Ω there some t ∈ N such thatMt

x,y > 0.

• If M is aperiodic and irreducible, we say M is ergodic (because Ω is finite).

• A distribution π on Ω is a stationary distribution of M if the distribution of some
random variable X, distributed according to π does not change, when a step ofM
is applied to X, this means, π written as stochastic row vector is a left eigenvector
with eigenvalue 1 of the transition matrixM of the Markov chain M .

The next well known theorem states, why these properties matter:

Theorem 1 (Theorem 3.6 of [33])
Let M be an ergodic Markov chain on finite state space Ω. Now, M has a unique
stationary distribution π and

Mt
x,y Ð→ π(y) for t Ð→∞.

Note, that both, irreducibility and aperiodicity are required.
Figure 1.2 shows to Markov chains in their graph representation. The left on is not irre-

ducible, since there is no path from vertex v1 to v2. The matrixMG1
=
⎛⎜⎝

1 0 0
0 1

2
1
2

0 1
2

1
2

⎞⎟⎠ has
an eigenspace of dimension two for the eigenvalue 1, so there is more than one station-
ary distribution. The stochastic vectors (1,0,0) and (0, 1

2
, 1
2
) are both left eigenvectors

with eigenvalue 1 of the transition matrix, so each of them corresponds to a stationary
distribution. The right Markov chain, specified by G2, is not aperiodic because every
path from a vertex back to itself is of even length. Therefore, the second property of the
theorem does not hold: If we start at a red vertex, we are always at a red vertex after
an even number of steps and at a blue one, after an odd number of steps. Therefore,
MT

x,y does not converge.
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Figure 1.2: Two tiny graphs describing Markov chains, which are not ergodic.

Next, for ergodic Markov chains, the mixing time of a Markov chain M is

τM(ε) ∶= sup
x∈Ω

min{t ∶ ∥Mt
x,⋅ − π∥TV ≤ ε},

where M is the transition matrix of M , Mt
x,⋅ is the row, associated to x of the t-th

power ofM, χ+S is the characteristic vector if S, and ∥ ⋅ ∥TV is the variation distance
and defined via: ∥Mt

x,⋅ − π∥TV ∶= sup
S⊂Ω
∣χS ⋅M

t
x,⋅ − π∣

It is the rate of convergence against the unique stationary distribution is what we aim
for. Here, a small bound can be used. It allows to use methods like coupling from the
past (or at least indicates, it might be feasible to use these methods). So small bounds
give us a mean, to sample random elements from Ω. Also good bounds on the mixing
time of a Markov chain give insight into the size of the state space Ω. Section 3.2 of
[33] covers this reduction, but it is not the scope of this work.

As we see, it is rather hard to find good bounds to the mixing time. In general, we
are happy if we are able to decide if a Markov chain M is rapidly mixing, which means
we can bound τM(ε) from above by some polynomial in log(∣Ω∣) and log(ε−1). On the
other hand, if we can bound it from below with something growing faster, than such a
polynomial, we say M is not rapidly mixing. Some examples, where the rapidly mixing
property is shown or disproven can be found in Jerrum’s book [33]. Note that coupling
is a usual method to show that a Markov chain has this property, while the notion of
conductance is used to disprove it. We follow the same route with this work and use
variations of both techniques.
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1.2 Markov chains

In later chapters we introduce (Markovian) coupling methods, which we use to find such
bounds on τM(ε). So let us stop for now with pointing towards a general introduction
to probability: Hägström’s book Finite Markov Chains and Algorithmic Applications
[28].
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2 Block Coupling

As announced beforehand, this chapter covers a coupling method, namely block coupling
and its application to k–heights. These k–heights are related to α-orientations of plane
graphs as follows: Reconsider the definition of an α-potential in the previous chapter.
An α-potential was an assigned of the graphs faces f to some integer φ(f), such that

• ∣φ(f) − φ(f ′)∣ ≤ 1 for all f, f ′ ∈ F , which share an edge e

• φ(f) ≤ 1 if f is the only bounded face containing an edge e

• if f l(e) and f r(e) ∈ F are the faces left and right of e in X⃗min, we have φ(f l(e)) ≤
φ(f r(e))

Note, that here the notion of an essential cycle was already replaced by the notion
of a face, which suffices for our needs here. The first condition defines some kind of
smoothness on the mapping. The second one ensures that the mappings values cannot
grow arbitrarily, the third notion might look slightly unnatural (although it is not). So
to get started, we dropped this third condition and additionally bounded the admissible
values of the assignments. The resulting structure is, what you find in the following
definition.

2.1 Preliminaries

Definition 5

Let G be a plane graph (a planar graph with a fixed embedding). A k–height on G is
a mapping

h ∶ F (G) Ð→ {0,1, . . . , k}
such that ∣h(f) − h(f ′)∣ ≤ 1 for all adjacent faces f, f ′ ∈ F (G), i.e. faces of G, which
share an edge. The weight of a height h is defined as

ω(h) ∶= ∑
f∈F (G)

h(f).
Furthermore, ΩG (or Ω for short) is the set of all k-heights of G.

Figure 2.1 shows a 2-height on a graph with 13 faces.
Note that for k = 0, independent of G, there is only one k-height, which is zero on all
faces. For k = 1, every {0,1} assignment is valid. So there are 2∣F ∣ such k-heights and
they (as a set) are isomorphic to the set of {0,1} vectors of length ∣F ∣. For k = 2 the
game gets interesting, because this is the first instance, where in fact not all possible
assignments are valid. A face with value 0 cannot be next to a face with value 2.
Luckily, for k = 2 or even bigger k, the set of k-heights, has some structure. To get more
insight into this structure of the set of all k-heights of a fixed graph, the next lemma is
a key ingredient:

12



2.1 Preliminaries
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Figure 2.1: A 2-height on a graph with 12 faces.

Lemma 1 (Ω is a distributive lattice)
The set of k-heights Ω of a plane graph G together with the face-wise maximum and
minimum operations, i.e.

(h ∨ g)(f) ∶=max{h(f), g(f)}
(h ∧ g)(f) ∶=min{h(f), g(f)}

forms a distributive lattice.

Proof. First, (h∨g) is indeed a k-height. To check this, let f and f ′ be faces, which share
an edge. Without loss of generality, assume h(f) ≥ g(f). Now ∣(h∨g)(f)−(h∨g)(f ′)∣ =∣max{h(f), g(f)} − max{h(f ′), g(f ′)}∣ = ∣h(f) − max{h(f ′), g(f ′)}∣, which is ≤ 1 if
h(f ′) ≥ g(f ′), because h is a k-height.
Assuming ∣(h∨g)(f)−(h∨g)(f ′)∣ > 1 we know g(f ′) > h(f ′), which implies g(f ′) ≥ h(f)
and we get 1 > ∣h(f) − g(f ′)∣ = g(f ′) − h(f) ≤ g(f ′) − g(f) ≤ 1, which contradicts that g
is a k-height. With the same arguments, h ∧ g is also a k-height.
Second, the symmetry of ∨ and ∧ is inherited from the one of max and min, as well as
distributivity, because max(a,min(b, c)) = min(max(a, b),max(a, c)) for real a, b, and
c.

This directly implies, h ≤ g if and only if h(f) ≤ g(f) for all faces f ∈ F (G). Further,
the cover relations of Ω are exactly pairs of k-heights, which are identical up to one
face f , where they differ by 1. These cover relations will be exactly the transitions of
the up/down Markov chain M . We can even define a natural metric d for two k-heights
h and g:

d(h, g) ∶= ∑
f∈F (G)

∣h(f) − g(f)∣,
which corresponds to the shortest path consisting of cover relations from h to g.

13



2.1 Preliminaries

Lemma 2 (a bound for the maximum distance D in Ω)
Let D be the maximum distance in Ω with respect to d.

D ≤ k ⋅ ∣F (G)∣
Proof. Note that between any two k-heights h, g ∈ Ω, there is a path of cover relations
of Ω (or transitions of the up/down Markov chain M), of length

d(h, g) = ∑
f∈F (G)

∣h(f) − g(f)∣ ≤ ∑
f∈F (G)

k = k ⋅ ∣F (G)∣.

This implies D ≤ k ⋅ ∣F (G)∣.

This Markov chain is somewhat the natural one, operating on the set of k-heights Ω of
a fixed plane graph G:

Definition 6 (the Markov chain)
The up/down Markov chain M proceeds as follows on a k-height X ∈ Ω:

Input: h ∈ Ω
Output: h′ ∈ Ω
let p←Ð [0,1] uniformly at random
choose f ←Ð F (G) uniformly at random
choose d←Ð {+1,−1} uniformly at random

if p ≤ 1
2
then

return h′ = h
else

define h′ via h′(f ′) ∶= { h(f ′) + d if f ′ = f
h(f ′) else

if h′ ∈ Ω then

return h′

else

return h′ = h

Algorithm 1: One step of up/down Markov chain M .

Starting here, we try to analyze the behaviour of M in the remaining pages. It is easy
to see, that M is aperiodic, because it is lazy, i.e. for every state, with a probability ≥ 1

2

it does not move to another state. Further, it is positive recurrent, because the set of
transitions equals the set of cover relations of the distributive lattice Ω, so the transitions
of the chain span the whole state space Ω. So M is ergodic and converges against a
unique distribution. Further, M is symmetric, i.e. Pr(Xt+1 = g ∣ Xt = h) = Pr(Xt+1 =
h ∣ Xt = g) for all h, g ∈ Ω, which implies that (1,1, . . . ,1) ∈ R∣Ω∣ is an eigenvector with
eigenvalue 1 of the transition matrixM ofM . So the unique distribution π the Markov
chain M converges to is the uniform distribution.

To bound the mixing time τM(ε) of M for at least some families of graphs, we make
use of block dynamics (or block coupling), a speed up technique for Markov chains.

14



2.1 Preliminaries

For example, Van den Berg and Brouwer applied block dynamics to the monomer-
dimer model, i.e. weighted samplings of graphs, see [7] for details. The idea behind
block coupling is, to introduce blocks, which induce a decomposition of the state space
Ω. Based on this, a block Markov chain is defined, which chooses one of the blocks
and chooses from the set of all elements of the state space, which are identical to the
current one outside of the block and pick one of them, i.e. the block’s content is updated
completely in one step, while the outside remains the same.
Assuming the blocks and the block Markov chain are nice, comparison theorems can
be used to connect the block Markov chain’s behaviour to the behaviour of the original
chain. In our case, this looks as follows:

Definition 7 (block)
A block B is a set of faces of G. Further, ∂B is the border of B, i.e. all f ∈ F (G) ∖B,
which share an edge with one face of B.

So from now on, let B be a finite set of finite Blocks B living on a fixed and plane graph
G, such that every face of G is contained in at least one block.
Now, ΩB is the set of k-heights on B ∈ B and let Ω∂B be the set of k-heights on ∂B. They
form the set of all valid border conditions for interior fillings of ∂B, i.e. B. Further,
ΩB∣h ⊂ ΩB is the set of admissible allocations of B with respect to h, i.e. k-heights on
B, which are admissible with respect to the values of h on ∂B. Let us encounter this
with an example:

Example 1

Consider the block in Figure 2.2. It consists of three (disconnected) faces a, b, and c

and has a border, which consists of nine faces.

1

1 1

11

2

12

0 b c

a

Figure 2.2: The block B consisting of 3 blue faces a, b, and c together with the values
of h on the 9 red faces of ∂B in a subsection of the rectangular lattice.

The set ΩB contains 21 elements (of which not all conform to the border conditions,
imposed by h). Figure 2.3 shows them as a distributive lattice in the notion, where h
is represented by h(a)h(b)h(c).
Now let h be a two-height on ∂B such that h(f) equals the values, indicated in Fig-
ure 2.2.
Now there are six admissible allocations on B respecting h. These six are 101, 201, 111,
211, 112, and 212, so ΩB∣h is the set of these six 2-heights on B.
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021

010 001

000

012

011

022

100

111

110 101

112

122

121

210

221

222

212

201

200

211

Figure 2.3: The distributive lattice ΩB of twenty-one 2-heights. Changes of a are blue
edges, changes of b red and changes of c black.

Now, after establishing the notions of blocks and admissible allocations, the block
Markov chain can be defined:

Definition 8 (the block Markov chain)
The block Markov chain MB proceeds as follows on a k-height h:

Input: h ∈ Ω
Output: h′ ∈ Ω
Let p←Ð [0,1] uniformly at random

if p ≤ 1
2
then

return h′ = h
else

choose B ←Ð B uniformly at random
choose g ←Ð ΩB∣h uniformly at random

define h′ via h′(f) ∶= { g(f) if f ∈ B
h(f) else

return h′

Algorithm 2: One step of block Markov chain MB.

First, note that the output is indeed a k-height, because every element g ∈ ΩB∣h is
admissible with the border restrictions, imposed by h, i.e. ∣h(f)−g(f ′)∣ ≤ 1 for all faces
f ∈ ∂B and f ′ ∈ B, which share an edge.
Second, for every face f ∈ F (G) we have a block B ∈ B, so by choosing this block and
the right transition to replace the block, every transitions of the up/down Markov chain
M is also a transition of MB. So MB inherits its reducible and positive recurrence from
M . Besides,MB is also lazy, which implies, it is aperiodic. FinallyMB is symmetric. So
together, the block Markov chain MB is ergodic and the unique distribution the chain
converges to is the uniform one on Ω. To conclude, MB is a well behaving Markov chain
to encounter the behaviour of M . Knowing this, we can formulate and prove our main
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theorem in the next section.

2.2 The main theorem

This section establishes the main theorem, which will allow us to prove, that the up/-
down Markov chain M is rapidly mixing the set of 2-heights for some families of graphs
in later sections. This theorem is based on some parameters of the set of blocks B, which
the block Markov chain uses. So in later sections, we only encounter these properties ofB and apply our theorem to find a bound for the mixing time of the up/down Markov
chain for these graphs.
Two notions, needed to formulate the theorem are CB,δ and EB,δ. The first, CB,δ, is
the set of cover relations of Ω∂B , which differ in δ, i.e.

CB,δ ∶= {((l, u) ∈ Ω2
∂B ∣ u(δ) = l(δ) + 1 and u(f) = l(f) for all f ∈ ∂B ∖ {δ}}

and the second, EB,δ, is formally defined as

EB,δ ∶= max
(l,u)∈CB,δ

{E(ω(u+B)) −E(ω(l+B))} .
Here, ld+B is a random variable, uniformly distributed on ΩB∣l and u+B is a random
variable, uniformly distributed on ΩB∣u. Further, ω(u+B) = ∑f∈B u

+
B(f) is the weight

of u+B . Later in the proof we will see, that EB,δ equals the maximum expected height
difference in CB,δ, i.e. we will prove EB,δ = max(l,u)∈CB,δ

{E(∑f∈B ∣u+(f) − l+(f)∣)}.
This obfuscation of the definition is more than paid of, because EB,δ can be much more
easily computed. We can compute E(ω(h)) for each h independently and then compare
all elements of CB,δ according to the precomputed values. If the equation would not
hold, we would have to compute E(∑f∈B ∣u+(f) − l+(f)∣) for all elements of CB,δ. This
computation is much slower than the computation of all E(ω(h)), so breaking down the
number of such computations from ∣CB,δ ∣ to ∣ΩB ∣ can be quite substantial to actually
be able to apply the theorem. This possibility to speed up the computations required
for the application of the theorem is an integral feature of it. Finally, the theorem is,
as follows:

Theorem 2

Let B be a finite set of blocks, such that for every face f ∈ F (G) there is at least one
block B ∈ B with f ∈ B and let β ∈ R, such that

1 > β ≥ 1 + 1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

EB,δ −#{B ∈ B ∣ δ ∈ B}⎞⎠
for all faces δ ∈ F (G). We have

τM(ε) ≤ cB,k ⋅ (log(
1
ε
⋅ ∣F (G)∣) + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅∣F (G)∣

ε
)

log( 1
2ε
) ,

where m ∶=maxf∈F (G) ∣{B ∈ B ∣ f ∈ B}∣, b ∶=maxB∈B{∣B∣}, and cB,k ∶= 16⋅b⋅m⋅k⋅(k+1)b

1−β
.
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The proof of this theorem needs some machinery, which we introduce before jumping
into the details. Still, the proof’s outline is, as follows: In the end, we want to apply
some path coupling, so we have to get our hands on the expected change of distance if
the coupling is applied to neighbouring pairs of k-heights. The theorem relies only on
the expected weight of all admissible allocations for a fixed set of border conditions. To
close this gap, we construct a monotone coupling with a discrete version of Strassen’s
theorem on stochastic dominance. To do so, the Ahlswede-Daykin 4-Functions theorem
is applied to show, that two distributions are indeed dominating each other stochasti-
cally. Afterwards, some Erdös-Magic, relying on the couplings monotonicity, reveals,
that the path coupling theorems of Dyer and Greenhill can indeed be applied. This
leads to a bound for the mixing time of the block Markov chain MB. Finally a version
of the comparison algorithm of Diaconis and Saloff-Coste yields a bound to the mixing
time of the up/down Markov chain M . So before we prepare the stage, let us consider
the border cases of the Theorem:

Remark 1

Assume, all blocks consist of one face. Therefore, for every face f ∈ F there is block
Bf = {f} ∈ B. Now, the condition to β implies, that if the theorem was applicable, i.e.
there is a such a β, we have

∑
B∈B∣δ∈∂B

EB,δ <#{B ∈ B ∣ δ ∈ B} = 1.
This implies, that the expected change in distance of the up/down Markov chain is
negative, easily yielding rapidly mixing of the Markov chain, because Theorem 4 can
be applied. This theorem, which we will see in a few pages is one of the tools, needed
to prove Theorem 2. Therefore a direct application of it would be quite some shortcut
and most likely even improve the resulting bound to the mixing time.

On the other hand, assume B contains only of a block B = F , i.e. we group all faces of
G in one block together. Therefore, the condition to β is trivially applicable (because δ
can never be on the border of this block) and we can get some 1 > β > 1

2
. On the other

hand, cB,k is exponential in ∣F ∣. It contains some (k+1)∣F ∣ ≥ ∣Ω∣, while the denominator
is ≥ 1

2
. Therefore the bound is linear in something, which is > ∣Ω∣, and never yields some

rapidly mixing.

To conclude, the art in the application of Theorem 2 is the choice of the right family of
blocks of which one can prove the existence of some β which suffices to the condition
and whose block sizes are reasonable small (i.e. constant or logarithmic in terms of ∣F ∣).
Now, we start to collect all tools to prove the theorem. First comes the theorem below,
which helps in the end to create some monotone coupling:

Theorem 3 (Ahlswede Daykin 4-Functions Theorem; [2])
Let D be a finite distributive lattice and f1, f2, f3, f4 ∶D → R≥0, such that

f1(a) ⋅ f2(b) ≤ f3(a ∨ b) ⋅ f4(a ∧ b) for all a, b ∈ D.

This implies

f1(A) ⋅ f2(B) ≤ f3(A ∨B) ⋅ f4(A ∧B) for all A,B ⊆D,
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2.2 The main theorem

where fi(A) = ∑
a∈A

fi(a) and A∨B = {a∨b ∣ a ∈ A,b ∈ B} and A∧B = {a∧b ∣ a ∈ A,b ∈ B}.
To make use of this, we need the notion of stochastic dominance:

Definition 9 (stochastic dominance)
Let d1 and d2 be distributions on a finite and partially ordered set Ω. d1 is stochastically
dominated by d2, in symbols d1 ≤stoch d2, if and only if

∑
a∈F

d1(a) ≤ ∑
a∈F

d2(a)
for all upsets F ⊆ Ω.

Now, using this definition of stochastic dominance, we will show and prove a version of
Strassen’s Theorem on stochastic dominance:

Proposition 1 (A discrete version of Strassen’s theorem on stochastic dominance)
Let d1, d2 be random distributions on the finite partially ordered set Ω. Now d1 ≤stoch
d2implies the existence of such a distribution q(x, y) on Ω ×Ω with

q(x, y) > 0 implies x ≤ y

and

∑
y∈Ω

q(x, y) = d1(x) for all x and ∑
x∈Ω

q(x, y) = d2(y) for all y.

This is a special case of Strassen’s theorem on stochastic dominance, [47]. We will
present a rather short proof, which relies on the MaxFlow-MinCut - Theorem. Another
proof for a discrete version of Strassen’s theorem is contained in [4]. This one is based
on Farkas’ Lemma. The formulation and a proof sketch of this theorem can also be
found in Problem set A of Steve Lalley’s Summer Course [37], so he –at least– is aware
of this version of Strassen’s theorem.
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A

s

y′

B

d2(y)
t

x

d1(x)
with capacity ∞

edges (x, y′) for all x ≤ y

Figure 2.4: The network-flow N.

Proof. Consider the network N in Figure 2.4. It consists of a source s, a sink t and
two blocks of vertices A ∶= {x ∣ x ∈ Ω} and B ∶= {y′ ∣ y ∈ Ω}. Further, s is connected to
every x ∈ A with an edge of capacity d1(x) and every vertex y′ ∈ B is connected to t
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with an edge of capacity d2(y). Finally, there is an edge (x, y′) with x ∈ A and y′ ∈ B
of capacity ∞, if x ≤ y.

Let us assume, there is a network flow from s to t of value 1. This implies, the flow
uses the complete capacity of all edges, to which s is adjacent to, because the sum of
their weights is ∑x∈A d1(x) = 1, because d1 is a distribution. Obviously, the same holds
for all edges, which end in t.
Let q(x, y) be the value of the flow on the edge (x, y′). Obviously, q(x, y) = 0 if x /≤ y,
because F does not contain the edge (x, y′). Further, ∑y∈Ω q(x, y) = d1(x) for all x ∈ Ω,
because the incoming flow d1(x) has to match the outgoing flow ∑y q(x, y) at the vertex
x. By symmetry, we also get ∑x q(x, y) = d2(y) for all y ∈ Ω. So if the assumption was
correct, the proposition is true.

To prove the assumption, first note that any (s, t)-cut C with capacity < ∞ cannot
contain any edge between A and B. Still, for every edge (x, y′) between A and B the(s, t)-cut C has to contain either (s,x) or (y′, t), otherwise it does not separate s from
t. Due to x ≤ x′, the edge (x,x′) exists in N , so C has to contain (s,x) or (x′, t). So
every (s, t)-cut with finite capacity induces a vertex cover of the bipartite graph N ′,
which consists of N without s, t and the edges, which contain s and t.

Next, consider special vertex covers, which are induced by upsets F ⊆ Ω. So let F be
an upset of Ω. Now the set C ∶= {x ∣ x ∉ F} ∪ {y′ ∣ y ∈ F} is a vertex-cover of N ′, which
induces an (s, t)-cut of N : For all x ∈ F and y ∈ Ω ∖ F we have x /≤ y, so (x, y′) is no
edge of N ′. This implies, that all edges (x, y′) of N ′ contain at least one vertex of C,
so the set of edges {(s,x) ∣ x ∉ F} ∪ {(y′, t) ∣ y ∈ F} indeed forms an (s, t)-cut. Further,
the capacity of this cut is 1 − p(F ) + q(F ), and we even now that this is ≥ 1, because
p ≤stoch q is a requirement and F is an upset, so p(F ) ≤ q(F ).
Now, let C be an arbitrary (s, t)-cut with finite capacity. Let CL ⊆ A be the set of
vertices in A being incident to an edge of the cut C. Formally, we have CL ∶= {x ∈ Ω ∣(s,x) ∈ C}. In the same manner and CR ∶= {y′ ∣ y ∈ Ω and (y′, t) ∈ C} is the set of
vertices in B which touch an edge of C. We want to show the existence of an upset U ,
which induces a vertex cover, such that its cut has –at least– no bigger capacity. To
do so, consider L = A ∖CL and R ∶= B ∖ CR. Further, let U = {y ∈ Ω ∣ ∃x ∈ L ∶ x ≤ y}
be the upset spanned by L and U ′ ∶= {y′ ∣ y ∈ Ω and ∃x ∈ L ∶ x ≤ y} its image in B, see
Figure 2.5.
Now, we claim U ′ ⊆ CR. To argue for this, consider an element y′ ∈ U ′ ∖CR. By defi-
nition of U ′ there is some x ∈ L with x < y. So there is an edge (x, y′) ∈ N and neither
x nor y′ touch an edge of C. This implies we have the path s, (s,x), x, (x, y′), y′, (y′, t)
in N ∖C, so C is not a (s, t)-cut. So the claim is true an we have U ′ ⊆ CR.

Now, the capacity of the cut induced by U is not bigger than the capacity of C:
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L
U ′

U

A B

CL

R

CR

Figure 2.5: The subdivision of A and B into CL, L, U , CR, R and U ′. There are no
edges from U to R.

cap(C) = ∑
x∈CL

d1(x) + ∑
y∈CR

d2(y)
= ∑

x∈CL∖U

d1(x) + ∑
x∈CL∩U

d1(x) + ∑
y∈CR∖U

d2(y) + ∑
y∈CR∩U

d2(y)
≥ ∑

x∈CL∖U

d1(x) + ∑
y∈CR∩U

d2(y)
= ∑

x∉U

d1(x) + ∑
y∈U

d2(y)
= cap(U),

This implies, that for every cut C, there is a cut U , induced by an upset, which does
not have a bigger capacity. Besides, every cut, induced by an upset, has a capacity≥ 1. Finally, there is a (s, t)-cut with capacity 1 (for example the set of edges, adjacent
to t), so we conclude that 1 is the capacity of the minimum cut. Therefore, by the
MaxFlow=MinCut-Theorem we know, that there is a maximum flow with value 1 and
the assumption is true. This finishes this proof.

Next, we have to make sure, that we indeed have the case of two distributions, stochas-
tically dominating each other if we have border restrictions, which are comparable:

Lemma 3 (stochastic dominance)
Let l, u ∈ Ω∂B with l ≤ u be border conditions, i.e. k-heights on ∂B.
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Further, let dl and du be the corresponding distributions on ΩB, i.e.

du(h) ∶= {
1

∣ΩB∣u∣
if h ∈ ΩB∣u

0 else
and

dl(h) ∶= {
1
∣ΩB∣l∣

if h ∈ ΩB∣l

0 else

for all h ∈ ΩB. This implies
dl ≤stoch du.

To prove this lemma, we need another one, which we formulate and prove for starters:

Lemma 4

Let D ⊆ ΩB be the smallest distributive lattice, which contains ΩB∣l ∪ΩB∣u. Now, ΩB∣l

is a down set in D and ΩB∣u forms an upset.

Proof. Let h ∈ ΩB∣l and g ∈ D such that g ≤ h. We have to show g ∈ ΩB∣l. Assume
g ∉ ΩB∣l. We have g ∈ D ⊂ ΩB , so g is a valid k-height, but does not comply with the
border conditions, imposed by l. This means there is a face f ∈ B sharing an edge with
a face f ′ ∈ ∂B, such that ∣g(f)− l(f ′)∣ > 1. Even more, we know g(f) < l(f ′)−1, because
g < h ∈ ΩB∣l implies g(f) ≤ h(f) ∈ {l(f ′) − 1, l(f ′), l(f ′) + 1}.
On the other hand, we know u ≥ l, which yields u(f ′) ≥ l(f ′). This means, for all
h′ ∈ ΩB∣l ∪ ΩB∣u we have h′(f) ≥ l(f ′) − 1, implying (minD)(f) ≥ l(f ′) − 1, because(minD)(f ′) = min{h′(f ′) ∣ h′ ∈ ΩB∣l ∪ΩB∣u}. So g(f) < (minD)(f), which contradicts
g ∈ D!
To show that ΩB∣u is an upset in D, the arguments above suffice, due to the symmetry
of all conditions.

Now it is time to prove the lemma on stochastic dominance stated above:

Proof. (of Lemma 3)
Due to du(h) = dl(h) = 0 for all h ∈ ΩB ∖ (ΩB∣u ∪ΩB∣l) we can restrict ourselves to the
distributive lattice D, spanned by ΩB∣u∪ΩB∣l. In this lattice, ΩB∣u is an upset and ΩB∣l

forms a down set, according to Lemma 4.
To show dl ≤stoch du, let F be an upset of D. We have to show

0 ≤ ∑
a∈F

u(a) − ∑
a∈F

l(a)
=
∣F ∩ΩB∣u∣
∣ΩB∣u∣ −

∣F ∩ΩB∣l∣
∣ΩB∣l∣ ,

which is equivalent to

(*) 0 ≤ ∣F ∩ΩB∣u∣ ⋅ ∣ΩB∣l∣ − ∣F ∩ΩB∣l∣ ⋅ ∣ΩB∣u∣.
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To prove this equation, we apply Theorem 3, the Ahlswede-Daykin 4-functions theorem.
So we need four functions. These are defined by

f1(h) ∶= χF∩ΩB∣l
(h)

= { 1 if h ∈ F ∩ΩB∣l

0 else
,

f2(h) ∶= χΩB∣u
(h),

f3(h) ∶= χF∩ΩB∣u
(h), and

f4(h) ∶= χΩB∣l
(h)

for all h ∈ D. Now, for h, g ∈ D with f1(h) ⋅f2(g) = 1 we know h ∈ F ∩ΩB∣l and g ∈ ΩB∣u.
This implies h ∨ g ∈ ΩB∣u, because h ∨ g ≥ g and ΩB∣u forms an upset. It also implies
h ∨ g ∈ F , because F is again an upset and h ∈ F .
Together it yields h∨g ∈ F∩ΩB∣u, i.e. f3(h∨g) = 1. On the other hand h∧g ≤ h ∈ ΩB∣l and
ΩB∣l is a down set, so we have h∧g ∈ ΩB∣l and f4(h∧g) = 1. Further, f1(h) ⋅f2(g) ∈ {0,1}
for all h, g ∈D. This implies:

f1(h) ⋅ f2(g) ≤ f3(h ∨ g) ⋅ f4(h ∧ g) for all h, g ∈ D
This means, we can apply the 4-functions theorem. Doing so with A = B =D yields:

0 ≤ f3(D ∨D) ⋅ f4(D ∧D) − f1(D) ⋅ f2(D)
= f3(D) ⋅ f4(D) − f1(D) ⋅ f2(D)
= χF∩ΩB∣u

(D) ⋅ χΩB∣l
(D) − χF∩ΩB∣l

(D) ⋅ χΩB∣u
(D)

= ∣F ∩ΩB∣u∣ ⋅ ∣ΩB∣l∣ − ∣F ∩ΩB∣l∣ ⋅ ∣ΩB∣u∣,

which is equation (*). So (*) holds, which implies that u stochastically dominates l.

With this lemma, we are able to establish our coupling. It tells us, that we can apply
Proposition 1 to two border conditions u and l, such that u ≥ l. This yields a distribution
q, which will allow us to successfully couple two instances of our block Markov chain
MB.
Before doing so, we first want to state three more theorems, which we need later to
bound the mixing time of the block Markov chain, via the coupling we can construct
by the application of Strassen’s theorem.

Theorem 4 (Dyer and Greenhill;first part of Theorem 2.1, [17])
Let (Xt, Yt) be a coupling for the Markov chain M and let d be any integer valued metric
defined on Ω ×Ω. Suppose that there exists β < 1 such that

E[d(Xt+1, Yt+1)] ≤ β ⋅ d(Xt, Yt)
for all t. Let D be the maximum value that d achieves on Ω×Ω. The mixing time τM(ε)
of M satisfies

τM(ε) ≤ log(D ⋅ 1
ε
)

(1 − β) .
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Theorem 5 (Dyer and Greenhill;Theorem 2.2, [17])
Let d be an integer-valued metric defined on Ω × Ω which takes values in {0, ...,D}.
Let S be a subset of Ω × Ω such that for all (Xt, Yt) ∈ Ω × Ω there exists a path Xt =
Z0,Z1, . . . ,Zr = Yt between Xt and Yt such that (Zl,Zl+1) ∈ S for 0 ≤ l < r and

r−1∑
l=0

d(Zl,Zl+1) = d(Xt, Yt).
Define a coupling (X,Y ) ↦ (X ′, Y ′) of the Markov chain M on all pairs (X,Y ) ∈ S.
Apply this coupling along the given sequence from Xt to Yt to obtain the new sequence
Z0′ ,Z1′ , . . . ,Zr′. Therefore (Xt, Yt) is also a coupling for M , where Xt+1 = Z0′ and
Yt+1 = Zr′. Moreover, if there exists β ≤ 1 such that E[d(X ′, Y ′)] ≤ β ⋅ d(X,Y ) or all(X,Y ) ∈ S we have

E[d(Xt+1, Yt+1)] ≤ β ⋅ d(Xt, Yt).
Theorem 6 (Randall and Tetali, Proposition 4 of [42])
Let M and M̃ be two reversible Markov chains on the same state space Ω with the
same stationary distributions π, and let π⋆ ∶= minx∈Ω π(x). Let E(M) be the set of
transitions of M and E(M̃) be the set of transitions of M̃ . For each pair (u, v) ∈ E(M̃)
define a path γuv, which is a sequence u = u0, u1, . . . , uk = v of transitions of M , i.e.(ui, ui+1) ∈ E(M) for all i. For (x, y) ∈ E(M) let

Γ(x, y) ∶= {(u, v) ∈ E(M̃) ∣ (x, y) ∈ γuv}.
Further let

A ∶= max
(x,y)∈E(M)

⎧⎪⎪⎨⎪⎪⎩
1

π(x)⋅M(x,y) ⋅ ∑
(u,v)∈Γ(x,y)

∣γuv ∣ ⋅ π(u) ⋅ M̃(u, v)
⎫⎪⎪⎬⎪⎪⎭ ,

where M(x, y) ∶= PrM(Xt+1 = y ∣ Xt = x), i.e. the transition probability from x to y in
one step / the entry associated to x and y in the transition matrix M of M . If the
second largest eigenvalue λ1 of M̃ complies with λ1 ≥ 1

2
, we have for every 0 < ε < 1 the

mixing time τM(ε) is bounded by:

τM(ε) ≤ 4 log( 1
ε⋅π⋆
)

log( 1
2ε
) ⋅A ⋅ τM̃(ε)

As announced, after these three theorems we can finally define our coupling P of the
block Markov chain MB:

Definition 10 (the coupling)
The coupling P on Ω ×Ω transforms (h, g) ∈ Ω ×Ω as follows:
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Input: (h, g) ∈ Ω ×Ω
Output: (h′, g′) ∈ Ω ×Ω
choose p←Ð [0,1] uniformly at random

if p ≤ 1
2
then

return (h′, g′)←Ð (h, g)
else

choose a block B ←Ð B uniformly at random
if h∣∂B equals g∣∂B then

// we have ΩB∣∂h = ΩB∣∂g

choose (x, y) ∈ ΩB∣∂h ×ΩB∣∂g with x = y uniformly at random

else

if {h∣∂B , g∣∂B} is a cover relation of Ω∂B then
the uniform distributions dg, dh of the admissible allocations on
L = spandist.lattice{ΩB∣h ∪ΩB∣g} stochastically dominate each
other according to Lemma 3. This means Proposition 1 can be
applied, so
choose (x, y) ∈ ΩB∣h ×ΩB∣g according to the distribution
q(h∣∂B , g∣∂B) of Proposition 1.

else

determine (x, y) according to Theorem 5

define h′ via h′(f) ∶= { x(f) if f ∈ B
h(f) else

define g′ via g′(f) ∶= { y(f) if f ∈ B
g(f) else

return (h′, g′)
Algorithm 3: One step of the coupling P of the block Markov chain MB.

Here, h∣∂B is the restriction of h to the faces of ∂B, so {h∣∂B , g∣∂B} is a cover relation
if and only if there is a face δ ∈ ∂B, such that h(f) = g(f) for all f ∈ ∂B ∖ {δ} and
h(δ) ∈ {g(δ) − 1, g(δ) + 1}.
Example 2 (an example of a coupling step)
To exemplify, how P works, let us consider an example. Let B be the block of three
faces in Figure 2.6 with a border of seven faces.

a

c

δ 1

1

1

0

2

2

b

Figure 2.6: The block B of three blue faces with seven red faces on the border.

Let l and u be two border conditions for B, i.e. 2-heights on ∂B. Their values on the
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2.2 The main theorem

faces is given in Figure 2.6. Further, let l(δ) = 1 and u(δ) = 2.
Now, write a k-height h as (h(a), h(b), h(c)). The lattice L, spanned by the sets of
admissible allocations ΩB∣l and ΩB∣u is L = ((0,1,1, ), (1,1, 1), (1, 2, 1), (1, 1, 2), (1,2, 2)),
as shown in Figure 2.7.

0

1

1

1

1 1

1

1 2

2

1 1

2

1 2

Figure 2.7: The distributive lattice of k-heights on B.

Since l ≤ u, we make use of Proposition 1 in the coupling P . Here, the distributions are
dl = (15 , 15 , 15 , 15 , 15) and du = (0, 14 , 14 , 14 , 14) (indexed by the order in L). It is easy to check,
that indeed dl ≤stoch du, because L has only five upsets, which we have to consider.
Setting up the network flow N for this lattice L and and finding a flow of value 1 yields
a (not unique) distribution

q ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1
20

1
20

1
20

1
20

0 1
5

0 0 0
0 0 1

5
0 0

0 0 0 1
5

0

0 0 0 0 1
5

⎞⎟⎟⎟⎟⎟⎟⎠
.

It means, that (u, l) is updated to (u+, l+) on B with probability qu+,l+. Note that the
blue zeros are imposed by the condition x /≤ y⇒ q(x, y) = 0.
This coupling leads to E(d(l+, u+)) = 1

20
⋅ 1 + 1

20
⋅ 2 + 1

20
⋅ 2 + 1

20
⋅ 3 = 2

5
< 1. If for all other

blocks B′ ∈ B and and all other pairs of border conditions this expectation is ≤ 1, the
main theorem would show that the up/down Markov chain is indeed rapidly mixing.

Still it is not clear, how the conditions stated in Theorem 2 suffice to apply Theorem 5,
which requires, that the expected distance after one coupling step, applied to a cover
relation is < 1. To establish this link, consider the following lemma:

Lemma 5 (expected distance after one coupling step applied to a cover relation)
Let δ ∈ F (G) be a face and l < u be two k-heights, such that l(δ) + 1 = u(δ) and
l(f) = u(f) for all f ∈ ∂F (G) ∖ {δ}, i.e. (l, u) is a cover relation of Ω. Further, let
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2.2 The main theorem

(l+, u+) be a pair of random variables, distributed according to the coupling P applied
to (l, u) and

β ≥ 1 + 1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

EB,δ −#{B ∈ B ∣ δ ∈ B}⎞⎠
for all faces δ ∈ F (G), as postulated in Theorem 2. This implies

E(d(u+, l+)) ≤ β.
Proof. First, remember the definition of EB,δ:

EB,δ ∶= max
(l,u)∈CB,δ

(E(ω(u+B)) −E(ω(l+B))) ,
where CB,δ is the set of cover relations of Ω∂B , which differ in δ. This implies EB,δ ≥
E(ω(u+B)) −E(ω(l+B)) for our fixed cover relation (l, u), so we have

β ≥ 1 + 1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

E(ω(u+B)) −E(ω(l+B)) −#{B ∈ B ∣ δ ∈ B}⎞⎠
Next, let us assume that the coupling P chooses a block B, such that δ ∈ ∂B. So
let (l+B , u+B) ∈ ΩB∣l × ΩB∣u be a pair of random variables, distributed according to q of
Proposition 1.
Now l < u ensures (l+B) ≤ (u+B), due to the construction of the coupled distribution q.
So we have l+B(f) ≤ u+B(f) for all faces f ∈ B and therefore

∣u+B(f) − l+B(f)∣ = u+B(f) − l+B(f) for all f ∈ B.
This implies:

E(d(u+B , l+B)) = E( ∑
f∈F (G)

∣u+B(f) − l+B(f)∣
= E(∑

f∈B

u+B(f) − l+B(f)) + 1
= E(∑

f∈B

u+B(f)) −E(∑
f∈B

l+B(f)) + 1
= E(ω(u+B)) −E(ω(l+B)) + d(u, l)

Note, that the coupling P does not change the values of the pair of k-heights outside
of the block B (or on its border) at all, so E(ω(u+B)) − E(ω(l+B)), which is only esti-
mated inside of B, captures the complete change of the distance. Further, that u+B is
distributed uniformly in ΩB∣u, because P is a coupling of the up/down Markov chain
M , which chose it uniformly at random from ΩB∣u. Therefore, the E(u+B), which occurs
here is the same as in the definition of EB,δ! Obviously, the same holds for l+B and
E(l+B), so we move here from a pair of coupled random variables to two independent
random variables, both uniformly distributed on their corresponding sets of k-heights!
This crucial step enables us, to find bounds for EB,δ later for at least some families of
blocks.
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2.2 The main theorem

To prove the claim, note, that whenever P chooses a block B, such that δ ∈ B, the
coupling returns a pair of equal k-heights, so the distance is decreased by 1. On the
other hand, of δ is neither in B nor in ∂B, the distance is not changed by the coupling.
Finally, if and only if δ ∈ ∂B, the distance might be increased by E(u+B)−E(l+B). These
considerations lead to:

E(d(u+, l+)) = 1 +
1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

E(d(u+B , l+B)) −#{B ∈ B ∣ δ ∈ B}⎞⎠
= 1 +

1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

E(ω(u+B)) − E(ω(l+B)) −#{B ∈ B ∣ δ ∈ B}⎞⎠
≤ 1 +

1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

EB,δ −#{B ∈ B ∣ δ ∈ B}⎞⎠
≤ β

So the claim is also true and the expected distance of a cover relation of Ω after one
step of the coupling P is bounded by β < 1.

Now, we collected all tools which are needed to finally prove the main theorem.

Proof. (of Theorem 2)
Let (l, u) be a cover relation of Ω. So u and l are the same except on one face δ ∈ F (G),
where l(δ) + 1 = u(δ). Let (u+, l+) be a pair of random variables, resulting in the
application of one step of the coupling P to (u, l). Next, Lemma 5 tells us, that the
expected distance between u+ and l+ is at most β < 1, so we can apply Theorem 5, the
path coupling theorem of Dyer and Greenhill.
The yields:

E(d(h+, g+)) ≤ β ⋅ d(h, g)
for all (h, g) ∈ Ω×Ω, where (h+, g+) is a pair of random variables, distributed according
to the application of one step of P to (h, g). This means, the application of Theorem 4
is possible. It yields

τMB(ε) ≤ log(D ⋅ 1
ε
)

1 − β
.

The last step of this proof is the translation of this bound into a bound of τM(ε), the
mixing time of our up/down Markov chain. This is achieved with the help of Theorem 6.
It needs a bound to A, which was defined as

A ∶= max
(x,y)∈E(M)

⎧⎪⎪⎨⎪⎪⎩
1

π(x)⋅M(x,y) ⋅ ∑
(u,v)∈Γ(x,y)

∣γuv ∣ ⋅ π(u) ⋅ M̃(u, v)
⎫⎪⎪⎬⎪⎪⎭ ,

where γu,v is a path of transitions of M for every transition u ↦ v of MB and Γ(x, y) is
the set of all these paths, which use the transition x ↦ y of M .
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2.2 The main theorem

We do not define these paths explicitly, but ΩB∣l is a distributive lattice of k-heights,
so we can apply Lemma 2 and know, that there is a set of paths for every u, v ∈ ΩB∣l

such that ∣γu,v ∣ ≤ k ⋅ ∣B∣ ≤ k ⋅ b with b ∶=max{∣B∣ ∶ B ∈ B}.
Further, we haveM(x, y) = 1

4⋅∣F (G)∣ for x ≠ y, whereM(x, y) is the transition probability
from x to y in one step of M .
Now, for a fixed transition x↦ y of M let f be the face which is touched. Now we have

Axy ∶=
1

π(x)M(x, y) ∑
(u,v)∈Γ(x,y)

∣γu,v ∣ ⋅ π(u) ⋅MB(u, v)
=

1

M(x, y) ∑
(u,v)∈Γ(x,y)

∣γu,v ∣ ⋅MB(u, v)
≤ 4 ⋅ ∣F (G)∣ ∑

(u,v)∈Γ(x,y)

k ⋅ b ⋅MB(u, v)
≤ 4 ⋅ k ⋅ b ⋅ ∣F (G)∣ ∑

{B∈B∣f∈B}

∑
u∈ΩB

∑
v∈ΩB∣u

MB(u, v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= 4k ⋅ b ⋅ ∣F (G)∣ ∑
B∈B,f∈B

∣ΩB ∣
≤ 4k ⋅ b ⋅ ∣F (G)∣ ∑

B∈B,f∈B

(k + 1)b
≤ 4k ⋅ (k + 1)b ⋅ b ⋅m ⋅ ∣F (G)∣,

which directly yields A =max{Axy ∣ (x, y) ∈ E(M)} ≤ 4k ⋅(k+1)b ⋅b ⋅m ⋅ ∣F (G)∣. Further,
we have 1

π⋆
= ∣Ω∣ ≤ (k + 1)∣F (G)∣. Now Theorem 6 yields:

τM(ε) ≤ 4 log( 1
ε⋅π⋆
)

log( 1
2ε
) ⋅A ⋅ τMB(ε)

≤
4 log(1

ε
⋅ (k + 1)∣F (G)∣)
log( 1

2ε
) ⋅ (4k ⋅ (k + 1)b ⋅ b ⋅m ⋅ ∣F (G)∣) ⋅ log(D ⋅ 1ε)(1 − β)

≤
16 ⋅ b ⋅m ⋅ k ⋅ (k + 1)b

1 − β´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cB,k

⋅
(log(1

ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅F (G)

ε
)

log( 1
2ε
) ,

which is, what was claimed in the first hand.

Let us close this section with a corollary of Theorem 2. It simplifies the condition of β,
but makes it harder to find such a β:

Corollary 1

Let B be a set of blocks, such that every face δ ∈ F (G) occurs in m blocks and in ≤ ℓ
borders of blocks. Let E ∶=maxB∈B,δ∈∂B EB,δ and β ∈ R such that

1 > β ≥ 1 + 1

2∣B∣ (ℓ ⋅E −m).
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2.3 Toroidal triangle grid graphs and triangle grid graphs

This implies

τM(ε) ≤ cB,k ⋅ (log(
1
ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅∣F (G)∣

ε
)

log( 1
2ε
) ,

where b ∶=maxB∈B{∣B∣} and cB,k ∶= 16⋅b⋅m⋅k⋅(k+1)b

1−β
, i.e. Theorem 2 is applicable.

Proof. We have

β ≥ 1 +
1

2∣B∣(ℓ ⋅E −m)
≥ 1 +

1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

E −#{B ∈ B ∣ δ ∈ B}⎞⎠
≥ 1 +

1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

EB,δ −#{B ∈ B ∣ δ ∈ B}⎞⎠
So we can apply Theorem 2 and get the desired bound to the mixing time τM(ε) of the
up/down Markov chain M .

2.3 Toroidal triangle grid graphs and triangle grid graphs

Let us start with a simple, straight forward application of Corollary 1.
To do so, we introduce toroidal triangle grid graphs.
Starting with the usual, infinite triangle grid with vertices Z2 and edges

{((x, y), (x, y + 1)), ((x, y), (x + 1, y)), ((x, y), (x + 1, y + 1)) ∣ x, y ∈ Z},
we extract a finite rhombus and glue its upper border to the lower one and its left
border to the right one, as shown in Figure 2.8.
This results in a non planar graph G, which covers a torus with a triangle grid. So we
call G a toroidal triangle grid graph. Every vertex of G has degree 6, so G is regular.
Further, all faces are triangles and the simple structure if G allows us to create a set of
Blocks B, which cover the faces of G nicely:

Theorem 7

Let G be a toroidal triangle grid graph of size n and let Ω be the set of its 2-heights.
The up/down Markov chain M is rapidly mixing on G, i.e.

τM(ε) ≤ 699 840 ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
) .

Proof. We apply block coupling as introduced earlier. For every vertex v ∈ V (G), we
add one block Bv to the family of blocks B. This block Bv consists of the six faces,
which touch v, i.e. v is on the border of them.
This ensures, that every face f is contained in exactly m = 3 blocks, since every face
contains three vertices v1, v2, v3 such that f ∈ Bv1 , f ∈ Bv2 , and f ∈ Bv3 . Further, f is
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Figure 2.8: A rhombic section of the triangular grid. identifying blue and black vertices
with the same name gives a toroidal triangle grid graph.

adjacent to three other faces, namely f1, f2, and f3. Every block B, such that f ∈ ∂B
has to contain one of them. But each fi shares two of its three vertices with f . So only
the third vertex wi creates a block Bwi

, such that fi ∈ Bwi
and f ∈ ∂Bwi

. This means,
that for every face f there are exactly ℓ = 3 blocks B such that f is on the border of B.

To estimate EB,δ, note, that due to symmetry it does neither depend on δ, nor on
B. All blocks B are shifted δ the same graph. This graph has a lot of symmetries,
containing rotations, which permit to rotate a fixed face δ to every of the six faces on
the border of B. In total there are 729 border conditions, or elements in Ω∂B. They
result in 486 cover relations (u, l), or pairs of border conditions, which differ in δ.
By complete enumeration with a small c++ program, we computed

E(ω(u+B)) = 1

∣ΩB∣u∣ ∑u+
B
∈ΩB∣u

ω(u+B) = 1

∣ΩB∣u∣ ∑u+
B
∈ΩB∣u

∑
f∈B

u+B(f)
for all border conditions u, which implies E(ω(u+B))−E(ω(l+B)) for every cover relation(l, u). By doing so, we learned

max
(u,l)
(E(ω(u+B)) − E(ω(l+B))) ≈ 0.79866.

Double counting the pairs of faces and blocks, which contain each other leads to 6 ⋅ ∣B∣ =
3 ⋅ ∣F (G)∣. So we have EB,δ ≤ 0.8 and ∣B∣ = 1

2
⋅ ∣F (G)∣. Therefore:
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f1

f2

f3

δ

Figure 2.9: All six blocks, which contain δ (blue), or contain δ on its border (red).

1 +
1

2∣B∣(ℓ ⋅E −m) = 1 +
1

2 ⋅ 1
2
⋅ ∣F (G)∣ (3 ⋅E − 3)

≤ 1 +
1

∣F (G)∣ (3 ⋅ 0.8 − 3)
≤ 1 −

6

10 ⋅ ∣F (G)∣
=∶ β < 1

Now we can apply Corollary 1. Using b =max{∣B∣ ∶ B ∈ B} = 6, this leads to

cB,k =
16 ⋅ b ⋅m ⋅ k ⋅ (k + 1)b

1 − β

=
16 ⋅ 6 ⋅ 3 ⋅ 2 ⋅ (3)6

6
10⋅∣F (G)∣

,

= 699 840 ⋅ ∣F (G)∣
and therefore implies

τM(ε) ≤ cB,k ⋅
(log(1

ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅∣F (G)∣

ε
)

log( 1
2ε
)

= 699 840 ⋅ ∣F (G)∣2 ⋅ (log(1ε ) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
)

∈ O(∣F (G)∣3 ⋅ log(∣F (G)∣)
log( 1

2ε
) + ∣F (G)∣3 + ∣F (G)∣2 ⋅ log(1

ε
)) ,
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which proves, what was claimed.

Besides this theorem, we also considered other subsections of the triangle lattice. They
are covered by the following theorem:

Corollary 2

Let G be a finite subset of the triangle grid graph. Let ∂G be the border of G and b a
2-height on ∂G. The up/down Markov chain M is rapidly mixing on ΩG and ΩG∣b, i.e.

τM(ε) ≤ 699 840 ⋅ ∣F (G)∣2 ⋅ (log(1ε ) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
)

in both cases.

Proof. To prove this theorem, we use the same family of blocks B, which we already
applied in Theorem 7. So for every vertex v ∈ V (G) we have one block Bv, which
consists of all faces in G, which have v on the border. Opposing to Theorem 7, we now
have different shapes of blocks. Especially, if the vertex v is on the border of G, the
resulting block is new.

Figure 2.10: Blocks of type 1 and 1b with 1 blue face, 1 red face on the border (and 2
magenta external border constraints).

Figure 2.11 up to Figure 2.14 show these truncated sixgons. The faces in ∂B are
indicated in magenta, so b might create additional border constraints for the case of
ΩG∣b, but δ can never be one of the magenta faces. Further, the edges/ border between
G and ∂G is indicated in green, to clarify the situation.

Figure 2.11: Blocks of type 2 and 2b with 2 blue faces, 2 red faces on the border (and
2 magenta external border constraints).

Note, that there are many more cases, namely for any presented case, every subset of
red faces might be outside of G. This obviously does not matter for the case of ΩG∣B,
because if EB,δ is maximal for a face δ, which is in fact not element of ∂B, but an
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2.3 Toroidal triangle grid graphs and triangle grid graphs

external restraint (i.e. magenta instead of red), the computed ’wrong’ E is bigger than
the actual one, so if we can apply our machinery to the computed E, we are safe.

Figure 2.12: Blocks of type 3 and 3b with 3 blue faces, 3 red faces on the border (and
2 magenta external border constraints).

But it does not even matter for the case of ΩG. First one might think, that the additional
red conditions, might result in a smaller E, but a value of 1 for the faces, which are
red but not present, does not influence ΩG here, because we are considering 2-heights,
where every possible value accepts the value 1 as a neighbour. So for the special case
of 2-heights, which we consider, the additional red faces do not matter.
For all these type of blocks B, we estimated EB by complete enumeration with c++
programs. The resulting values of are presented in Table 2.1.

Figure 2.13: Blocks of type 4 and 4b with 4 blue faces, 4 red faces on the border (and
2 magenta external border constraints).

Figure 2.14: Blocks of type 5 and 5b with 5 blue faces, 5 red faces on the border (and
1 magenta external border constraint).

As one can easily check, all values of EB are < 0.8. Further, as in the proof of Theorem 7,
every face is contained in exactly three blocks and is on the border of at most three
blocks. This means, we can define β as we did before as

β ∶= 1 −
6

10 ⋅ ∣F (G)∣
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2.4 Toroidal rectangular grid graphs

without external constraints

Type E ∣B∣/∣∂B∣
1 0.5 1/1
2 0.6 2/2
3 0.667 3/3
4 0.742 4/4
5 0.765 5/5

with external constraints

Type E ∣B∣/∣∂B∣/ external constraints
1b 0.5 1/1/2
2b 0.6 2/2/2
3b 0.667 3/3/2
4b 0.742 4/4/2
5b 0.765 5/5/1

Table 2.1: EB of truncated sixgons for k = 2 . Although values are identical here, they
might in general differ.

and end up with the mixing time

τM(ε) ≤ 699 840 ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
) .

Now we know, that for the context of 2-heights on (toroidal) triangle grid graphs,
everything is fine, but sadly, we are not able to present results for bigger k, because all
kinds of blocks which we tried (and were able to compute) failed.

2.4 Toroidal rectangular grid graphs

This section covers the rectangular lattice. To be more specific, we consider finite,
toroidal sections of the rectangular lattice. Let us start with a simple, straight forward
application of Corollary 1. To do so, we introduce toroidal rectangular grid graphs.
As done in the previous section done with the triangle grid to create toroidal triangle
grids, we start with the usual, infinite rectangular grid. This means we have vertices
Z
2 and edges {((x, y), (x, y + 1)), ((x, y), (x + 1, y)) ∣ x, y ∈ Z},

we extract a finite rhombus and glue its upper border to the lower one and its left
border to the right one, as shown in Figure 2.15.

Theorem 8 (2-heights on toroidal rectangular grid graphs mix rapidly )
The up/down Markov chain M rapidly mixes the set of 2-heights of toroidal rectangular
lattice grid graphs G, i.e.

τM(ε) ≤ 512 ⋅ 340 ∣F (G)∣
2 ⋅ (log(1

ε
) + ∣F (G)∣ ⋅ log(3)) ⋅ log(2⋅∣F (G)∣

ε
)

1.44 ⋅ log( 1
2ε
) .
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⋮ ⋮
⋱

. . .

. . .

1

a

b

1 2 3

1321

b

a

Figure 2.15: A rectangular section of the rectangle grid. identifying blue and black
vertices with the same name gives a toroidal rectangular grid graph.

Proving this theorem was much harder than expected. We finally succeeded with blocks,
which are squares of 6 × 6 faces. To compute the expected distance EB =maxδ∈∂B EB,δ

for these blocks, straightforward complete enumeration of all cases did not work, because
there are too many cases, to handle without using highly optimized c++ programs and
a cluster, which we did. Due to the level of optimization, the software was not able to
handle any other case any more, so it was not possible to check, whether it returned
the right result. Therefore, we made use of transfer matrices, to bundle a lot of cases
together.

To do so, we separate ∂B into the sides S, the lower border L and upper border U
(more details are given in the next definition). The goal here is, to compute for every
fixed k-height on the sides s ∈ ΩS two matrices M̂ ∈ R∣ΩL∣×∣ΩU ∣ and Ŵ ∈ R∣ΩL∣×∣ΩU ∣, such
that for an upper border-constraint ν ∈ ΩU and a lower border-constraint ℓ ∈ ΩL we
have M̂ℓ,ν = ∣ΩB∣b∣ and Ŵℓ,ν = ∑h∈ΩB∣b

ω(h), where b is the total border constraint for
B, consisting of s, ν, and ℓ.
This means, instead of computing all k-heights for all border conditions, we now have to
compute two matrices, for each k-height on the side, which is a subset of the border. If
the matrices can be computed efficiently and are not to big, this speeds up the process
a lot (for the case of 6 × 6 squares, the computation time changed from two weeks on
a cluster to 1.5 hours on one computer, but it depends on the exact structure of the
blocks to consider).
These matrices Ŵ and M̂ are created layer by layer, using a transfer matrix method.
This allows us to compute the expected height E(ω(h)) of the set of k–heights ΩB∣b

much faster than the recursive method, because we do not have to create every k-height
one by one. On the other hand, it needs (in some cases) a lot more memory, because
all k-heights are considered at the same time, using matrix operations. The method we
use here is adapted from transfer matrices as Stanley introduces them in chapter 4.7 of
his book [46].
So let us explain, how to create M̂ and Ŵ :
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2.4 Toroidal rectangular grid graphs

Definition 11 (layer decomposition)
Let B be a block. A layer decomposition L0,L1, . . . ,Lm of B is a decomposition of the
faces B, such that the layers Li form a partition of B and

∂
⎛
⎝⋃i<jLi

⎞
⎠ ⊆ Lj ,

where ∂M ∶= {f ∈ F (G) ∖M ∣ there is g ∈M, sharing an edge with f} is the border of
M . Further, the upper borderU ⊆ ∂B is the set of face of ∂B, which share an edge with
a face of L0, the sides S ⊆ (∂B ∖ U) are the faces of ∂B, that share an edge with a
face of L1 ∪ . . .∪Lm−1 (and are not part of the upper border). Finally, the lower border
L ⊆ (∂B ∖ (U ∪S)) is the set of faces of ∂B, which are not part of the upper border or
the sides. This implies, they share an edge with a face of Lm!

Next, we say a good layer decomposition of a block B is a layer decomposition, such
that no face of the upper border U shares an edge with a face of L1 ∪ . . . ∪ Lm and
no face of the sides S shares an edge with a face of Lm. Further, we want B to be
symmetric, such that we can assume, δ ∈ U .

Finally, we say, that an lower border-restraint ℓ ∈ ΩL fits to the sides s ∈ ΩS, if there
is a border-constraint b ∈ Ω∂B , which is equal to s on the sides and equal to ℓ on the
lower border and an upper border constraint ν fits to the sides s ∈ ΩS , if it suffices to
corresponding condition.

Note, that every layer decomposition of G is a valid m–height and each m–height is a
valid layer–decomposition, if you assign every face in layer i the value i (or vice versa).

Definition 12 (compatible k-heights)
With ΩLi

being the set of all k-heights on Li, we say h ∈ ΩLi
is compatible with g ∈ ΩLi+1

if and only if h ∪ g ∈ ΩLi∪Li+1 , which is defined by

(h ∪ g)(f) ∶= { h(f) if f ∈ Li

g(x) if f ∈ Li+1
.

This means h∪g is a valid k-height on Li∪Li+1. Further, the matrix Ti ∈ {0,1}ΩLi+1
×ΩLi

with

(Ti)h,g = { 1 if h ∈ ΩLi+1 is compatible with g ∈ ΩLi

0 else

is the layer transfer matrix from layer i to layer i+1. Further, for every layer i we have
a layer compatibility matrix Ci ∈ {0,1}ΩLi

×ΩLi , which is a diagonal matrix with entries

Ci(b)h,h = { 1 if h ∈ ΩLi∣b

0 else
.

So Ci(b) keeps out all entries of k-heights on Li, which are compatible to the border
constraint b and maps all other entries to 0.

Note, that for a good layer decomposition, C0(b) only depends on the upper border U ,
C1(b) up to Cm−1(b) only depend on the sides S and Cm(b) only depends on the lower
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2.4 Toroidal rectangular grid graphs

border L, because the faces of the corresponding layers only share edges with faces of
the corresponding parts of the border!
Now, the crucial observation is the following one:

Lemma 6 (counting with transfer matrices)
Let B be a block and L0, . . . ,Lm be a layer decomposition of B. Consider

v ∶= Tj−1 ⋅ . . . ⋅ T1 ⋅ T0 ⋅ 1∣ΩL0
∣ ∈ N

∣ΩLj
∣
,

where 1∣ΩL0
∣ ∈ N

∣ΩL0
∣ is the all-one-vector. For h ∈ ΩLj

, there are vh different heights

g ∈ ΩL0∪...∪Lj
with g∣Lj

= h, i.e. g(f) = h(f) for all f ∈ ΩLj
.

Further, let b ∈ Ω∂B be a border condition of B. Consider

w ∶= (Cj(b) ⋅ Tj−1) ⋅Cj−1(b) ⋅ . . . ⋅ (C2(b) ⋅ T1) ⋅ (C1(b) ⋅ T0) ⋅ (C0(b) ⋅ 1∣ΩL0
∣) ∈ N∣ΩLj

∣
.

For h ∈ ΩLj ∣b, there are wh different heights g ∈ Ω(L0∪...∪Lj)∣b with g∣Lj
= h. In the case

of h ∈ ΩLj
∖ΩLj ∣b we have wh = 0.

Proof. We prove the first claim inductively. For j = 1 the formula reduces to 1∣ΩL0
∣,

which is for sure correct. Now consider v ∶= Tj−1 ⋅ . . . ⋅ T1 ⋅ T0 ⋅ 1∣ΩL0
∣. By induction

hypothesis we know there are vh heights on L0 ∪ . . .∪Lj equal h if restricted to Lj . We
can continue each of this heights on layer j+1 with the heights {k ∈Hj+1 ∣ (Tj ⋅ei)k = 1}
by definition of Tj . Summing over all i yields:

∑
i∈Hj

Tj ⋅ ei ⋅ vi = ∑
i∈Hj

Tj ⋅ ei ⋅ Tj−1 ⋅ . . . ⋅ T0 ⋅ 1∣ΩL0
∣

= Tj ⋅
⎛
⎝ ∑i∈Hj

ei
⎞
⎠ ⋅ Tj−1 ⋅ . . . ⋅ T0 ⋅ 1∣ΩL0

∣

= Tj ⋅ Tj−1 ⋅ . . . ⋅ T0 ⋅ 1∣ΩL0
∣

To prove the second claim, use the same arguments as above. For the case j = 0, we
have w = C0(b) ⋅1∣Ωl0

∣ which is by definition the characteristic function of ΩL0∣b in ΩL0
.

Inductively as above, Tj ⋅(Cj(b)⋅Tj−1)⋅. . . ⋅(C1(b)⋅T0)⋅(C0(b)⋅1∣ΩL0
∣) counts all k-heights

ΩLj∪((Lj−1∪...∪L0)∣b), which are compatible with b on layer 0 up to j − 1. This implies,(Cj(b) ⋅ Tj) ⋅ (Cj(b) ⋅ Tj−1) ⋅ . . . ⋅ T0 ⋅ (C0(b) ⋅ 1∣ΩL0
∣) makes them compatible on all layers

and ensures wh = 0 for all h ∈ ΩLj
∖ΩLj ∣b.

Corollary 3

Let B be a block with layer decomposition L0, . . . ,Lm and b ∈ Ω∂B a border constraint.
Now with

M ∶= Tm−1 ⋅ (Cm−1(b) ⋅ Tm−2) ⋅ . . . ⋅ (C2(b) ⋅ T1) ⋅ (C1(b) ⋅ T0)
and

W ∶=
m−1∑
j=0

Tm−1 ⋅ (Cm−1(b) ⋅ Tm−2) ⋅ . . . ⋅ (Tj ⋅Cj(b)) ⋅ ωj ⋅ (Tj−1 ⋅Cj−1(b)) ⋅ . . . ⋅ (C1(b) ⋅ T0)
we have ∣ΩB∣b∣ = 1T∣ΩLm ∣

⋅Cm(b) ⋅M ⋅C0(b) ⋅ 1∣ΩL0
∣
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and

E(ω(h)) = 1

∣ΩB∣b∣1
T
∣ΩLm ∣

⋅Cm(b) ⋅W ⋅C0(b) ⋅ 1∣ΩL0
∣,

for a random variable h, living on ΩB∣b uniformly distributed. Here ωj ∈ N
∣ΩLj

∣×∣ΩLj
∣
is

the diagonal matrix, with entries (ωj)h,h = ω(h) = ∑f∈Lj
h(f), i.e. it weights a vector

of k-heights on Lj according to their weight.

Proof. To prove the first claim, apply Lemma 6 and sum up over all entries of v.

To argue for the second claim, consider the contribution cj of layer Lj to E(ω(h))⋅∣ΩB∣b ∣.
This means

cj = ∑
h∈ΩB∣b

∑
f∈Lj

h(f)
and therefore

E(ω(h)) ⋅ ∣ΩB∣b∣ = ∑
h∈ΩB∣b

ω(h) = ∑
h∈ΩB∣b

∑
f∈B

h(f) = m∑
j=0

cj

Now, according to Lemma 6 by applying it twice, we have

(1T∣ΩLm ∣b∣
⋅ (Cm(b) ⋅ Tm−1) ⋅ . . . ⋅Cj(b) ⋅ eh) ⋅ (eTh ⋅Cj(b) ⋅ . . . ⋅ T0 ⋅C0(b) ⋅ 1∣ΩL0

∣b∣)
heights g ∈ ΩB∣b,which are equal to h ∈ ΩLj ∣b on all faces of layer j.
Summing over all h ∈ ΩLj ∣b yields

cj = ∑
h∈ΩLj

1

T
∣ΩLm ∣b∣

⋅ (Cm(b) ⋅ Tm−1) ⋅ . . . ⋅Cj(b) ⋅ eh ⋅ ω(h)²
=(ωj)h,h

⋅eTh ⋅Cj(b) ⋅ . . . ⋅ T0 ⋅C0(b) ⋅ 1∣ΩL0
∣b∣

= 1

T
∣ΩLm ∣b∣

⋅ (Cm(b) ⋅ Tm−1) ⋅ . . . ⋅Cj(b) ⋅ ωj ⋅Cj(b) ⋅ Tj−1 ⋅ . . . ⋅ T0 ⋅C0(b) ⋅ 1∣ΩL0
∣b∣

= 1

T
∣ΩLm ∣b∣

⋅ (Cm(b) ⋅ Tm−1) ⋅ . . . ⋅Cj(b) ⋅ ωj ⋅ Tj−1 ⋅ . . . ⋅ T0 ⋅C0(b) ⋅ 1∣ΩL0
∣b∣,

because ωj and Cj(b) commute (they are both diagonal matrices) and Cj(b)2 = Cj(b)
(Cj(b) is a {0,1}- diagonal matrix). Now, summing up over all columns j proves to the
claim.

To add even some more notation, let TU ∈ R
∣ΩL0

∣×∣ΩU ∣ and TL ∈ R
∣ΩL∣×∣ΩLm ∣ be matrices

with entries

(TU )h,ν ∶= { 1 if h ∈ ΩL0∣ν

0 else
and

(TL)ℓ,h ∶= { 1 if h ∈ ΩLm∣ℓ

0 else

This means TU ⋅ eb = C0(b) ⋅ 1∣ΩL0

and eTb ⋅ TL = 1∣ΩLm
⋅ Cm(b), where eb is the b-th

canonical unit vector, implicitly restricting b to the upper (or lower) border. So we
have ∣ΩB∣b∣ = 1T∣ΩLm∣b∣

⋅M ⋅ 1∣ΩL0∣b
∣ = (TL ⋅M ⋅ TU)b∣L,b∣U
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and

E(ω(g)) = 1

∣ΩB∣b∣1
T
∣ΩLm∣b ∣

⋅W ⋅ 1∣ΩL0∣b
∣ =
(TL ⋅W ⋅ TU)b∣L,b∣U(TL ⋅M ⋅ TU)b∣L,b∣U ,

for a random variable g, uniformly distributed on ΩB∣b.

To conclude, with M̂ = TL ⋅M ⋅ TU and Ŵ = TL ⋅W ⋅ TU we found he two promised
matrices. Next, Algorithm 4 tells us, how to estimate EB,δ, using these two matrices.

Input: block B with good layer decomposition L1, . . . ,Lm

Output: (EB,δ ∣ δ ∈ U)
E ←Ð (0,0, . . . ,0) ∈ R∣U ∣
M ←Ð TU
W ←Ð ω1 ⋅ TU
foreach s ∈ ΩS do

for j = 2 to m do

H ←Ð Cj(s) ⋅ Tj−1
M ←ÐH ⋅M

W ←Ð ωj ⋅M +H ⋅W

M̂ ←Ð TL ⋅M

Ŵ ←Ð TL ⋅W

foreach (l, u) cover relation of ΩU , which fits to the sides s do

δ ←Ð the face ∈ U , u and l differ in

h←Ðmax{∣ Ŵu,ℓ

M̂ℓ,u

−
Ŵℓ,l

M̂ℓ,l

∣ ∶ ℓ ∈ ΩL fitting to s}
if h > Eδ then

Eδ ←Ð h

return E

Algorithm 4: The transfer matrix method to estimate EB,δ for all δ ∈ U .

It is fairly easy to see, that this algorithm indeed returns the correct result, because by
construction we have

h = ∣ Ŵℓ,u

M̂ℓ,u

−
Ŵℓ,l

M̂ℓ,l

∣ = ∣E(ω(u+B)) − E(ω(l+B))∣,
where u+B is a random variable, uniformly distributed on ΩB∣u and l+B is a random
variable, uniformly distributed on ΩB∣l. So the maximum of this term over all cover
relations (l, u) ∈ Ω∂B, which differ in δ is EB,δ. Further we have {(s, ν, ℓ) ∣ s ∈ ΩS , ν ∈
ΩU , ℓ ∈ ΩL and ν, ℓ fit to s} is isomorphic to Ω∂B. The algorithm computes the max-
imum of h on this set, so it estimates EB,δ. Let us consider this method on a small
example:

Example 3

Consider the block B, which is displayed in Figure 2.16 and assume k = 2. The block B
consists of four blue faces and has six faces on its border. The numbers in the blue faces
indicate the layer, each face is assigned to, so L0 consists of one face, L2 of two, and L3

consists again of one face. Therefore, the upper border consists of all faces, which are

40



2.4 Toroidal rectangular grid graphs

adjacent to the blue face, labeled with 0. So U = (u0, u1). In the same manner we get
sides S = (s0, s1) and the lower border L = (l0, l1).

s1

l0 l1

u0 u1
1

s0 2

3

2

Figure 2.16: The block B of Example 3.

This means, we have

ΩL1
= ((0), (1), (2)),

ΩL2
= ((0,0), (0,1), (1,0), (1,1), (1, 2), (2, 1), (2, 2)),

ΩL3
= ((0), (1), (2)), and

ΩU = ΩL = ((0,0), (0,1), (0,2), (1,0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)).

Next,we can establish all transfer matrices, which are introduced in Definition 12. We
have

T1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 1 0
1 1 0
1 1 1
0 1 1
0 1 1
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R∣ΩL2
∣×∣ΩL1

∣ = R7×3,

because (T1)h,g = 1 if h ∈ ΩL2
is compatible with g ∈ ΩL1

and 0 otherwise by definition.
Further, we get

T2 =
⎛⎜⎝

1 1 1 1 1 0 0
1 1 1 1 1 1 1
0 0 1 1 1 1 1

⎞⎟⎠ ∈ R
∣ΩL3

∣×∣ΩL2
∣ = R3×7.

Now, assume, we want to compute the expected height of B for the border b, defined
by u0 = 0, u1 = 2, s0 = 1, s1 = 2, l0 = 1, and l1 = 0. We can easily check by hand, that
only eight such 2-heights exists. They are (1,0,1,0), (1,0,1,1), (1,1,1,0), (1,1,1,1),(1,1,2,0), (1,1,2,1),(1,2,1,1) and (1,2,2,1). So we know

E(ω(h)) = 1

∣ΩB∣b∣ ∑h∈ΩB∣b

∑
f∈B

h(f) = 32

8
= 4.

Applying Algorithm 4, which should return the same result, we next compute the
matrices M , W so we need TU , C2(b), and TL, which were defined in Corollary 3.
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We have

TU =
⎛⎜⎝

1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 1 1

⎞⎟⎠ ∈ R
∣ΩL1

∣×∣ΩU ∣ = R3×9,

and again, due to symmetry TL = T
T
U ∈ R

9×3. Remember, the entries of TU were defined
in the same manner as the entries of the transfer matrices, so an entry (TU)h,u = 1 if
h ∈ ΩL1

is compatible to u ∈ ΩU and 0 otherwise. Next, note that C2(b) only depends
on the entries of the sides S, which are adjacent to to L2. This means, we have

C2((1,2)) = diag(0,1,0,1,1,1,1) ∈ R∣ΩL2
∣×∣ΩL2

∣ = R7×7,

so the diagonal entries of all 2-heights of L2, which are compatible with the subset
s0 = 1 and s2 = 2 of the sides S are 1 and all other entries are 0 (in this example are
the complete sides, but usually, it is even only a subset of S). With weight matrices
ω1 = diag(0,1,2), ω2 = diag(0,1,1,2,3,3, 4), and ω3 = diag(0,1,2), where the entry(ωi)h,h = ∑f∈ΩLi

h(f) is the weight of the 2-height h ∈ ΩLi
. Now we can perform the

needed matrix multiplications and get

M̂ = TL ⋅M ⋅ TU

= TL ⋅ T2 ⋅C2((1,2)) ⋅ T1 ⋅ TU

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 12 8 12 18 14 8 14 14
12 12 8 12 18 14 8 14 14
7 7 5 7 11 9 5 9 9
12 12 8 12 18 14 8 14 14
17 17 12 17 27 22 12 22 22
12 12 9 12 20 17 9 17 17
7 7 5 7 11 9 5 9 9
12 12 9 12 20 17 9 17 17
12 12 9 12 20 17 9 17 17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ŵ = TL ⋅W ⋅ TU

= TL ⋅ (ω3 ⋅ T2 ⋅C2((1,2)) ⋅ T1 + T2 ⋅C2((1,2)) ⋅ ω2 ⋅ T1 + T2 ⋅C2((1,2)) ⋅ T1 ⋅ ω1) ⋅ TU

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

40 40 32 40 73 65 32 65 65
40 40 32 40 73 65 32 65 65
28 28 23 28 52 47 23 47 47
40 40 32 40 73 65 32 65 65
68 68 56 68 129 117 56 117 117
56 56 47 56 108 99 47 99 99
28 28 23 28 52 47 23 47 47
56 56 47 56 108 99 47 99 99
56 56 47 56 108 99 47 99 99

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and see that indeed

Ŵ(1,0),(0,2)

M̂(1,0),(0,2)
= 32

8
= 4, as we already knew. Note, that with this

matrix multiplications we did not only compute the expected height for this one border
conditions, but for all border conditions Ω∂B∣S , which have sides s0 = 1 and s1 = 2.
So by symmetry of B we can assume δ ∈ L. This means, we only have to iterate over
all possible sides, computing the corresponding matrices M̂ and Ŵ and are able to
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2.4 Toroidal rectangular grid graphs

compute all values of EB,δ, without listing all 2-heights (or k-heights in a more general
setting) of ΩB explicitly. This method enabled us, to speed up the computation of EB,δ,
such that we were able to prove Theorem 8:

Proof. (of Theorem 8)
The set of blocks, which we use to prove this theorem, consists of shifts of squares, each
consisting of 6 × 6 faces. We have to compute EB = maxδ∈∂B EB,δ for these blocks, but
they all have the same structure. This means EB does not depend on the shift, so we
have to compute only one value.
We use the transfer matrix approach, so there is the need of a layer decomposition of
this block. Here, each layer is one row of the square, starting with the first row as layer
L0, as indicated in Figure 2.17. This means, we have six layers, each consisting of six
faces. Further the upper and lower border each consists of six faces and the sides contain
twelve faces. Due to the symmetries of the square, we can assume δ ∈ {u0, u1, u2}, so is
obvious, that this is indeed a good layer decomposition.

u5

0

1

2

3

4

5

l5l4

5

4

3

2

1

00

u4u3

1

2

3

4

5

l3l2

5

4

3

2

1

0

u2u1

0

1

2

3

4

5

l1l0

5

4

3

2

1

0

u0

Figure 2.17: the square of 6×6 faces with red border. Numbers indicate, in which layer
the face is. {u0, . . . , u5} is the upper border and {l0, . . . , l5} the lower one.

Applying a Matlab implementation of Algorithm 4 to this good layer decomposition, we
get a vector (EB,u0

,EB,u1
,EB,u2

) = (1.2366,1.4035, 1.4312), soE =maxB∈Bmaxδ∈∂B EB,δ =
1.4312.
Now, every face f ∈ F (G) occurs in m = 36 blocks B and is on the border of ℓ = 24
blocks, which yields

1 +
1

2∣B∣(ℓ ⋅E −m) ≤ 1 +
1

2∣B∣(24 ⋅ 1.44 − 36)
1 −

1.44

2∣B∣ =∶ β < 1,

so we can apply Corollary 1. With ∣B∣ = ∣F (G)∣ and b =maxB∈B ∣B∣ = 36 we get
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2.5 Plane Triangulations

cB,k =
16 ⋅ b ⋅m ⋅ k ⋅ (k + 1)b

1 − β

=
16 ⋅ 36 ⋅ 36 ⋅ 2 ⋅ (2 + 1)36

1.44
2∣B∣

=
512 ⋅ 340∣F (G)∣

1.44

and

τM(ε) ≤ cB,k ⋅
(log(1

ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅∣F (G)∣

ε
)

log( 1
2ε
)

= 512 ⋅ 340 ⋅
∣F (G)∣2 ⋅ (log(1

ε
) + ∣F (G)∣ ⋅ log(3)) ⋅ log(2⋅∣F (G)∣

ε
)

1.44 ⋅ log( 1
2ε
)

≈ 4.32 ⋅ 1021 ⋅
∣F (G)∣2 ⋅ (log(1

ε
) + ∣F (G)∣ ⋅ log(3)) ⋅ log(2⋅∣F (G)∣

ε
)

log( 1
2ε
)

∈ O⎛⎝
∣F (G)∣3 log(

2⋅∣F (G)∣
ε

)+∣F (G)∣2⋅log(
1
ε
)

log(
1
2ε
)

⎞
⎠

Note that there is no simple analogue to Corollary 2, which showed that the up/down
Markov chain M rapidly mixes set of 2-heights of arbitrary sections of the triangle grid.
In that Corollary we considered ’truncated sixgons’. Here we would have to consider
all truncated 6 × 6 squares, which are a lot cases to consider, especially, since there are
a lot of faces, which are covered by different sets of truncated squares, which all would
have to be considered separately.
In the same way as in the previous section, we obviously tried to lift this result from
k = 2 to k = 3. But again, we failed in the same way due to lack of computational power.
Therefore, it is time to close this section and consider different families of graphs.

2.5 Plane Triangulations

This section covers one result for outerplane triangulations. These are embedded planar
graphs, such that every face, including the outer one is a triangle. So from now on,
assume that G is a connected outer plane triangulation with at least 5 vertices and a
minimal degree ≥ 2. For k = 2 we are now able to present a positive result:

Theorem 9 (2-heights on plane outer triangulations mix rapid)
For G ∈ F∆, the up/down Markov chain rapidly mixes the set of 2-heights Ω of G, i.e.

τM(ε) ≤ 43 082 150 400 ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
)
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2.5 Plane Triangulations

Proof. To prove this theorem, we apply Theorem 2, so we need a set of blocks B. In
fact, we use two kind of blocks. For every vertex v ∈ V (G), which has a degree of 10
or smaller, we have 8 identical blocks, which consists of all faces f ∈ F (G), which are
touching the vertex v. These are the blocks of first type. For every vertex v ∈ V (G),
which has a degree deg(v) > 10, we have deg(v) different blocks of second type, which
each consist of eight consecutive faces, f1, . . . , f8, which touch v, so every face next to
v has the role of f1 in one of these blocks. One of these blocks is shown in Figure 2.18.

f2

f3

f4

f5

f6

f7f8

f ′1 f ′2

f ′3

f ′4

f ′5

f ′6

f ′7f ′8

f ′9

f ′0

⋮

f1

Figure 2.18: A block of second type, consisting of eight blue faces with ten red faces on
the border.

First, we assume, that no face δ ∈ F (G) appears twice on the border of a block B. This
means, the face δ shares never an edge with two distinct faces f1, f2 ∈ B. With this
assumption, we have only nine different types of blocks left. So we can check each of
them. A computer program did this by performing a complete enumeration. Its results
are listed in Table 2.2. Note, that in any case we have EBv ,δ ≤ 0.8.

deg(v) B ∣∂B∣ EBv,δ

2 2 2 0.6
3 3 3 0.72
4 4 4 0.77
5 5 5 0.79
6 6 6 0.80
7 7 7 0.80
8 8 8 0.80
9 9 9 0.80≥ 10 8 10 0.79

Table 2.2: EBv of the blocks, induced by a vertex v

Further, every face f ∈ F (G) is contained in exactly m = 3⋅8 blocks (eight for each of the
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2.5 Plane Triangulations

three vertices, which it touches) and it is in ℓ ≤ 30 blocks an element of the border. At
most 24 of these blocks result from three third vertices v1, v2, v3 of the faces f1, f2, and
f3, which share an edge (and two vertices) with δ. Each of this blocks has EB,δ ≤ 0.8,
according to Table 2.2. Additionally, there might be six more blocks, which contain δ
on the border, because each of the three vertices of δ can have a degree ≥ 10, which
would mean, that for every such vertex two additional blocks were added to B, which
have δ on its border. Each of these blocks has EB,δ ≤ 0.79.
This implies

∑
B∈B∣δ∈∂B

EB,δ ≤ 24 ⋅ 0.80 + 6 ⋅ 0.79 = 23.94

which leads to

1 +
1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

−#{B ∈ B ∣ δ ∈ B}⎞⎠
≤ 1 +

1

2∣B∣ (23.94 − 24)
= 1 −

0.06

2 ⋅ 8 ⋅ ∣F (G)∣
= 1 −

3

800 ⋅ ∣F (G)∣
=∶ β < 1.

Further, we have b =maxB∈B{∣B∣} ≤ 9 and ∣B∣ = 8 ⋅ ∣V (G)∣ and we can apply Theorem 2.
Doing so, we get

cB,k =
16 ⋅ b ⋅m ⋅ k ⋅ (k + 1)b

1 − β

=
16 ⋅ 9 ⋅ 24 ⋅ 2 ⋅ (3)9

3
800⋅∣F (G)∣

= 16 ⋅ 9 ⋅ 24 ⋅ 2 ⋅ 38 ⋅ 800 ⋅ ∣F (G)∣
= 43 082 150 400 ⋅ ∣F (G)∣.

This finally leads to

τM(ε) ≤ cB,k ⋅
(log(1

ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅∣F (G)∣

ε
)

log( 1
2ε
)

= 43 082 150 400 ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅∣F (G)∣

ε
)

log( 1
2ε
) ,

which is the claim of this theorem.

Before closing this proof, we still have to prove the assumption. Remember, we assumed,
that it does not matter if a face δ shares an edge with two faces f1, f2 of one block B.
To formalize this, let δ be such a face, as shown in Figure 2.19.
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2.5 Plane Triangulations

f1

f2

v
wδ

Figure 2.19: A face δ, such that two neighbouring faces f1 and f2 share their third
vertex v.

We will show

∑
B∈B∣δ∈∂B

EB,δ ≤ 23.94,

which is, what we have for all faces, which do not appear twice in the border of a block.
We think, there is an elegant argument to show this, based on the structure of the
coupling on paths, as described in the second theorem of Dyer and Greenhill (Theo-
rem 5) and the idea, to split δ into two faces. This would lead to a pair of 2-heights,
which differ in two faces, i.e. have a distance of 2. Still, the technical details of this
proof seem to be tricky. We simply compute EB,δ of the corresponding blocks B with
computer programs. In total, we have to check twelve cases. Eight of them result in
the merging of two faces on the border of a block, induced by a vertex of degree < 10 -
one case, for every degree. One case suffices, because these blocks are symmetric with
respect to rotations, so it does not matter, which of the faces are merged. For vertices
of degree ≥ 10, we have 4 cases, because –although the block structure does not depend
on deg(v)– we do not have a rotation symmetry here. We only can mirror these blocks,
so it suffices, to merge the faces f ′k and f ′k+1 (according to the notation of Figure 2.18)
for k = 1,2,3,4. Note, that f ′0 and f ′1 cannot be merged, because this would imply a
double edge between v and the second vertex, which f1 and f2 share. The resulting
values of EBv are printed in Table 2.3. Note, that all of them are ≤ 1.60.

deg(v) EBv

2 0.5
3 1
4 1.22
5 1.33
6 1.38
7 1.4
8 1.41
9 1.41

deg(v) k EBv≥ 10 0 1.41≥ 10 1 1.41≥ 10 2 1.41≥ 10 3 1.41

Table 2.3: EBv of the blocks, induced by a vertex v, where a face δ appears twice on
the border

To finally prove the assumption, we have at most eight blocks Bv, which have δ twice
on its border, which leads to EBv,δ ≤ 1.6. Further, there are at most eight blocks, which
are induced by the vertex w and have δ on its border and EBw ,δ ≤ 0.8. Finally, there are
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2.5 Plane Triangulations

at most six blocks B, which which contain δ on the border, because each of the three
vertices of δ has a degree ≥ 10. They have EB,δ ≤ 0.79. Together, this yields

∑
B∈B∣δ∈∂B

EB,δ ≤ 8 ⋅ 1.41 + 8 ⋅ 0.8 + 6 ⋅ 0.79 ≤ 23.94,

which is, what we wanted to show. So the assumption is true, which finishes this proof.

Remark 2

One might ask, what happens of δ shares all three edges with faces f1, f2, and f3,
which share their third vertex. If that is the case, as depicted in Figure 2.20, the graph
G is either not connected or contains only 4 vertices, which we both excluded in the
beginning.

vδ f1

f2

f3

Figure 2.20: A face δ, such that all three neighbouring faces share their third vertex v.
We omitted to paint the outer face f2 in blue, although it is in the block
Bv.

Corollary 4 (2-heights on plane outer triangulations of degree ≤ 10 mix rapidly)
Let G be a plane outer triangulation with maximum degree d < 10. The mixing time
τM(ε) of the up/down Markov chain M mixing the set of 2-heights of G is bounded by:

τM(ε) ≤ 2 880 ⋅ 3d ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅F (G)

ε
)

log( 1
2ε
)

Proof. Here, no vertex v has a degree of 11 or bigger, so we can completely omit the
blocks of second type. This also means, that we only have to insert one block of the
first type for every vertex v ∈ V (G)! Thereby, we know that every face is contained in
three blocks and is in the border of tree blocks. Plugging these values, combined with
the values of EB ≤ 0.8 of Table 2.2 into Corollary 1 yields:

∑
B∈B∣δ∈∂B

EB,δ ≤ 3 ⋅ 0.80 = 2.40
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2.6 Conclusion

This implies

1 +
1

2∣B∣
⎛
⎝ ∑
B∈B∣δ∈∂B

−#{B ∈ B ∣ δ ∈ B}⎞⎠
≤ 1 +

1

2∣B∣ (2.4 − 3)
= 1 −

0.6

2 ⋅ ∣F (G)∣
= 1 −

3

10 ⋅ ∣F (G)∣
=∶ β < 1.

Further, we have b = maxB∈B{∣B∣} ≤ d and ∣B∣ = ∣V (G)∣ and we can apply Theorem 2.
Doing so, we get

cB,k =
16 ⋅ b ⋅m ⋅ k ⋅ (k + 1)d

1 − β

=
16 ⋅ 9 ⋅ 3 ⋅ 2 ⋅ (3)d

3
10⋅∣F (G)∣

= 16 ⋅ 9 ⋅ 2 ⋅ 3d ⋅ 10 ⋅ ∣F (G)∣
= 2 880 ⋅ 3d ⋅ ∣F (G)∣

which finally leads to

τM(ε) ≤ cB,k ⋅
(log(1

ε
) ⋅ ∣F (G)∣ + ∣F (G)∣2 ⋅ log(k + 1)) ⋅ log(k⋅F (G)

ε
)

log( 1
2ε
)

= 2 880 ⋅ 3d ⋅ ∣F (G)∣2 ⋅ (log(1ε) + ∣F (G)∣ ⋅ log(3)) ⋅ log(
2⋅F (G)

ε
)

log( 1
2ε
) ,

2.6 Conclusion

Before closing this chapter, we would like to pose some open questions, which are more
or less obvious. First, the constants in the bounds to the mixing times are really big.
Is it possible to improve them significantly? The bound for the parameter A of the
comparison theorem of Randal and Tetali 6 might be improved for general graphs,
or even for the special cases, considered here. Especially the term (k + 1)b, where
b =max{∣B∣ ∶ B ∈ B} appears to be to generous.
The next question covers bigger k. For which families of graphs is the up/down Markov
chain M rapidly mixing for k > 2? And are there blocks, which suffice to show this?
In general what are ’good’ blocks, i.e. blocks which measure up to our conditions? On
the one hand, a block B with a small border and a lot of faces on the inside seems to
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2.6 Conclusion

be good, because a bigger EB,δ is possible for the block. On the other hand, a lot of
faces on the border mean a lot of influence from the border onto the inner faces, so
the influence of the one face δ is / might be smaller, which would minimize EB,δ. Are
there other families of graphs, to which we can apply this machinery? For example does
it work an plane quadrangulations? And finally, to which other settings is the block
coupling technique applicable?
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3 Lattice Path Enumeration

As we have seen in the previous chapter, k-heights seem to be rather reluctant against
block coupling, at least for bigger k. To go further then k = 2, we tried to understand the
structure of k-heights in another context and started to consider the one-dimensional
case. These one-dimensional k-heights can be understood as lattice paths and lattice
paths are, what these chapter covers. Sadly, we did not make it back from lattice paths
to k-heights, but we assume, this excursion is interesting on its own.

3.1 Preliminaries

Let Pn(α) be the path of n + 1 vertices with a loop of weight α at each vertex and
path-edges of weight 1, see Figure 3.1. We label the vertices from one end to the
other, starting with vertex 0 and ending with vertex n. A walk in a graph is a list
x0, e1, x1, . . . , em, xm of vertices xi and edges ej, such that edge ei has endpoints xi−1
and xi. A walk is oriented, it starts in x0 and ends in xm, we say that the walk is from
x0 to xm. The length of a of a path is the number of edges traversed, it is m in the
example. With a walk in an edge-weighted graph we define its weight as the product
of the weights of its edges. For example: 1 → 2 → 3 → 3 → 2 is a walk from 1 to 2 in
P5(α). Its length is 4 and its weight is 1 ⋅ 1 ⋅ α ⋅ 1 = α.

���� ���� ������ ����

α

. . .

α α α α

Figure 3.1: The path Pn(α) with n + 1 vertices and loops of weight α.

Counting walks on Pn(α) enables us to count Motzkin paths in a strip: Motzkin paths
of length n are lattice paths with steps of three types (x, y) → (x + 1, y + 1), (x, y) →(x+ 1, y), and (x, y) → (x+ 1, y − 1) that start in (0,0) end in (n,0) and stay above the
x-axis, i.e, y ≥ 0. A Motzkin path is in the strip [0, k] iff its y-coordinate never exceeds
k.
strip, i.e., Motzkin paths which do not exceed a given level, see Figure 3.2 (Motzkin
paths are lattice paths with steps i→ i + 1, i→ i, and i + 1→ i and i ≥ 0).
Other types of lattice walks in a strip (for example Dyck paths or Schröder paths) can
also be interpreted as walks on paths, see Section 3.3. We use the weighted adjacency
matrix of Pn(α) as a tool to enumerate classes of such lattice paths. In principle, this
is nothing but a variant of the traditional transfer-matrix method. Results similar to
ours but tailored towards an audience of physicists and with a focus on random walks
have been obtained by by Cicuta et al. [11].
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3.2 The counting approach

Figure 3.2: The 9 Motzkin paths of length 4; only the last one exceeds the first level.

The enumeration of classes of lattice paths is a classical topic originating from Bertrand’s
ballot problem. They are investigated in probability theory in the context of gamblers
ruin problem (see [19], chapter XIV) but also in their own right. The monograph by
Mohanty [40] still gives a valuable overview. A recent survey on lattice path enumeration
is due to Humphreys [32].

3.2 The counting approach

Let us start with two simple facts about the enumeration of walks in graphs.

Fact 1

Let G be a graph with weights on the edges and let A be its weighted adjacency matrix.
The sum of the weights of walks of length m from vertex i to vertex j is

eTi ⋅A
m
⋅ ej.

From now on we focus on the graph Pn = Pn(1) and its weighted version Pn(α) re-
spectively. With A(n,α) we denote the weighted adjacency matrix of Pn(α); clearly

A(n,α) ∈ R
(n+1)×(n+1).

Definition 13

Zn
i,j(m,ℓ) ∶=#(walks from i to j of length m, using ℓ loops in Pn).

The following fact is obtained from Fact 1 and simple combinatorial reasoning.

Fact 2
Zn
i,j(m,ℓ) = (mℓ ) ⋅Zn

i,j(m − ℓ,0)(3.1)

m∑
ℓ=0

Zn
i,j(m,ℓ) αℓ = eTi ⋅A

m
(n,α) ⋅ ej(3.2)

These facts can be deduced by simple combinatoric means, respectively rely on the
meaning of weighted powers of adjacency matrices, as stated in Fact 1. Extending
these facts, the following theorem states the key identities for the numbers Zn

i,j(m,ℓ). In
particular this leads to explicit expressions for these numbers in terms of trigonometric
sums.

Theorem 10

Zn
i,j(m − ℓ,0) = 2

n + 2

n+1∑
k=1

(2 ⋅ cos ( k ⋅ π
n + 2

))m−ℓ sin (i ⋅ k ⋅ π
n + 2

) sin(j ⋅ k ⋅ π
n + 2

)(3.3)

eTi ⋅A
m
(n,α) ⋅ ej =

2

n + 2

n+1∑
k=1

(α + 2cos ( k ⋅ π
n + 2

))m sin(i ⋅ k ⋅ π
n + 2

) sin(j ⋅ k ⋅ π
n + 2

)(3.4)
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3.2 The counting approach

To prove the two formulas given in the theorem we begin with simple linear algebra.
The first proposition is well known:

Proposition 2 Let A ∈ R(n+1)×(n+1) be a matrix and assume that A admits an orthonor-
mal basis (v1, . . . , vn+1) of eigenvectors. Also let λi ∈ C be the eigenvalue corresponding
to vi = (v1,i, . . . , vn+1,i). Then

eTi ⋅A
m
⋅ ej =

n+1∑
k=1

λmk vi,kvj,k.

Proof. Consider the matrix S = [v1, . . . , vn+1], i.e., S ⋅ei = vi for all i. From orthogonality
we obtain ST = S−1. This implies ei = S

T ⋅vi and S
T ⋅A⋅S = diag(λ1, . . . , λn+1) =∶D. Now

Am = (S ⋅D ⋅S−1)m = S ⋅Dm ⋅S−1 = S ⋅Dm ⋅ST and hence, eTi ⋅A
m ⋅ ej = e

T
i S ⋅D

m ⋅ST ej =(ST ei)T ⋅Dm
⋅ (ST ej) = (vi,1, . . . , vi,n+1)T ⋅Dm

⋅ (vj,1, . . . , vj,n+1) = ∑n+1
k=1 λ

m
k vi,kvj,k.

A(n,α) is a real symmetric matrix. So it has a real orthonormal basis (v1, . . . , vn+1) ∈
R
n+1 of eigenvectors. The next lemma relates eigenvalues and eigenvectors of A(n,α)

and of A(n,0).

Lemma 7 Let λ1, . . . , λn+1 be the eigenvalues of A(n,0) and (v1 . . . , vn+1) a correspond-
ing orthonormal basis of eigenvectors.Therefore all eigenvalues of A(n,α) are of the form
λi + α and (v1, . . . , vn+1) is an orthonormal basis of eigenvectors of A(n,α).

Proof. Let v be an eigenvector of A(n,0) with respect to λ, which implies A(n,α) ⋅ v =(A(n,0) + α ⋅ In) ⋅ v = A(n,0) ⋅ v + α ⋅ v = (λ + α) ⋅ v. Hence, v is an eigenvector of A(n,α)
w.r.t the eigenvalue λ +α.

Our next aim is to determine the orthonormal basis of eigenvectors of A(n,0). The
structure of this matrix is captured by the next definition.

Definition 14 (Toeplitz matrix)
A matrix A = (aij) ∈ R(n+1)×(n+1) is called a Toeplitz matrix if there exist c−n, c−n+1, . . . ,
c0, . . . cn ∈ R such that

aij = ci−j for all i, j = 1,2, . . . , n + 1

i.e. A is constant on all diagonals. If c−k = ck the matrix A is a symmetric Toeplitz
matrix. We will denote A as toep(c−n, . . . , cn) to have a short notation for A.

Now, the adjacency matrix of Pn(α) is A(n,α) = toep(0, . . . ,0,1, α,1,0, . . . ,0).
Proposition 3 The eigenvalues λk and (right) eigenvectors vk of A(n,0) are

λk ∶= 2 ⋅ cos( k ⋅ π
n + 2

)
and

vk ∶= (sin(1 ⋅ k ⋅ π
n + 2

) , sin (2 ⋅ k ⋅ π
n + 2

) , . . . , sin ((n + 1) ⋅ k ⋅ π
n + 2

))
for k = 1, . . . , n + 1. Moreover, ∥vk∥22 = n+2

2
for all k.
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3.3 Interesting special cases

Proof. Since A(n,0) is a tridiagonal Toeplitz matrix with diagonals 1,0, and 1, the
eigenvectors and eigenvalues are known, see e.g. [9]. Replacing (a, b, c) in the given
formula on page 35 of that book by (1,0,1) yields the result.

Now it is easy to complete the proof of formulas (3) and (4):

Proof. (Theorem 10) For (3) first replace Zn
i,j(0,m − ℓ) by eTi ⋅Am−ℓ

n,0 ⋅ ej , a consequence
of (2). The proof of the formulas now follows from a combination of Proposition 2,
Lemma 7 and Proposition 3.

Remark 3

This occurrence of Chebyshev polynomials of the second kind and their roots, which are
closely related to the eigenvalues above, is well known. Flajolet counts Motzkin paths
with continued fractions. Abandoning the continued fractions leads to the bounded
case described here. Also the work [10] of Chow and West contains relations between
the Chebyshev polynomials (and their roots) and 123-avoiding permutations, which are
closely linked to Motzkin paths.

Besides the exact enumeration in terms of trigonometric sums, the numbers Zn
i,j(m,ℓ)

can also be related to linear recurrences and generating functions. An approach to
obtain the generating function can be found in [46], Chapter 4, Theorem 4.2.7. A linear
recurrence can be derived from the characteristic polynomial of the weighted adjacency
matrix or any other polynomial, which has the weighted adjacency matrix as a root:

Fact 3

Let A be a matrix and χA(x) be the characteristic polynomial of A. From Cayley-
Hamilton we know χA(n,α)

(A(n,α)) = 0. If χA(n,α)
(x) = xn+1 +∑n

k=0 akx
k this leads to the

linear recurrence:

(A(n,α))n+1 = − n∑
k=0

ak(A(n,α))k.
With Fact 2, (3.1) we obtain

(A(n,0))n+1 = − n∑
k=0

ak(A(n,0))k Ô⇒ Zn
i,j(m,ℓ) = −

n∑
k=0

akZ
n
i,j(m − n + j, ℓ).

Besides, the characteristic polynomial of A(n,α) is known to be determined by the n+1-th
Chebyshev polynomial of second kind Un+1(x) as

χA(n,α)
(x) = Un+1(x−α2 ).

From this the explicit expressions for the coefficients ak can be obtained. This then
leads to an explicit linear recurrence for Zn

i,j(m,ℓ).
3.3 Interesting special cases

In this section we show that the numbers Zn
i,j(m,ℓ) are quite universal. Special com-

binations of their parameters lead to a multitude of well known and not so well known
sequences. In many cases we refer to a sequence by using its number from the The
On-Line Encyclopedia of Integer Sequences, see [45].
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Example 4 (Binomial Coefficients)

Zn
k,n−k(n,0) = (nk)

Proof. The start and end for the walks on Pn are such that any sequence of k steps
down and n − k steps up stays on Pn.

The choice of the parameters is not unique. Indeed for all k′ ≥ k and n′ ≥ k′ + n − k we
have

Zn′

k′,k′+n−2k(n,0) = Zn−k
k,n−k(n,0) = (nk).

Further, bounded or restricted binomial coefficients can be counted this way, where our
choice of balls is restricted in such a way, that at each step of choosing our subset, the
difference of the number chosen and not chosen balls is always at most k.

Example 5 (Bounded Binomial Coefficients)
Let C(n,k, b) be the number of {0,1}-strings of length n with k times 1 such that for
each initial segment of the string the number of 0’s and the number of 1’s differ at most
by b. It is easy to verify that

C(n,k, b) = Z2b
b,2k+b−n(n,0)

For b = 1, we have Z2
1,1(2n,0) = 2n = Z2

1,2(2n + 1,0) and for b = 2 we have Z4
2,2(2n,0) =

2 ⋅ 3n. Since the sequence an ∶= Z
6
3,3(2n,0) fulfills the recursion an = 4an−1 − 2an−2 and

has the same initial values it is A006012. The sequence bn = Z
8
4,4(2n,0) seems to be to

A147748.

Example 6 (Catalan numbers)

Zn
0,0(2n,0) = 1

n + 1
(2n
n
) = Cn

Proof. Catalan numbers count Dyck paths from (0,0) to (0,2n). Dyck paths correspond
to walks on Pn without loops, starting at vertex 1 and returning to 1 after 2n steps.
Traditionally, Dyck paths are described as lattice paths with steps i→ i+1 and i→ i−1
from (0,0) to (0,2n), which do not fall below 0. Catalan numbers count Dyck paths
from (0,0) to (0,2n), i.e., lattice paths with steps i→ i + 1 and i→ i − 1 from (0,0) to(0,2n), which stay above the x-axis. Dyck paths correspond to walks on Pn without
loops, starting at vertex 0 and returning to 0 after 2n steps.

Again, this can be generalized to all n′ ≥ n since Zn′

0,0(2n,0) = Zn
0,0(2n,0). Also Dyck

paths can be restricted in height.

Example 7 (Bounded Catalan numbers)
Bounded Catalan numbers in our sense count the number of Dyck paths, which do not
exceed a given level k. Restricting k = 2, yields Z2

0,0(2m,0) = Z2
1,1(2(m − 1),0) = 2m−1

and for bigger k some of the sequences are well known, as the corresponding entries
from the OEIS show:

Z3
0,0(2m,0) A001519 Z5

0,0(2m,0) A080937 Zm−2
0,0 (2m,0) not listed

Z4
0,0(2m,0) A124302 Z6

0,0(2m,0) A024175 Zm−1
0,0 (2m,0) not listed
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3.3 Interesting special cases

Bounded Dyck paths have also been counted by Owczarek and Prellberg [41]. They
derive a closed formula for a q-analog, where q is taking the area under the path into
account.

Example 8 (Fibonacci Numbers)
Z2
0,gcd(m,2)(m,0) = Fm

Proof. Fn = number of Catalan paths from (0,0) to (n,gcd(n,2)) that stay between
the lines y = 0 and y = 3. In the On-Line Encyclopaedia [45] this is attributed to
Kimberling.

Example 9 (Motzkin numbers)
n∑
ℓ=1

Z
⌊n/2⌋
0,0 (n, ℓ) =Mn

Proof. Motzkin numbers count Motzkin paths, i.e. lattice paths from (0,0) to (0, n),
using only steps up-left, horizontal or down-left, see Figure 3.2. These paths can be
counted as walks with loops on Pn(1).
The refined counting for Motzkin numbers allows to control the maximum height of the
corresponding path as well as the number of horizontal steps allowed (or at least used).

Example 10 (Bounded Motzkin numbers)
Bounded Motzkin numbers are defined similarly to bounded Catalan numbers but on
the basis of Motzkin paths instead of Dyck paths.

∑ℓZ
1
0,0(m,ℓ) 2m−1 ∑ℓZ

5
0,0(m,ℓ) A094287 ⋮ ⋮

∑ℓZ
2
0,0(m,ℓ) A024537 ∑ℓZ

6
0,0(m,ℓ) A094288 ∑ℓZ

⌊
m
2
⌋−1

0,0 (m,ℓ) not listed

∑ℓZ
3
0,0(m,ℓ) A005207 ∑ℓZ

7
0,0(m,ℓ) not listed ∑ℓZ

⌊
m
2
⌋−2

0,0 (m,ℓ) not listed

∑ℓZ
4
0,0(m,ℓ) A094286 ⋮ ⋮

Example 11 (Delannoy numbers)

a∑
ℓ=0

Zb+a
a,b−a(a + b − ℓ, ℓ) =

a∑
ℓ=0

(a
ℓ
)(b + ℓ

b
) =D(a, b).

Proof. Delannoy numbers describe the number of lattice paths from (0,0) to (a, b)
which use steps up, right and diagonal (i.e. steps with the effect of up+right). We do
a refined counting (by counting the paths with a fixed number of diagonal steps and
therefore a fixed number of total steps). The Delannoy paths from (0,0) to (a, b) with
ℓ ≤ a diagonal steps have length a + b − ℓ, they use b − ℓ up-steps and a − ℓ right-steps.
Modeling right-steps as decreasing-steps in the path, diagonals as loops and up-steps
as increasing-steps, we see that the number of these paths is Zb+a

a,b−a(a + b − ℓ, ℓ).
Example 12 (Schröder numbers)

n∑
ℓ=0

Zn
0,0(2n − 2ℓ, ℓ) = S(n).
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3.4 Refined Counting

Proof. Schröder numbers count lattice paths from (0,0) to (n,n) with steps up, right
and diagonal, which do not exceed the diagonal. Again, a counting, refined by fixing
the number of diagonal steps (to fix the number of steps in the path) yields the result.
All we have to change is the start and endpoint of our walks to ensure, that the path
does not exceed the diagonal.

Example 13 (Pell numbers)
Another example are Pell numbers (A000129). They are bn = ∑n

ℓ=0Z
2
0,2(n, ℓ). The bn

fulfill the recursion bn = 2bn−1 + bn−2.

3.4 Refined Counting

In this section we derive linear recursions for a refined version of the ballot problem. A
turn is a change of direction from up to down or vice versa (the up step and the down
step need not be consecutive, they may enclose some loops, respectively horizontal
steps). Figure 3.3 shows an example.

Figure 3.3: A lattice walk of length 12 with 4 red turns and 2 straight steps in P⃗3(α)
from u0 to u2.

Our refined counting is going to keep track of the number of turns of the paths. As
in Section 3.2 we identify lattice walks with walks on some graph. The relevant graph
P⃗+n (α) is obtained from the graph P⃗n(α) shown in Figure 3.4 by adding the vertices u0
and dn with their loops and the edges u0 → u1 and dn → dn−1.
With a turn a change of direction from up to down (or vice versa) is meant. Straight
steps / loops do not change the direction, so the first step down (or up) after an up-
step (down-step), followed by an arbitrary number of straight ones is a turn. Figure
3.3 shows one such walk, where all turns are marked red. As it was done in Section 3.2,
these lattice walks are described as walks on a graph. This time it is the graph P⃗n(α),
illustrated in Figure 3.4. .
The graph consists of two directed paths of length n−1 with loops which are connected
by bidirectional edges in such a way, that the i-th vertex of the first path is linked to the(n − i)-th vertex of the second one. Weight the edges such that the loops have weight
α, the edges on the first path have weight 1, the second path’s edges 1 and the edges
linking both paths have weight β. Note that the vertices u0 and dn are omitted, since
they have no incoming edges and therefore do not play a role in counting the lattice
walks.
Now, let

Z⃗n
v,w(m,ℓ, t) ∶= #( walks on P⃗n(α) from v to w of length m with ℓ loops and t turns),
Z⃗n
v,w(m) ∶= ∑

ℓ,t

Z⃗n
v,w(m,ℓ, t)αℓβt.
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d0 d1 dn−1

u3 un−1

d2 dn−2

Figure 3.4: The directed path P⃗n(α) with 2n vertices and loops of weight α and blue
turning-edges of weight β

Krattenthaler already counted some instances of these lattice paths successfully. See
[36], especially Theorem 3.4.4 for details. Still, his work does not cover straight steps/
loops, while our results do so:

Theorem 11 (Characteristic polynomial of P⃗n(α) )
Let χP⃗n(α)

(x) be the characteristic polynomial of the adjacency matrix of the graph

P⃗n(α). Then:
∞∑
n=0

χP⃗n(α)
(x)λn = (α − x)2(λ − 1) − β2

1 + (β2 − 1 + (α − x)2(λ − 1))λ
and

Z⃗n
v,w(m) = −1cn2n ⋅

2n∑
k=1

cn2n−k ⋅ Z⃗
n
v,w(m − k),

where

cnk = (−1)k
n∑
j=0

n−j∑
l=0

j∑
i=0

(n − l − j − 1
j − 1

)(l + j
l
)(j
i
)(2i
k
)(−β2)l+j−iα2i−k

are the coefficients of the characteristic polynomials χP⃗n(α)
(x) of the graphs P⃗n(α).

To prove this theorem, we use a well known connection between cycle covers and de-
terminants of the adjacency matrix of the covered (di-) graphs.

Definition 15 (Cycle cover)
Let G⃗ be a directed graph with weighted edges. A cycle cover C of G⃗ consists of ∣V (G⃗)∣
edges, such that every vertex has one incoming and one outgoing edge. In other words
it is a set of simply directed cycles which contains every vertex exactly once.
Further, the weight ω(C) of the cycle cover C is the product of all edge-weights of C
multiplied with (−1)# even cycles. Finally C(G⃗) is the set of all cycle covers of G⃗.

Lemma 8 (Cycle covers and determinants)
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3.4 Refined Counting

Let G⃗ be a digraph with edge weights and adjacency matrix A = (aij). We have

det(A) = ∑
σ∈Sn

sign(σ) n

∏
i=1

ai,σ(i) = ∑
C∈C(G⃗)

ω(C) = ω(C(G⃗))

Proof. A permutation σ ∈ Sn can be seen as a subset of n directed edges C = {(i, σ(i)) ∣
i = 1 . . . , n}, which form a cycle cover. This cycle cover has weight sgn(σ) ⋅∏n

i=1 ai,σ(i).

If one of the edges is not present in G⃗, the weight is 0, since the corresponding entry
of A is 0. The sign of σ is the product of the signs of individual cycles. Even cycles
contribute a factor of −1, odd cycles a factor +1.

Next, we make use of an application of the geometric sum to matrices and generating
functions:

Theorem 12 (Theorem 4.7.2 of [46] or Proposition V.9 of [26])
Let A be the adjacency matrix of a graph G. Further, let Nk(i, j) be the number of
walks from i to j of length k and wij = ∑∞k=0Nk(i, j)tk. This yields W = (wij) =(I∣V (G)∣ − t ⋅A)−1, where I is the identity matrix of the right size.

Finally, we are ready to prove the previously stated theorem:

Proof. (of Theorem 11) To find the generating function for the characteristic polyno-
mials χ

P⃗n(α)
of the adjacency matrix of the graph P⃗n(α), we count weighted cycle

covers of the graph P⃗n(α − x). According to Lemma 8 the sum of their weights is
the polynomial we are looking for. Now, we partition the set of all cycle covers, ac-
cording to the edges they use to cover the vertices dn−1 and un. Let An be the set
of all cycle covers of P⃗n(α − x), such that the vertices un and dn−1 are both cov-
ered by loops and let Bn be the set of all remaining cycle covers. Cycle covers in
Bn contain the edge (un, dn−1), since apart from the loop this is the only outgoing
edge of un. Further, let an ∶= ω(An) = ∑C∈An

ω(C) and bn ∶= ω(Bn). This implies
ω(C(P⃗n(α − x))) = ∑C∈C(P⃗n(α−x))

ω(C) = an + bn. Now, every cycle cover of P⃗n−1(α)
can be extended with two loops of weight (α − x)2 or a two-cycle of weight −β2. Fur-
ther for every cycle cover in Bn−1, we can replace the edge un−1, dn−2 by the path
un−1, un, dn−1, dn−2. This leads to a cycle cover in Bn with the same weight. Con-
versely, from a cycle cover in An we can delete the two loops at un and dn−1 to obtain
a cover of P⃗n−1. In a cycle cover in Bn the two vertices un and dn−1 are either cov-
ered by a two cycle which can be deleted or they belong to a longer cycle from which
they can be removed. This implies the linear recursions an+1 = (α − x)2(an + bn) and
bn+1 = −β

2an + (−β2 + 1)bn. The initial conditions are a0 = (α − x)2 and b0 = −β
2. With

A = ( (α − x)2 (α − x)2
−β2 −β2 + 1

), we obtain:

χ
P⃗n(α)

(x) = ω(C(P⃗n(α−x))) = an+bn = (1,1) ⋅(anbn) = (1,1) ⋅A ⋅(
an−1
bn−1
) = (1,1) ⋅An

⋅(a0
b0
)

Hence,
∞

∑
n=0

χP⃗n(α)
(x)λn = ∞∑

n=0

((1,1) ⋅An
⋅ (a0
b0
)) ⋅ λn
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3.4 Refined Counting

and Theorem 12 can be applied. To do so, we need the inverse of (I2 − λA):
(I2 − λ ⋅A)−1 = 1

1 + (β2 − 1)λ + (α − x)2(λ2 − λ) (
1 − (−β2 + 1)λ (α − x)2λ
−β2λ 1 − (α − x)2λ )

Therefore, the generating function for the characteristic polynomials of P⃗n(α) is
∞

∑
n=0

χP⃗n(α)
(x) ⋅ λn = (1,1) ⋅ (I2 − λA)−1 ⋅ ((α − x)2

−β2
) = (α − x)2(λ − 1) − β2

1 + (β2 − 1 + (α − x)2(λ − 1))λ ,
which proves the first part of the theorem. To deduce the theorem’s second claim, one
could establish an explicit representation of χP⃗n(α)

(x) via a partial fraction decomposi-
tion of the generating function above, but there is a more direct and elegant approach:
Consider again Lemma 8. A cycle cover of P⃗n(α − x) decomposes the upper path of
P⃗n(α − x) into segments of consecutive vertices, each segment belonging to one cycle.
Also every such decomposition implies some cycle covers, since any segment has to be
closed to one cycle. For sections, which have length ≥ 1, the cycle is fixed, while for
solely vertices, they can either be covered with loops or with a two-cycle.
Now, there are (n−1

t−1
) such decompositions into t non-empty parts (each chosen ball

marks the end of an part; the last parts ends at the end, so the last vertex is chosen
ahead) , but they have different weights. So they imply different numbers of cycle
weights. Let us count these decompositions with respect to l, the number of sections of
length 1 and j, the number of sections of length ≥ 2. This means we have to decompose
n − l vertices into sections j of length ≥ 2 and afterwards insert the sections of length 1
in between two sections of length ≥ 2. So there are (n−l−j−1

j−1
) ⋅(j+l

l
) such decompositions.

For each of them, the sum of the weights of the corresponding cycle covers is (−β2)l((α−
x)2 − β2)j , as stated previously. This leads to

χP⃗n(α)
(x) = n

∑
j=0

n−j

∑
l=0

(n − l − j − 1
j − 1

)(l + j
l
)(−β2)l((α − x)2 − β2)j

=
n

∑
j=0

n−j

∑
l=0

(n − l − j − 1
j − 1

)(l + j
l
)(−β2)l ⎛⎝

j

∑
i=0

(j
i
)(α − x)2i(−β)2(j−i)⎞⎠

=
n

∑
i=0

⎛
⎝

n

∑
j=i

n−j

∑
l=0

(n − l − j − 1
j − 1

)(l + j
l
)(j
i
)(−β)2(j−i+l)⎞⎠(α − x)2i

=
n

∑
i=0

⎛
⎝

n

∑
j=i

n−j

∑
l=0

(n − l − j − 1
j − 1

)(l + j
l
)(j
i
)(−β)2(j−i+l)⎞⎠(

2i

∑
k=0

(2i
k
)α2i−k(−x)k)

=
2n

∑
k=0

⎛
⎝

n

∑
i=⌈k/2⌉

n

∑
j=i

n−j

∑
l=0

(n − l − j − 1
j − 1

)(l + j
l
)(j
i
)(2i
k
)(−β)2(j−i+l)α2i−k⎞⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ck,n

(−x)k

Now, Fact 3 yields the second claim of our theorem since Z⃗n
v,w(m) is the entry of the

m-th power of the adjacency matrix of P⃗n(α), associated to v and w.
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3.5 Further Results

3.5.1 Tri-diagonal Toeplitz matrices

In the literature you commonly find variants of the formulas in Theorem 10 with an
additional parameter. This parameter represents different weights for the step i→ i+ 1
and the step i → i − 1. These different weights still yield a tridiagonal Toeplitz ma-
trix. The spectrum and an orthonormal basis of eigenvectors are known for tridiagonal
Toeplitz matrices, see [9]. Therefore, our theorem can easily be adapted to cover the
more general case.

3.5.2 The symmetric case

For the case of symmetric lattice walks, i.e. walks on graphs, having an adjacency
matrix, which is a symmetric Toeplitz matrix, we apply theorem 10 to enumerate these
walks, due to the following fact:
Let A ∈ R(n+1)×(n+1) be a symmetric Toeplitz matrix and let c0, c1, . . . cn ∈ R be its first
row. Now A is completely determined by these values. The powers Ak

(n,0), k = 0, . . . , n
of the adjacency matrix of Pn(0) form a basis for symmetric Toeplitz matrices, in fact
if ak0, a

k
1 , . . . a

k
n is the first row of Ak

(n,0), implying akk = 1 and Ak
j = 0 for all j > k.

Hence we can write

A =
n

∑
k=0

c̃k ⋅A
k
(n,0)

and the coefficients c̃k can be recursively computed as c̃n = cn and c̃k = ck −∑n
j=k+1 c̃ja

j
k
.

Therefore, the orthonormal basis of eigenvectors of A(n,0) is an orthonormal basis of
eigenvectors of A. Furthermore the eigenvalues of A are

λ̂i ∶=
n−1

∑
k=0

c̃kλ
k
i ,

where λi are the eigenvalues of A(n,0). Since we have an orthonormal basis of eigen-
vectors and the corresponding eigenvalues, we can write down formulas for A that
correspond to the formulas (3) and (4) for A(n,0).

3.5.3 Lattice walks with arbitrary positive steps

For some cases case of asymmetric lattice walks, we find linear recursions. If we only
allow steps i→ i+j with j ∈ {−1,0,1, . . . , k} with weights cj ∈ R, then the adjacency ma-
trices are of the form toep(0, . . . ,0, c−1, c0, . . . , ck,0, . . . ,0). For these, we can give linear
recursions for the characteristic polynomials. With Fact 3 we obtain linear recursions
for the number of corresponding lattice paths if we get a handle on the characteristic
polynomial χn(x) of the n × n matrix toep(0, . . . ,0, c−1, c0, . . . , ck,0, . . . ,0).
A recursion for the characteristic polynomial can be obtained via Lemma 8. In a cycle

decomposition the last vertex vn belongs to a cycle vn
−1
→ vn−1

−1
→ . . .

−1
→ vn−j ,

j
→ vn for

some j. This yields the recursion

χn+1(x) = (c0 − x)χn(x) + k

∑
j=1

c
j
−1cjχn−j(x).
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3.6 Conclusion

For small k we can solve the linear recursion above and get an explicit representation
of the characteristic polynomial, and hence an explicit linear recursion for the numbers
of lattice walks.

3.5.4 Cylindrical lattice walks

As a last instance we now consider walks, which allow arbitrary step length (and arbi-
trary weights) on a cycle. Taking an edge for each allowed step we obtain a circulant
graph. The “time expansion” yields a cylinder as analog to the lattice strips.
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Figure 3.5: A circulant graph with 8 vertices and steps +1 (black) and −2 (blue).

The adjacency matrices of circulant graphs are circulant matrices. For this class of
matrices eigenvalues and eigenvectors are known. According to Gray [27] they are as
follows:

Theorem 13 ( Eigenvalues and -vectors of circulant matrices, Theorem 3.1 of [27])
Let C ∈ Rn×n a circulant matrix with first row (c0, c1, . . . , cn−1) ∈ Rn. The eigenvalues
ψm and corresponding eigenvectors ym of C for m = 0,1, . . . , n − 1 are as follows:

ψm =∶
n−1

∑
k=0

cke
−2πimk

n , ym =∶
1√
n
(1, e−2πimn , e

−2πim2
n , . . . , e

−2πim(n−1)
n ).

Note, that the eigenvectors of circulant matrices do not depend on the matrix, but only
on the dimension n. Therefore, they are the same for all circulant matrices of the same
size (which implies these matrices commute). Now, we can count walks on circulant
graphs with the techniques from Section 3.2. This leads to explicit formulas as well as
to linear recursions.

3.6 Conclusion

Trigonometric sums of the form given in Theorem 10 can be handled quite well by
computer algebra systems, e.g. Maple. Our impression is that indeed the formulas lead
to the most effective way of evaluating the number of paths of a certain type in not too
narrow and rather long strips. For narrow strips a generating function approach may
be practical and superior. For short strips it can be reasonable to explicitly use the
recursion (dynamic programming).
In the examples section (Section 3.3) we have listed some cases of integer sequences
that could be obtained by counting (weighted) walks in Pn(α). The basic approach,
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however, is not limited to this case. The crucial requirement is that we are able find an
explicit expression for the entries of powers of the adjacency matrix. Cases where this
is possible include situations where Toeplitz matrices are substituted for the entries of
a Toeplitz matrix. Investigating this and related cases should allow to count families of
lattice surfaces, e.g., fillings of the cells of an n×m grid with numbers between 0 and h
such that the numbers of adjacent cells differ by at most one.
Some problems remain. For example in Section 3.4, we found a linear recursion, but
the explicit generating functions remain unknown. In Section 3.5.1 we quote results for
band matrices with (at most) five nonzero diagonals. Improvements in this work can
be directly translated back into lattice path enumeration. Section 3.5.3 contains linear
recursions for linear recursions, can this be simplified?
Another direction of improvement might be to try to solve special sets of bounded lattice
walks, for example with a set of steps i → i + k with k ∈ {−3,−1,0,+1,+5}. Banderier
and Nicodeme considered in [5] some sets of this shape and were able to enumerate the
corresponding number of lattice walks. The methods in this chapter do not cover these
families of walks, but maybe it is possible, to understand the structure of the powers
of the corresponding Toeplitz matrices.
The last direction of progress, we would like to mention, might be the study of the
inversion of general Toeplitz matrices, since we can apply Theorem 12, which we already
applied in the proof of Theorem 11.
In general the inverse of Toeplitz matrices are interesting. If they are given we can
apply Theorem 12, similar to what we did in the proof of Theorem 11. There is a lot
of work in this direction, see [16] and references therein.
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4 Tower Moves

4.1 Preliminaries

Before diving into the results, this section reviews briefly some preliminaries which are
specific to this chapter. First, recall the definition of α-orientations:

Definition 16 (α-orientations)
Let G = (V,E) be a simple plane graph with vertex set V and edge set E. Further, let
α ∶ V → N be a weight function, living on the vertices of G. An α-orientation G⃗ of G is
an orientation of the edge-set of G, such that every vertex v ∈ V has out degree α(v).
Denote the set of all α-orientations with Ωα,G or Ω for short, if G and α cannot be
mistaken. We call α feasible, if there exists an α-orientation. Further, edges are called
rigid, if they are oriented in the same way in all α-orientations Ωα,G.

In addition, remember the bijection between α-orientations and α-potentials, which led
to the notion of k–heights in Chapter 2:

Definition 17 (essential cycles and α-potentials)
More formally, a simple cycle C of G is an essential cycle if

• C is cord-free

• the interior cut of C is rigid

• there exists an α-orientation X⃗ of G, such that C is oriented in X⃗

Further, let C be the set of essential cycles and G⃗min the minimum of Ω. In this case,
φ ∶ C → N is an α-potential of G if

• ∣φ(C) − φ(C ′)∣ ≤ 1 for all C,C ′ ∈ C, which share an edge e

• φ(C) ≤ 1 if C is the only essential cycle containing an edge e

• if C l(e) and Cr(e) ∈ C are the cycles left and right of e in X⃗min, we have φ(C l(e)) ≤
φ(Cr(e))

For the graphs we consider, the essential cycles are the set of faces of the underlying
graphs, except the outer face. We are now finally going to work on the face flip Markov
chain living on the set of α-orientations of some fixed graph G. It is defined as follows:

Definition 18 (the face flip Markov chain)
Let G be a plane graph and α a weight-function for G, such that there is an α-orientation
of G. Now the face flip Markov chain M operates as follows on Ω:
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4.1 Preliminaries

Input: X⃗ ∈ Ω
Output: X⃗ ∈ Ω
Let p←Ð [0,1] uniformly at random
Let f ←Ð F ′(G) a flippable face of G, uniformly at random
if f is counter-clockwise oriented and p ≤ 1

2
then

reorient f clockwise, i.e. flip f

if f is clockwise oriented and p > 1
2
then

flip f

return X⃗

Algorithm 5: One step of the face flip Markov chain M .

This is a Markov chain on Ω. It is reversible, since a flipped face is again oriented.
Therefore it is recurrent, since Ω is a distributive lattice, where all elements are con-
nected by sequences face flips. Since it does not change the state with a probability
of ≥ 1

2
at every state, it is aperiodic, which implies, it is ergodic, so it has a unique

stationary distribution π. For the graphs, which we consider, the set Ω is a distributive
lattice, which is connected by face flips, so M is irreducible and due to the symmetry
of the chain, we see π(X⃗) = 1

∣Ω∣ for all X⃗ ∈ Ω. To be able to analyze the behaviour,

especially the mixing time of M , we use a well known fact (for example, Chapter 7.2 of
[38] covers this as Bottleneck Ratio), which in our words sounds as follows:

Definition 19 (hourglass-shaped sample spaces)
Let Ω be a sample space and M be a Markov chain on Ω. Partition Ω into Ωr,Ωg and
Ωb (r,g, and b stand for red, green and blue, which originates in the colour of an edge
in a Schnyder wood of a graph). If Ωg separates Ωb from Ωr, i.e. for all s1 ∈ Ωb and
s2 ∈ Ωr the transition probability between s1 and s2 is 0 (in both directions), we say Ω
is hourglass-shaped (with respect to the partition). This means every path of steps of
M from Ωr to Ωb has to hit Ωg at some time (as well as every path of steps from Ωb to
Ωr).

Depicting Ω as the vertices of a graph and the transitions of M as edges, the resulting
directed graph looks like an hourglass, if Ωg is much smaller than Ωb and Ωr.
Let π be the stationary distribution of an symmetric and ergodic Markov chain M on
Ω (i.e. the uniform distribution). Assuming ∣Ωb∣ ≫ ∣Ωg ∣ ≪ ∣Ωr ∣ and π(S) = ∑

s∈S
π(s) for

all S ⊆ Ω in an hoursglass-shaped Ω, we can easily give a bound on the conductance

ΦM ∶= min
S⊆Ω,π(S)≤1

2

1

π(S) ∑
s1∈S,s2∉S

π(s1) ⋅Pr(s1, s2)

of M :

Lemma 9 (conductance of hourglass shaped state spaces)
Let M be an symmetric and ergodic Markov chain on an hourglass shaped state space
Ω = Ωr ∪Ωg ∪Ωb. We have:

ΦM ≤
π(Ωg)

min{π(Ωr), π(Ωb)}
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4.1 Preliminaries

Proof. Without loss of generality let π(Ωr) ≥ π(Ωb). This implies π(Ωb) ≤ 1
2
due to

2π(Ωb) ≤ π(Ωr) + π(Ωb) ≤ π(Ωr) + π(Ωg) + π(Ωb) = π(Ωr ∪Ωg ∪Ωb) = π(Ω) = 1.
So Ωb is a valid subset S ⊂ Ω with π(S) ≤ 1

2
as in the definition of ΦM and we gain:

ΦM = min
S⊆Ω,π(S)≤1

2

1

π(S) ∑
s1∈S,s2∉S

π(s1) ⋅Pr(s1, s2)

≤
1

π(Ωb) ∑
s1∈Ωb,s2∈Ωr∪Ωg

π(s1) ⋅Pr(s1, s2)

=
1

π(Ωb)
⎛⎜⎜⎝ ∑
s1∈Ωb,s2∈Ωr

π(s1) ⋅Pr(s1, s2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ ∑
s1∈Ωb,s2∈Ωg

π(s1) ⋅Pr(s1, s2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

⎞⎟⎟⎠
=

1

π(Ωb) ∑
s1∈Ωb,s2∈Ωg

1

∣Ω∣ ⋅Pr(s1, s2), due to ergodicity of M

=
1

π(Ωb) ⋅
1

∣Ω∣ ∑s2∈Ωg

⎛
⎝ ∑s1∈Ωb,

Pr(s2, s1)⎞⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

, due to symmetry of M

≤
1

π(Ωb) ⋅
∣Ωg ∣∣Ω∣

=
π(Ωg)
π(Ωb) , again due to ergodicity of M

=
π(Ωg)

min{π(Ωr), π(Ωb)}

Furthermore, there are well known relations between the conductance of a Markov chain
M and its mixing time

τM(ε) ∶= sup
x∈Ω

min{t ∶ ∥Mt
x,⋅ − π∥TV ≤ ε},

whereM is the transition matrix of M as introduced in Chapter 1.
One well-known theorem linking these two, is the following:

Theorem 14 (Jerrum and Sinclair; [34])
Let M be a Markov chain on Ω with conductance ΦM . The mixing time τM of M on
Ω satisfies

τM ≥ 1

4 ⋅ΦM

−
1

2
.

Note that the Cesaro mixing time τM ∶= τM(14) does not depend on ε as in the previous
definition, by setting it to some fixed value, [33], Remark 4.4 and [38] ,Theorem 6.15
justify this simplification, because we are only interested in the (exponential) grow rates
of the bounds to be estimated. Another theorem, which will be applied later is a version
of the coupling theorem of Dyer and Greenhill [17] by Bordewich and Dyer:

66



4.1 Preliminaries

Theorem 15 (Bordewich and Dyer; Theorem 7 with δ = 1 and S = {(v,w) ∈ Ω2 ∣
d(v,w) = 1} of [8])
Let P be a coupling for the Markov chain M and let d ∶ Ω × Ω → N be a metric and
S = {(v,w) ∈ Ω2 ∣ d(v,w) = 1}. Let β ≤ 1 such that

EP [d(Xt+1, Yt+1)] ≤ β
for all (Xt, Yt) ∈ S. Further, let D be the maximum value of d on Ω ×Ω and

p̃ ∶= min
(v,w)∈S

Pr(Xt+1 = w ∣Xt = v).
If p̃ > 0 the mixing time τ⋆(ε) of M⋆ = 1

1+p̃
⋅ (M + p̃ ⋅ I) fulfills

τM⋆(ε) ≤ ⌈ eD2(1+p̃)
p̃
⌉ ⋅ ⌈log(ε−1)⌉ .

This theorem is a stronger version of the coupling theorem of Dyer and Greenhill (The-
orem 2.1, [17]), which is applied by Fehrenbach, Rüschendorf [18] as well as Miracle,
Randall, Streib and Tetali [39]. However Creed [12] already uses this improved version.
Anyhow, as the following remark shows, the theorem of Dyer and Greenhill cannot eas-
ily be applied here (or even in the case of planar triangulations with maximum degree
≤ 6):

Remark 4

Figure 4.1 shows a 3-orientation of a planar triangulation with maximum degree 6, if
you orient all blue edges clockwise (or all blue edges counter-clockwise). Furthermore,
both graphs have the same set of oriented faces, i.e. a coupling of the face flip Markov
chain would apply the same step to both orientations, which means, that in a coupling
the probability of a distance-change is 0.
Therefore it cannot be bounded away from 0 and the Theorem of Dyer and Greenhill is
not easily applicable. Still it might be applicable, if one considers also the tower-moves
of the tower chain, which is going to be introduced later.

Theorem 15 will be applied in combination with the comparison theorem of Diaconis
and Saloff-Coste [15] in the version of Randall and Tetali [42] to find a bound for the
mixing time ofM . We already saw this theorem in Chapter 2 as Theorem 6 on page 24.
For ease, we shortly repeat it:

Theorem 16 (Randall and Tetali, Proposition 4 of [42])
Let M and M̃ be two reversible Markov chains on the same state space Ω with the same
stationary distributions π and π⋆ ∶=minx∈Ω π(x). Let E(M) be the set of transitions of
M and E(M̃) be the set of transitions of M̃ . For each pair (u, v) ∈ E(M̃) define a path
γuv, which is a sequence u = u0, u1, . . . , uk = v of transitions of M , i.e. (ui, ui+1) ∈ E(M)
for all i. For (x, y) ∈ E(M) let

Γ(x, y) ∶= {(u, v) ∈ E(M̃) ∣ (x, y) ∈ γuv}.
Further let

A ∶= max
(x,y)∈E(M)

⎧⎪⎪⎨⎪⎪⎩
1

π(x)⋅(M)(x,y) ⋅ ∑
(u,v)∈Γ(x,y)

∣γuv ∣ ⋅ π(u) ⋅ (M̃)x,y
⎫⎪⎪⎬⎪⎪⎭
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Figure 4.1: A plane triangulation with maximum degree 6, such that two different ori-
entations only permit the same face flips.

where (M)x,y ∶= PrM(xt+1 = y ∣ xt = y), i.e. the transition probability from x to y in
one step / the entry associated to x and y in the transition matrix of M . If the second
largest eigenvalue λ1 of M̃ complies with λ1 ≥ 1

2
, we know that for every 0 < ε < 1 the

mixing time τM(ε) is bounded by:

τM(ε) ≤ 4 log( 1
ε⋅π⋆
)

log( 1
2ε
) ⋅A ⋅ τM̃(ε)

4.2 3-Orientations of planar triangulations

First, let us revisit the already mentioned, recent result of Miracle, Randall, Streib, and
Tetali. We modify it slightly, by presenting not their family of graphs to prove the result,
but a family, which –in our eyes– is more appealing. Also the family of graphs, which
is applied, later on renders it possible to improve the result in terms of the maximum
degree of the graphs’ vertices. Their result covers 3-orientations of planar triangulations,
which are α-orientations, such that α(v) = 3 for all vertices v ∈ V (G) ∖ {a, b, c}, where
a, b, and c are the vertices on the outer face of G. For them α is defined by α(a) = 0,
α(b) = 1 and α(c) = 2, so all three edges on the outer face are rigid as well as all other
edges which contain a vertex on the outer face.

Theorem 17 (Miracle et.al., [39])
There is an infinite family of planar triangulations of graphs, such that the face flip
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4.2 3-Orientations of planar triangulations

Markov chain does not rapidly mix the set of 3-orientations of these graphs, i.e.

τM ≥ 2(n−14)/4 − 1
2
,

for a graph with n vertices.

In fact, we prove the following claim: There is an infinite family of planar triangulations{G1,G2, . . . } such that the face flip Markov chain does not rapidly mix the set of 3-
orientations of Gn, i.e.

τM ≥ 2n−3 − 1,
where Gn has 3n+ 4 vertices for all n ∈ N. To do so, we present a new family of graphs,
which are simpler, than the ones, presented by Miracle et. al. and allow to decrease
the maximal degree in a later corollary. Our proof sounds as follows:

Proof. Consider the graph Gn on 3n + 4 vertices, depicted in Figure 4.2.
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Figure 4.2: A 3-orientation / Schnyder-wood of Gn.

It is a planar triangulation and there are 3-orientations of Gn, since the picture shows
an example. So α ≡ 3 is feasible. Now, let Ω be the set of 3-orientations of Gn. To show
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4.2 3-Orientations of planar triangulations

that Ω is hour glass-shaped, consider the partition Ω = Ωg ∪ Ωr ∪ Ωb with respect to
the colour of the edge {x0, x1} in the Schnyder-wood, corresponding to the orientation,
under the assumption that c is the green sink. This is equivalent to saying

Ωg ∶= {G⃗ ∈ Ω ∣ (x0, x1) ∈ E(G⃗)},
Ωb ∶= {G⃗ ∈ Ω ∣ ∃i ∶ (x0,wi) ∈ E(G⃗)}, and
Ωr ∶= {G⃗ ∈ Ω ∣ ∃i ∶ (x0, vi) ∈ E(G⃗)},

since x0 is adjacent to the red and to the blue sink, so these outgoing edges are rigid and
the choice of the outgoing green edge of xo fixes the colours of all other edges, adjacent
to x0.
Now, the argue for the claims ∣Ωg ∣ = 1 and ∣Ωr ∣ = ∣Ωb∣ ≥ 2n as well as the one, that every
path of face flips / Markov chain transitions from Ωr to Ωb (or vice versa) hits at least
one element of Ωg. Together this proves that Ω is an hour glass-shaped state set, so it
has a bad conductance, which suffices to show that the face flip Markov chain on Ω is
not rapidly mixing.

• Claim ∣Ωg ∣ = 1: If {x0, x1} is green, it has to be oriented towards this vertex. Since
deg(x1) = 4 all other edges containing x1 are directed away from x1. Now the same
holds for v1 and w1, so all edges between {x1, v1,w1} and {x2, v2,w2} have to be
directed towards the second set (i.e. oriented upwards in the picture). Inductively,
all edges between Si ∶= {xi, vi,wi} and Si+1 have to be directed towards Si+1, if the
edges from Si−1 are directed to Si, because otherwise these three vertices of Si can
not reach their desired out-degree of 3. Finally, since x0 already has out-degree
3, all edges {x0, vi} and {x0,wj} are directed towards x0, which completes the
picture. So ∣Ωg ∣ = 1 and Figure 4.2 shows the only 3-orientation of Gn in Ωg.

• Claim ∣Ωr ∣ = ∣Ωb∣ ≥ 2n: Due to the symmetry with respect to the x0, x1, . . . , xn+1, c
- axis of Gn, every orientation can be mirrored on this axis. If we do this to a red
or blue one, the outgoing green edge of x0 is mapped from one side of the edge(x1, x0) to the other, so every element of Ωr is mapped to an element of Ωb and
vice versa. This means, that this mirror-operation is a bijection between Ωr and
Ωb, and they have the same cardinality.

Furthermore, assume the directed cycle x0, x1, v1, v2, . . . , vn, x0 in the element of
Ωg, which is dashed in the picture, is reversed. The resulting orientation is in Ωr,
where every triangle xi, vi, vi−1 can be flipped independently of each other and
without leaving Ωr. Therefore ∣Ωr ∣ ≥ 2n−1. More detailed counting even yields∣Ωr ∣ ≥ 2n easily.

• Claim: Ωg separates Ωb from Ωr: Assume G⃗ ∈ Ωr. To transform G⃗ into an element
of Ωb, we have to move the outgoing green edge of x0 from some vi to some wj .
Since (x0, a) and (x0, b) are rigid, this can only happen via vi−1, vi−2, . . . x1,w1, . . . wj,
since every face flip can only move it one step further. So on any path from an
element of Ωr to an element of Ωb the outgoing green edge of x0 has to be (x0, x1),
which means, that this path hits Ωg.

So Ω is an hour glass-shaped state lattice. Therefore Lemma 9 yields:

ΦM ≤
π(Ωg)
π(Ωb) =

∣Ωg ∣∣Ω∣ ⋅
∣Ω∣
∣Ωb∣ ≤

1

2n−1
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4.2 3-Orientations of planar triangulations

and Theorem 14 leads to

τM ≥ 1

4 ⋅ΦM

−
1

2

≥ 2n−1

4
−
1

2≥ 2n−3 − 1.

Note, that Gn has one single vertex of degree 2n+3, namely x0, while all other vertices
have a degree of at most 6. Since the face flip Markov chain is rapidly mixing on all 3-
orientation lattices of planar triangulation with maximum degree 6, this is rather close.
Furthermore, the next corollary shows that the maximum degree can even be pressed
down the size to O(√n):
Corollary 5

There is an infinite family of planar triangulations F ′ = {G′n ∣ n ∈ N, n ≥ 2} such that
G′n has 2n2 + n + 4 vertices, a maximum degree of 2n + 4 and a mixing time

τM ≥ 2(n−1) log(2n+2)−2 − 1
2
,

which means, the face flip Markov chain M is not rapidly mixing any of the sets of
3-orientations of a graph in this family.
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xi+1

⋮

yi,1

yi,2

yi,m

vi

vi−1

Figure 4.3: The subdivision of {xi, xi+1}.
Proof. Starting with the graphs Gn already introduced in Theorem 17, the edges{xi, xi+1} are subdivided for all i as shown in Figure 4.3, i.e. for all i = 1, . . . , (n − 1)
we introduce m vertices yi,j for j = 1, . . . ,m and connect xi and yi,1 as well as xi+1 and
yi,m. Furthermore yi,j is connected to yi,j+1 (for j ≠m), vi and wi. The resulting graph
is called Gn,m. This graph has 3n + 4 + (n − 1) ⋅m vertices. The maximum degree is
max{2n+3,m+4} and it has one vertex of degree 2n+3 and 2n vertices of degree m+4.
We claim, that the set of 3-orientations of Gn,m is still hour glass-shaped. The partition
is the same already applied in the previous proof.
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4.3 2-Orientations of plane quadrangulations

• Claim ∣Ωg ∣ = 1: If {x0, x1} is green, it has to be oriented towards x1. This vertex
has degree 4, so all other adjacent edges are directed away from x1. Now, the
same is true for y1,1 because (x1, y1,1) is directed towards y1,1, and it has a degree
of four. Inductively it holds for y1,i up to y1,m. So all edges are oriented upwards,
as indicated in the picture. Now, due to the degree of v1 and w1, the edges (v1, x2)
and (w1, x2) are oriented towards x2. This means, the edge from x1 to x2 is again
directed upwards, which inductively forces all edges to be oriented as indicated in
Figure 4.2 with Figure 4.3 inserted n − 1 times. This finally yields ∣Ωg ∣ = 1.

• Claim ∣Ωr ∣ = ∣Ωb∣ ≥ (m + 2)n−1: Since the inserted tokens do not break symmetry,
the bijection between Ωr and Ωb which was made use of in Theorem 17 still exists.
Therefore both sets still have the same size.

Further, the directed cycle x0, x1, v1, v2, . . . , vn, x0 can be reversed. This makes all
edges {vi, vi+1} blue. Now there arem+1 directed cycles ck = {xi, yi,1, . . . , yi,k, vi, vi−1},
which we can flip one of. Additionally we can also flip the triangle {vi, vi−1, xi},
which gives us m+2 choices for every i ∈ {1, . . . , n−1}, independent of each other,
explaining ∣Ωr ∣ ≥ (m + 2)n−1.

• Claim: Ωg separates Ωb from Ωr: Since Gn,m has the same local structure around
x0 as Gn and there Ωg,Gn separates Ωr,Gn from Ωb,Gn

, the same is true here.

This means, Lemma 9 is applicable and combined with and Theorem 14 it provides:

τM ≥ 1

4 ⋅ΦM

−
1

2

≥ min{∣Ωb∣, ∣Ωr ∣}
4 ⋅ ∣Ωg ∣ −

1

2

=
(m + 2)n−1

4
−
1

2

Now choosing m = 2n and defining G′n = G2n,n directly yields the claimed result.

This finishes our section on 3-orientations of plane triangulations. The interesting open
question is obviously for which maximum degrees the face flip Markov chain is mixing
and for which it is not, since the gap between 6 and O(√n) is still wide. This question
is left open and we turn towards 2-orientations of plane quadrangulations to see the
analogous picture there.

4.3 2-Orientations of plane quadrangulations

This section contains two results on the behaviour of the face flip Markov chain on the
set of 2-orientations of a plane quadrangulation. These are embedded planar graphs,
where all faces are 4-gons, whereas a 2-orientation is an α-orientation with α(v) = 2∀v ∈
V ∖ {b, d}, where b and d are opposing vertices on the outer face. They have an out-
degree of 0. This family of graphs is a generalisation of sub-sections of the rectangular
grid-graph, where the Markov chain’s behaviour was already investigated by Fehrenbach
and Rüschendorf [18] in 2004. Even earlier the set of 2-orientations was considered with
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4.3 2-Orientations of plane quadrangulations

analytic methods in the theory of Ising-models, for example in chapter 7 of Baxter’s
book [6] in 1982.
The first result shows, that for an unrestricted maximum degree we cannot expect the
Markov chain to be rapidly mixing.
Afterwards, the second result proves, that the Markov chain is rapidly mixing the set of
2-orientations, if the graph has a maximum degree of 4. One can argue that this family
is really small, but still it arouse some interest, even beside the special case of Ising-
models. For example Hasheminezhad and Mc Ray [29] in 2010 published an algorithm
to generate all these graphs. We start with some facts about plane quadrangulations:

Fact 4

A plane quadrangulation with n vertices has 2n−4 edges and n−2 faces. Furthermore if
G is 3-connected, it has n− 7 essential cycles, i.e. faces, which can be flipped. Namely,
these are all faces, except the outer face and the four faces, which share an edge with
the outer face. Let F ′(G) be this set of flippable faces.

Also, note that 2-orientations of plane quadrangulations yield an edge-bicolouring ana-
logue to Schnyder-Woods. An overview on these separating decompositions can be
found in Felsner, Kappes, Huemer, and Orden [24]. According to [21] the study of
separating decompositions goes back to [44] and continues in [43], [14], [13] and [22].
So let us start with the analog of Theorem 17, covering the face flip Markov chains
behaviour for high maximum-degree plane quadrangulations:

Theorem 18

There is an infinite family of planar quadrangulations {Q1,Q2, . . . } such that the face
flip Markov chain does not rapidly mix the set of 2-orientations of any Qn, i.e.

τM ≥ 2n−3 − 1,
while Qn has 5n + 5 vertices.

Proof. This proof follows the line of arguments already applied in Theorem 17. So first,
consider the graph Qn in Figure 4.4. It has 5n + 5 vertices and is obviously a plane
quadrangulations. All vertices except x0 have a degree ≤ 4, while deg(x0) = 2n + 2.
Further, {a,x0} ∈ E and a is on the outer face, so x0 has one rigid outgoing edge and
another one, which is free. Again, we partition Ω, the set of 2-orientations of Qn, into
Ωg, Ωr and Ωb, to show, that Ω is hour glass-shaped with respect to this partition. We
partition as follows:

Ωg ∶= {X⃗ ∈ Ω ∣ (x0, x1) ∈ E(X⃗)},
Ωr ∶= {X⃗ ∈ Ω ∣ ∃i ∶ (x0, vi) ∈ E(X⃗)}, and
Ωb ∶= {X⃗ ∈ Ω ∣ ∃i ∶ (x0,wi) ∈ E(X⃗)}.

This means Ωg contains of all orientations, such that the free outgoing edge of x0 goes
to x1. Further Ωr is the set of all orientations, where the free outgoing edge of x0 is left
of {x0, x1}, and Ωb is the set, where the free edge is in the right hand side. Obviously,
this is a decomposition of Ω into three disjoint sets. So the goal is again to show, that
Ω is hour glass shaped:
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x2

v3

v2 w2

Figure 4.4: A ’green’ 2-orientation of the graph Qn.

• Claim ∣Ωg ∣ = 1: If {x0, x1} is green, it has to be oriented towards x1. Now, we
work from top to bottom. The vertices vn+1 and wn+1 are adjacent to c and a,
so they both have two rigid outgoing edges. Now the edges from {vn, xn,wn}
to {vn+1,wn+1, x0} have all to be directed towards the second set, i.e. upwards.
Inductively all edges from {vi,wi} to {vi+1, xi+1,wi+1} are directed upwards as
well as all edges from {vi, xi,wi} to {vi,wi, x0}, which leaves us no choice at all,
except the one presented in Figure 4.4.

• Claim ∣Ωr ∣ = ∣Ωb∣ ≥ 2n: Due to the symmetry with respect to the a,x0, x1, . . . , xn, c
- axis of Gn, the graph can be mirrored on this axis. We can also mirror any
orientation on this axis, since no edge crosses it. Doing so, the free outgoing edge
of x0 is mapped from one side of the edge (x1, x0) to the other. This yields a
bijection, mapping every element of Ωr to an element of Ωb and vice versa, and
so both sets have the same cardinality.
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4.3 2-Orientations of plane quadrangulations

Next, reversing the dashed directed cycle x0, x1, v1, v1, v2, v2, . . . , vn, x0 in the unique
element of Ωg is possible. Doing so, we get an orientation in Ωr, since the free
outgoing edge of x0 now ends in vn. Now every face vi − 1, xi, vi, vi is directed. So
they can be flipped independently of each other without leaving Ωr. Therefore∣Ωr ∣ ≥ 2n−1. More detailed counting even yields ∣Ωr ∣ ≥ 2n easily.

• Claim: Ωg separates Ωb from Ωr: To transform X⃗ ∈ Ωr into an element of Ωb, we
have to move the free outgoing edge of x0 from some vi to some wj . Since (x0, a)
is rigid, this can only happen via vi−1, vi−2, . . . x1,w1, . . . wj, since every face flip
can only move it one vertex further. So on any path from an element of Ωr to an
element of Ωb the free outgoing edge of x0 has to be (x0, x1), which means, that
every path from Ωr to Ωb hits Ωg at some step.

So Ω is an hour glass-shaped state lattice. Therefore, as in Theorem 17, the application
of Lemma 9 and Theorem 14 yields

τM ≥ 1

4 ⋅ΦM

−
1

2

≥ min{∣Ωb∣, ∣Ωr ∣}
4 ⋅ ∣Ωg ∣ −

1

2

=
2n−1

4
−
1

2≥ 2n−3 − 1,

which finishes this proof.

After we have seen, that for plane quadrangulations with high maximum degrees the
face flip Markov chain might be not rapidly mixing, we will see next the theorem, which
states, that for low degrees it is rapidly mixing:

Theorem 19

Let G be a plane quadrangulation with n vertices, maximum degree ≤ 4 (except the
vertices of the outer face), such that all essential cycles are facial cycles. The face flip
chain is rapidly mixing on the set of 2-orientations of G, i.e.

τM(ε) ≤ 4e(2n + log(ε−1))
log( 1

2ε
) ⋅ n6 ⋅ log(ε−1).

The proof of this theorem follows the the same line of arguments as already applied in
[12] and [39] for 3-orientations of planar triangulations and in [18] for 2-orientations of
subsections of the rectangular grid. A short outline of the proof looks as follows:

tower moves coupling Bordewich & Dyer Randall & Tetali
↓ ↓ ↓ ↓

M Ð→ MT Ð→ P Ð→ τM⋆
T
(ε) Ð→ τM(ε)

Starting with the face flip Markov chain M , a tower Markov chain MT , is introduced.
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4.3 2-Orientations of plane quadrangulations

It can be coupled successfully. Next, using the coupling, a bound on the mixing time
τM⋆

T
(ε) is found with the theorem of Bordewich and Dyer. Here M⋆

T is a further modi-
fication of MT , according to Theorem 15. Now a comparison argument of Randall and
Tetali finally allows to finish the proof.
Since the condition on the minimum degree of the graphs is not an issue, assume from
now on that G is always is simple plane quadrangulation with maximum degree ≤ 4 and
minimum degree ≥ 3. We continue by introducing some machinery, which allows us to
prove the theorem:

Definition 20 (states of a face)
Each face of G⃗ in a 2-orientation is bounded by four oriented edges. These assign a
state depending on the number of clockwise and counterclockwise edges to the face:

• the face is oriented if all edges are clockwise or all edges are counterclockwise
oriented

• the face is blocked if all but one edge are clockwise oriented or all but one edge are
counterclockwise oriented The edge oriented in the opposing direction is called
the blocking edge of the face

• the face is scrambled if two edges are clockwise and two are counterclockwise
oriented

Definition 21 (towers)
Let G⃗ be a 2-orientation of a plane quadrangulation G. A tower T is a path (ak, . . . , a0)
of faces of G⃗, such that

• a0 is oriented

• a1, a2, . . . ak are blocked

• for all i = 1, . . . , k − 1 the edge of ai, opposing ai’s blocking edge, is the blocking
edge of ai+1 (and a2’s blocking edge is an edge of a0)
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Figure 4.5: A tower with blue blocking edges.

The length of a tower starting in ak and ending in a0 is k. Finally, a tower is oriented
(counter-) clockwise if the a0 is oriented (counter-) clockwise.

This definition implies that the edges of a tower form one directed cycle plus inner
blocking edges. Also a tower has a fixed direction to follow, after the starting face is
fixed. Further, no two maximal towers can have a face –except a0– in common, so two
towers are either disjoint, share their oriented face, or one tower is a subset of the other.
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4.3 2-Orientations of plane quadrangulations

Lemma 10 (towers do not touch themselves)
Let T = (ak, . . . , a0) be a tower in G⃗. Every edge e, which is contained in more than
one face of T is a blocking edge of T .

Proof. By definition, the blocking edge of ai is contained in ai and ai−1, so every blocking
edge is contained in at least two faces of T . On the other hand, every face can only be
contained once, so both faces being adjacent to the blocking edge are already part of T .
Therefore the blocking edge cannot occur a third time in the tower, meaning: Blocking
edges are contained exactly twice.
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. . . aj+ℓ
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ai−ℓ−1
ai−1ai

aj+1aj

e1e v

Figure 4.6: The edge e is contained twice and not blocking ↝ the vertex v has degree≥ 5.
Assume e is an edge of ai and aj (with i > j) and not a blocking edge of T . So either
ai−1 and aj+1 also share a non-blocking edge, or not. Since the blocking edges of am
and am+1 are opposing each other, they are disjoint. This means, due to finiteness,
there must be some ℓ, such that ai−ℓ and aj+ℓ share a non-blocking edge and ai−ℓ−1 and
aj+ℓ+1 do not. Let v be the starting vertex of the edge shared by ai+ℓ and aj−ℓ. This
implies, v is adjacent to this shared edge, the blocking edges of ai−ℓ and aj+ℓ+1 and to
the edges e1 and e2 which border ai+1 and aj−1, so w has to have at least a degree of 5,
which cannot be, since we are considering 2-orientations of plane quadrangulations of
maximum degree 4. This situation is shown in Figure 4.6.

This proof in fact could be reorganised, such that the maximum degree condition is not
needed. It would contain a case distinction, taking into consideration the orientation of
the blocking edges and the direction, in which the towers is moving. This reveals, that
in any case moving direction and orientation of blocking edges does not fit together.
Still, the next lemma makes use of the maximum degree condition, so only the shorter
proof of Lemma 10 is presented here.

Corollary 6

A tower T = (ak, . . . , a0) can be flipped. First flip a0, than a1 . . . and finally ak. This
results in a tower T ′ = (a0, a2, . . . , ak).
Proof. Due to Lemma 10 only blocking-edges are covered twice by T , so if a0 up to aj
are flipped, only the orientation of the blocking edge of aj+1 and part of the edges of the
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4.3 2-Orientations of plane quadrangulations

outer cycle of T have changed, while the other three edges of aj+1 remain untouched,
meaning, aj+1 is now oriented and can be flipped.

Lemma 11

Let T = (ak, ak−1, . . . , a0) be a tower in G⃗. There are at most four oriented faces touching
T , three of them at ak and one at a0.
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Figure 4.7: The situation at ai (and a0).

Proof. Consider a face ai, i ∉ {0, k}. The face has four neighbouring faces, two of them
are ai−1 and ai+1 and two, which will be called b and c. Let e1 = (v1,w1) and e2 = (v2,w2)
be edges of ai, which are shared with b and c as shown in Figure 4.7.
Now, w2 has already an out-degree of 2, so it might have another edge coming in, but for
sure no further outgoing edge. If it has another incoming edge, the face b can therefore
not be oriented, since the incoming edge is oriented against (v2,w2). If it does not
have an incoming edge, b is also a neighbour of ai+1. If ai+1 = ak. This implies, b is a
neighbour of ak and is allowed to be oriented. Otherwise, by induction, either b is a
neighbour of ak or we have an incoming edge preventing b from being oriented.
On the other hand, v1 has out-degree one. Therefore, it must have another outgoing
edge, which is oriented against (v1,w2). So c is not oriented neither. This is depicted
in Figure 4.7.
Next, consider the face a0. Two neighbouring faces (b′ and c′) cannot be oriented, using
the same argument as above, while the one opposing to a1’s blocking edge might be
oriented. This finishes the proof.

Note, that this lemma fails completely if the maximum degree was not bounded by 4!
Since it is crucial to prove the theorem, it shows, that this machinery cannot easily be
extend to plane quadrangulations with a maximum degree of 5 (or higher). Summing
up the previous lemmata, it can be said, that towers behave nicely. So it is time set up
our tower Markov chain MT , which is an extension of the face flip Markov chain M :

Definition 22 (the tower Markov chain MT )
One step of the tower Markov chain MT looks as follows:
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4.3 2-Orientations of plane quadrangulations

Input: X⃗ ∈ Ω
Output: X⃗ ∈ Ω
Let p←Ð [0,1] uniformly at random
Let f ←Ð F ′(G) a flippable face of G, uniformly at random
if f is counter-clockwise oriented and p ≤ 1

2
then

flip f

if f is clockwise oriented and p > 1
2
then

flip f

if a counter-clockwise oriented tower T = (f, ak−1, . . . , a0) starts in f and

p ≤ 1
4(k+1) then
reorient the outer circle of T clockwise, i.e. flip T

if a clockwise oriented tower T = (f, ak−1, . . . , a0) starts in f and

p > 1 − 1
4(k+1) then

flip T

return X⃗

Algorithm 6: One step of the tower Markov chain MT .

The set of transitions of MT is a superset of the set of transitions of M , so MT is also
irreducible. The chain is also aperiodic for the same reason and therefore it is ergodic.
Further, a flipped tower is again a tower of the same length, soMT is reversible, yielding
π(X⃗) = 1

∣Ω∣ for all X⃗ ∈ Ω. Furthermore its second biggest Eigenvalue λ1 is at least 1
2
,

because independently from the choice of f and p in 1
2
of all cases MT does nothing.

Now, to find a bound for the mixing time of MT , consider the following path coupling
of MT :

Definition 23 (the path coupling of MT )
Let P be our coupling, i.e. a Markov chain on Ω×Ω, with transitions as follows: With(X⃗, Y⃗ ) ∈ Ω2 one step of P looks as follows:
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Input: (X⃗, Y⃗ ) ∈ Ω ×Ω
Output: (X⃗, Y⃗ ) ∈ Ω ×Ω
Let p←Ð [0,1] uniformly at random
Let f ←Ð F ′(G) a flippable face of G, uniformly at random
foreach Z⃗ ∈ (X⃗, Y⃗ ) do

if f is ccw oriented in Z⃗ and p ≤ 1
2
then

flip f in Z⃗

if f is cw oriented in Z⃗ and p > 1
2
then

flip f in Z⃗

if a ccw oriented tower T = (f, ak−1, . . . , a0) starts in f in Z⃗ and

p ≤ 1
4(k+1) then

flip T in Z⃗

if a cw oriented tower T = (f, ak−1, . . . , a0) starts in f in Z⃗ and

p > 1 − 1
4(k+1) then

flip T in Z⃗

return (X⃗, Y⃗ )
Algorithm 7: One step of the coupling P of the tower Markov chain MT .

Here, cw abbreviates clockwise and ccw does the same with counter clockwise. This
Markov chain on Ω×Ω is indeed a (markovian) coupling of MT , because it operates on
X⃗ (and Y⃗ ) exactly in the same manner as Algorithm 6 does.
This means, P can be used to show thatMT is rapidly mixing, by applying Theorem 15.
This theorem relies on a metric d on Ω, which in this case is the length of the shortest
path between two elements in Ω, where we interpret Ω as a graph or distributive lattice.
So d(X⃗, Y⃗ ) is the minimal number of face flips, we have to perform to transfer X⃗ into
Y⃗ , which is also the minimal number of steps ofM we have to apply to X⃗ to achieve the
same. So the set S of pairs of orientations at distance 1 is exactly the set of transition
steps of the face flip Markov chain M , i.e. pairs of orientations, which differ in the
orientation of one directed face. Let S be the set of these pairs at distance 1. Besides
the metric d, we have to bound the parameters β, p and D of Theorem 15 for the tower
chain MT , as specified above.

Lemma 12 (a bound for the maximum distance D in Ω)
Let D be the maximum distance in Ω with respect to d.

D ≤ n2−4n+4
2

holds.

Proof. To bound D, the maximum distance between two orientations, the bijection
between α-orientations of planar graphs and their potentials is crucial. Further the
fact, that all orientations form a distributive lattice, pointed out by Felsner in [20] is
used and the fact, that every element of a distributive lattice is element of a shortest
path from the minimum to the maximum of the lattice.
First, note that between any two orientations there is a path of transitions, which is
not longer than the path from the lattice’s minimum to its maximum. To prove this,
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4.3 2-Orientations of plane quadrangulations

let h be the height of the lattice, i.e. the length of the shortest path from minimum
to maximum. Any two orientations X and Y have a shortest path to the minimum of
length aX and aY and one to the maximum of length bX and bY . Now, the distributivity
of the lattice yields h = aX + bX = aY + bY , so (aX + aY )+ (bX + bY ) = 2h, meaning, that
either the path from X to Y first using the shortest path from X to the minimum and
followed by the reversed path from Y to it, or the corresponding path via the maximum
has to have a length of at most h. So it suffices to bound the distance from minimum
to maximum.
To do so, the bijection from α-orientations to α-potentials is applied. The minimum of
the lattice corresponds to the ’all 0’ potential. On the other hand, the potential of a
face is at most its distance to the outer face, which is at most the radius of the dual
graph. But the radius of G’s dual is for sure not bigger than 1

2
of the number of faces.

So the α-potential corresponding to the maximum of the lattice has face entries of at
most #faces

2
. This leads to

D ≤ n − 2±
#faces

⋅
1
2
(n − 2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥max potential value

= n2−4n+4
2

.

The next example shows, that indeed there are plane quadrangulations, such that the
distance is quadratic in in the number of vertices, as the previous lemma indicated.

Remark 5

Consider the family of graphs pictured in Figure 4.8. It is a plane quadrangulation with
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Figure 4.8: A family of graphs with large maximum distance D in Ω.
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4.3 2-Orientations of plane quadrangulations

n = 4k vertices and therefore 4k −2 faces. The diameter is obviously k. As the numbers
in the faces indicate, we have a potential, whose values sum up to

4 ⋅
k−2

∑
j=0

j + k = 4
(k−2)(k−1)

2
+ k = 2k2 − 4k = n2−2n

8
.

So, for this family of graphs, the bound for D is tight up to a constant factor of 4 and
therefore the bound of Lemma 12 can at most be improved for all graphs by a constant
factor.

Lemma 13 (estimating p̃)

p̃ ∶= min
(X⃗,Y⃗ )∈S

Pr(Xt+1 = Y⃗ ∣Xt = X⃗) = 1

2(n − 7) .
Proof. The probability to move from X⃗ to Y⃗ in one step is exactly the probability to
choose the directed face δ in which X⃗ and Y⃗ differ as well as the orientation, this face
has in Y⃗ . So the probability is 1

2(n−7) , because we have n − 7 flippable faces in F ′(G)
and two choices for the orientation.

Lemma 14 (bounding β)
Let (X⃗, Y⃗ ) ∈ S, i.e. a pair of orientations, which differ only in the orientation of one
oriented face. Then

EP [d(Xt+1, Yt+1) ∣ (X⃗, Y⃗ ) = (Xt, Yt)] ≤ 1,
and with β = 1 we have

EP [d(Xt+1, Yt+1) ∣ (X⃗, Y⃗ ) = (Xt, Yt)] ≤ β ⋅ d(Xt, Yt).
Proof. Let ∆ ∶= EP [1 − d(Xt+1, Yt+1) ∣ (X⃗, Y⃗ ) = (Xt, Yt)] be the expected change of
distance between X⃗ and Y⃗ after one step of the coupling. Remember, (X⃗, Y⃗ ) ∈ S
implies, they are at distance 1. This means, they differ only in the orientation of one
oriented face δ ∈ F ′(G). We consider different cases, depending on the relation of the
oriented face δ to the face f , which the coupling chooses, to determine ∆ for all possible
configurations:

1. If f = δ, the chosen face is oriented in X⃗ and in Y⃗ . It is oriented clockwise in
one instance and counter clockwise in the other one. Therefore, depending on
the value of p, the face δ is flipped either in X⃗ or in Y⃗ , while it is not flipped in
the other. So in any case, the coupling’s step result in two identical orientations,
which results in

∆1 = −1.

2. If f ≠ δ and δ and f share an edge, some different situations can occur:

a) If f is oriented in X⃗ or in Y⃗ , assume without loss of generality it is cw
oriented in X⃗ . So in Y⃗ there starts a cw tower in f of length 1, which
ends in δ, as depicted in Figure 4.9. So, if p ≤ 1

2
, neither X⃗ nor Y⃗ nor their

distances changes. For 1
2
< p ≤ 7

8
only f in X⃗ is flipped, which increases the
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X⃗ : Y⃗ :

δ δ

f f

Figure 4.9: Situation 2.a, f is oriented in X⃗.

distance by 1. Finally, if p > 7
8
, we flip f in X⃗ and the tower (f, δ) is flipped

in Y⃗ , which decreases the distances by 1. This leads to

∆2a =
1
2
⋅ 0 + (7

8
−

1
2
) (+1) + 1

8
(−1) = 1

4
.

b) If f is scrambled in X⃗ (or Y⃗ ), f is blocked in Y⃗ and it might be, that a
tower of length k starts in the orientation Y⃗ in f . So, no matter what p
is, X⃗ remains unchanged, while there might be a tower getting flipped in Y⃗
which would increase the distance by k +1. Figure 4.10 shows this situation.
This yields ∆2b =

1
4(k+1)(k + 1) = 1

4
, if a tower of length k starts in f in Y⃗

and ∆2b = 0 otherwise. So for this case in total the change in distance can
be bound by

∆2b ≤
1

4
.

�
�
�
�

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

��

�
�
�
�

����

��
��
��
��

�
�
�
�

��

��
��
��
��

�
�
�
�

��

�
�
�
�

���������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��������

����������

����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������

����������

��������

��������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

. . .. . .

δ δ

Y⃗ :X⃗:

f f

Figure 4.10: Situation 2.b, f is scrambled in X⃗ and might start a tower in Y⃗ .

c) If f is blocked in one of the two instances, it is either scrambled or oriented
in the other one. Therefore, this case is already covered by the previous ones.

83



4.3 2-Orientations of plane quadrangulations

Combining the three cases, we have

∆2 ≤
1
4
.

3. For f ≠ δ and f and δ do not share an edge, we again have some different cases
to consider:

a) If f is oriented in X⃗ or Y⃗ , it is oriented in both in the same direction, so the
chain applies the same operation to both orientations and the distance does
not change at all, i.e.

∆3a = 0.

b) If f starts a tower in X⃗ or Y⃗ , which has no edge in common with δ, the same
tower exists in the other orientation and the step of the coupling does not
change the distance, because both instances behave in the same way. This
leads to

∆3b = 0.

c) If a tower T = (ak, . . . , a0) starts in f (without loss of generality in X⃗ and
oriented cw), which means ak = f , which does touch δ. So according to
Lemma 11, the edge of a0 opposing the blocking edge of a1 is the edge of
δ, which they have in common. This implies (f, ak−1, . . . , a1, δ) is a tower
of length k + 1 in Y⃗ . Also note, that both towers are oriented in the same
direction, as Figure 4.11 shows. This yields, for p ≤ 1 − 1

4(k+1) no orientation

is changed by the coupling step. For 1− 1
4(k+1) < p ≤ 1−

1
4(k+2) only the tower

in X⃗ is flipped, which increases the distance by k+1. Finally, for p ≥ 1− 1
4(k+1)

both towers are flipped, which decreases the distance by 1. In total:

∆3c = ( 1
4(k+1) −

1
4(k+2)) ⋅ (k + 1) + 1

4(k+2) ⋅ (−1) = 0

So in total, case 3 leads to
∆3 = 0.

Now, it remains to merge all cases, weighted accordingly to the number of faces, which
can result in the corresponding case. There is one case of type 1, four cases of type 2
and a n − 7− 5 faces of cases of type 3. So the total expected distance after one step of
the coupling P on a set of orientations at distance 1 is

∆ ≤ 1 ⋅ (−1) + 4 ⋅ 1
4
+ (n − 7 − 5) ⋅ 0 = 0

resulting in
EP [d(Xt+1, Yt+1) ∣ (X⃗, Y⃗ ) = (Xt, Yt)] ≤ 1,

which means β = 1 complies with all the conditions, required by Theorem 15.

So after this prelude, finally the application of Theorem 15 is possible, since all the
building blocks, which are needed, were finally established.
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Figure 4.11: Situation 3c, a tower in X⃗ touching δ implies a tower in Y⃗ ending in δ.

Proposition 4 (mixing time of M⋆
T )

Let MT be the transition matrix of the tower Markov chain MT and M⋆
T the Markov

chain with transition matrixM⋆
T ∶=

1
1+p̃
(MT + p̃ ⋅I), where I denotes the Ω×Ω identity

matrix and p̃ = 1
2(n−7) as established in Lemma 13. The mixing time τM⋆

T
of the Markov

chain M⋆
T is bounded by

τM⋆
T
(ε) ≤ e

2
⋅ n5 ⋅ log(ε−1).

Proof. As the previous three Lemmas have shown, Theorem 15 is applicable with β = 1,
p = 1

2(n−7) , and D ≤
n2−4n+4

2
< n2

2
to our coupling. This yields:

τM⋆
T
(ε) ≤ ⌈eD2(1+p̃)

p̃
⌉ ⋅ ⌈log(ε−1)⌉

≤
e(n

4

4
)(1+ 1

2(n−7) )
1

2(n−7)
⋅ log(ε−1)

≤ e
2
⋅ n5 log(ε−1)

Now it remains to translate this bound to the mixing time of M⋆
T to a bound of the

mixing time of M .

Proof. (of Theorem 19)
We want to apply Theorem 16 to bound the mixing time τM ofM in terms of τM⋆

T
, which

was bounded in Proposition 4. All Markov chains M , MT , and M
⋆
T are reversible and

ergodic, so they share as stationary distribution π the uniform distribution. Further,
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4.3 2-Orientations of plane quadrangulations

all three chains are lazy, i.e. with a probability of ≥ 1
2
they do not change an element, so

their second largest eigenvalue is ≥ 1
2
. This means Theorem 16, the comparison theorem

of Randall and Tetali, can be applied. To do so, we have to translate all moves of M⋆
T

in paths of moves of M and bound

A ∶= max
(x,y)∈E(M)

⎧⎪⎪⎨⎪⎪⎩
1

π(x)⋅(M)(x,y) ⋅ ∑
(u,v)∈Γ(x,y)

∣γuv ∣ ⋅ π(u) ⋅ (M̃)x,y
⎫⎪⎪⎬⎪⎪⎭

where
Γ(x, y) ∶= {(u, v) ∈ E(M̃) ∣ (x, y) ∈ γuv}.

The steps we have to consider are on the one hand, flips of towers in M⋆
T , which can be

rephrased as a sequence of flips of directed faces, see Corollary 6. So let (u, v) ∈ E(MT )
be a flip of a tower of length k. There is a natural sequence of face flips γU⃗ V⃗ of length
k + 1 of flips of faces, which results in the same total change. This leads to

∣γ
U⃗ V⃗
∣ ⋅ π(U⃗) ⋅ (MT )U⃗ ,V⃗

= (k + 1) ⋅ 1∣Ω∣ ⋅
1

4(k + 1) ⋅
1

(n − 7)
=

1

∣Ω∣ ⋅
1

4(n − 7) ,

where (MT )U⃗ ,V⃗
is the entry of the transition matrix MT of the Markov chain MT ,

associated with the orientations U⃗ and V⃗ . In other words, it is the transition probability
between the two orientations, (MT )U⃗ ,V⃗ = Pr(Xt+1 = V⃗ ∣ Xt = U⃗). Further, the equations
hold, because there is one of n−7 flippable faces, which we have to choose from and we
flip the oriented tower with probability 1

4(k+1) . Also, there are at most 4(n − 7) towers
which contain a face f , because at any of the n−7 flippable faces could start four towers
containing the face f . So at most 4(n − 7) ways γuv contain a fixed face flip.
Note, that the family of examples in Remark 5 shows, that this bound is tight up to a
constant factor of 4, since in any face of one of the graphs, a tower could start, which
ends in the middle face.
Further, we know for a fixed pair (X⃗, Y⃗ ) ∈ E(M) = S with X⃗ ≠ Y⃗

(M⋆
T )U⃗ ,V⃗ =

1
1+p
(MT + pI)U⃗ ,V⃗ ≤ (MT )U⃗ ,V⃗ .

This yields

A
X⃗,Y⃗

∶=
1

π(X⃗) ⋅ (M)
X⃗,Y⃗

⋅ ∑
(U⃗ ,V⃗ )∈Γ(X⃗,Y⃗ )

∣γ
U⃗ V⃗
∣ ⋅ π(U⃗) ⋅ (M⋆

T )U⃗ ,V⃗

≤
1

π(X⃗) ⋅ (M)
X⃗,Y⃗

⋅ ∑
(U⃗ ,V⃗ )∈Γ(X⃗,Y⃗ )

∣γ
U⃗ ,V⃗
∣ ⋅ π(U⃗) ⋅ (MT )U⃗ ,V⃗

≤
1

1
∣Ω∣ ⋅

1
2(n−7)

⋅ 4(n − 7) ⋅ 1∣Ω∣ ⋅
1

8(n − 7)
= (n − 7),

which does not depend on X⃗ or Y⃗ .
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This is not applicable to pairs (X⃗, X⃗), so we have to take them into account now: First,
Γ(X⃗, X⃗) = {(X⃗, X⃗)}, since the only path in the transitions of M⋆

T using the loop, is the
same loop in M . So

AX⃗X⃗ =
1

π(X⃗) ⋅ (M)X⃗,X⃗

⋅ ∑
(U⃗ ,V⃗ )∈Γ(X⃗,Y⃗ )

∣γU⃗ ,V⃗ ∣ ⋅ π(U⃗) ⋅ (M⋆
T )U⃗ ,V⃗

=
1

π(X⃗) ⋅ (M)X⃗,X⃗

⋅ π(X⃗) ⋅ (M⋆
T )X⃗,X⃗

=
1

π(X⃗) ⋅ (M)
X⃗,X⃗

⋅ π(X⃗) ⋅ 1
1+p
(MT + pI)X⃗,X⃗

≤
1

π(X⃗) ⋅ (M)
X⃗,X⃗

⋅ π(X⃗) ⋅ 1
1+p

≤
1

(M)X⃗,X⃗

≤ 2,

since 1
2
≤ (M)X⃗,X⃗ ≤ 1. Together, this directly yields A =max(X⃗,Y⃗ )∈E(M)AX⃗Y⃗ ≤ n − 7.

Finally, we need a simple upper bound to π⋆ = minX⃗∈Ω π(X⃗) = 1
∣Ω∣ . Note, the graph

has n vertices, so it contains 2(n − 4) edges. This leads to the trivial upper bound∣Ω∣ ≤ 22n−4 < 22n, if all orientations of the graph, not only 2-orientations, are taken into
account. This implies 1

π⋆
= ∣Ω∣ ≤ 22n. Last but not least we have all parts together and

Theorem 16 yields:

τM(ε) ≤ 4 log( 1
ε⋅π⋆
)

log( 1
2ε
) ⋅A ⋅ τM⋆

T
(ε)

=
4 log(22n

ε
)

log( 1
2ε
) ⋅ 2(n − 7) ⋅ τM⋆

T
(ε)

≤
4(2n + log(ε−1))

log( 1
2ε
) ⋅ 2(n − 7) ⋅ e

2
⋅ n5 ⋅ log(ε−1)

≤
4e(2n + log(ε−1))

log( 1
2ε
) ⋅ n6 ⋅ log(ε−1).

4.4 α-Orientations of plane triangulations

This last section treats some one aspect of the behaviour of the face flip Markov chain
M for general α-orientations of plane triangulations. As established earlier, for graphs
with a high maximum degree, the face flip Markov chain M cannot be expected to be
rapid mixing. But even worse, there is a family of plane triangulations of maximum
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4.4 α-Orientations of plane triangulations

degree 6, where the chain torpidly mixes the set of α-orientations for every of these
graphs. This family is built from the graphs Gn, which were used in Theorem 17.
Taking the graph G3k−1, the vertex x0 is replaced by a token graph Tk, which is defined
as follows:

Definition 24 (the token graph and the weight function α̃)
The token T0 consists of one single vertex c0.
Next, T1 consists of T0 and the six-cycle c1, b1,1, b1,2, c−1, d1,2, d1,1. Further, all vertices
of the six-cycle are adjacent to c0. So we have a hexagonal subset of the triangular
lattice of side-length 1 with a middle vertex c0.
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Figure 4.12: The token graph T3, with red outgoing path from c0, blue flippable cycles
and the dashed in- and outgoing demand.

In general, the token Tk consists of Tk−1 and 6k additional vertices ck, bk,1, bk,2, . . . ,
bk,3k−1, c−k, dk,3k−1, . . . , dk,1, which form one cycle (in the order above) and are con-
nected to the vertices of Tk−1 such that ck−1 is connected to bk,1, ck, and dk,1 and dk−1,1
is connected to dk,1 and dk,2 and Tk is a hexagonal subset of the triangular grid with
corners ck, bk,k, bk,2k, c−k, dk,2k, dk,k with side length k. This implies there are in total
12k-6 edges, connecting Tk−1 to the new cycle, but they are fixed by the five edges above
and the triangular grids structure.
Besides the token graph, there is need for the definition of the weight-function α̃, which
specifies the out-degrees of the vertices of Tk. This function α̃ is, as follows:

• α̃(ci) ∶= 1 for i = 0,1, . . . , k

• α̃(ci) ∶= 3 for i = −1,−2, . . . ,−(k − 1) and α̃(c−k) ∶= 5
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4.4 α-Orientations of plane triangulations

• α̃(bi,j) ∶= 3 for j ∉ {i,2i} and (i, j) ≠ (k,3k − 1)
• α̃(bi,j) ∶= 2 if j = i or j = 2i for i = 1, . . . , k

• α̃(di,j) ∶= 3 for j ∉ {i,2i} and (i, j) ≠ (k,3k − 1)
• α̃(di,j) ∶= 2 if j = i or j = 2i for i = 1, . . . , k

• α̃(bk,3k−1) ∶= 4 and α̃(dk,3k−1) ∶= 4
Note, ck, bk,k, bk,2k, c−k, dk,2k, dk,k are the corners of the hexagon, which have to be
treated slightly different regarding α̃. One such orientation is depicted in Figure 4.12
for T3, but it can easily be extended to all k.

To understand, why this token has the right properties, consider the role of the vertex x0
in the graphs Gn of Theorem 17, which are drawn in Figure 4.2. There deg(x0) = 2n+3.
Further, it has 2 rigid outgoing edges to a and b, which are vertices on the outer face,
which leaves a non-rigid outgoing edge. Finally, any of the non rigid 2n + 1 edges of x0
can be the third outgoing one. In this section, x0 is going to be replaced by Tk, so Tk
should behave in the same way as x0 does. Before this is proven, we have to exemplify,
now Tk replaces x0:

Definition 25 (the graph G̃k)
Let G̃k be the graph G3k−1, where the vertex x0 is substituted by the token graph Tk in
such a way, that ck is connected to v1, x1 and w1. Further, bk,i is connected to vi and
vi+1 as well as dk,i to wi and wi+1 for all i = 1, . . . ,3k − 1. Finally, c−k is connected to
the vertices a and b of the outer face. Also {bk,3k−1, a} and {dk,3k−1, b} are edges of G̃k.
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Figure 4.13: Connecting Tk and G3k−1.
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This substitution is presented in Figure 4.12, while Figure 4.14 shows the graph G̃2.
Every vertex vi and wi of G3k+1 is connected to two vertices of Tk, so they all have a
degree of 6. Further, x1 has one more edge and so deg(x1) = 6. Also all vertices bk,i
and dk,i have two additional edges, so they have a degree of 5 (if i = k or i = 2k) or 6.
The vertex ck is adjacent to three vertices in G3k−1, so it also has a degree of 6, while
c−k ends up with a degree of 5. Since all other vertices do not receive any additional
edges, they have a degree of at most 6 and G̃k has therefore a maximum degree of 6.
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Figure 4.14: The ’green’ orientations of G̃2, which consists of T2 properly inserted into
G5.

Since we already defined α̃ for all vertices of Tk, we now extend it to G̃k. We prescribe
out degrees of the vertices of G3k−1 as follows

• α̃(xi) = 3 for i = 1, . . . ,3k − 1,

• α̃(vi) = 4 for i = 1, . . . ,3k − 2 and α̃(v3k−1) = 5 , and
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• α̃(wi) = 4 for i = 1, . . . ,3k − 2 and α̃(w3k−1) = 5
• α̃(a) = 0, α̃(b) = 1, and α̃(c) = 2

and get a weight function α̃ for all vertices of G̃3k−1.

As announced, if we insert Tk as we do it in G̃k, it has –more or less– the same properties
as x0 has in G3k−2:

Lemma 15 (Properties of a properly inserted Tk)
Let Tk be inserted into some graph as shown in Figure 4.13. The token Tk has the
following properties:

1. Tk is connected with 2(3k − 2) + 3 edges to the outside, five of them outgoing

2. Tk is connected with 4 rigid outgoing edges to the outer face, two edges to a and
two to b

3. there is only one α̃-orientation of Tk, such that this path leaves via the middle
edge of ck

Proof.

1. The outer circle of Tk consists of 6k vertices and 2 ⋅ 6k + 1 edges to the outside.
One vertex ’on the other side’ is adjacent to only one of these edges, every other
one is adjacent to exactly to edges. So the size of the neighbourhood of Tk, the
number of vertices, Tk is connected to, is 6k − 1 = 2(3k − 2) + 3.
Further, the vertices outer circle of TK , namely ck, c−k, dk,j and bk,j need in total
1+5+6(k −1)3+2+4 ⋅2 = 18k −2 outgoing edges. They are connected in between
with 6k edges. Further, there are (6(k − 1)2 + 6 edges from the outer circle of Tk
to its inner Tk−1, of whom (12(k − 1)+ 5 are outgoing of the outer circle. So there
are 18k − 7 edges outgoing of the outer circle, leaving a demand of 5.

2. Tk is connected to a and b on the outer face. Each of these vertices is connected
by 2 edges, so Tk has 4 rigid outgoing edges to the outer face.

3. If the edge {ck, x1} is oriented towards x1, the vertex ck is saturated, because
α̃(ck) = 1. This forces {ck−1, ck} to be oriented towards ck, which saturates ck−1.
Inductively all edges {ci−1, ci} for i = 1, . . . , k are oriented towards ci and all ci for
i ≥ 0 are saturated.

So if ci is saturated, the edges {di,1, ci} and {bi,1, ci} have to point towards ci. Since
the one free outgoing edge of Ti−1 goes to ci, the edges connecting di,1 and bi,1 with
Ti−1 are oriented towards Ti−1, which saturates di,1 and bi,1. Now, inductively, all
other edges {di,j−1, di,j} and {bi,j−1, bi,j} have to be oriented towards di,j−1 (or
bi,j−1 respectively). This leaves no choice, than to orient every edge as shown in
Figure 4.12.

Another way to argue is again based on Figure 4.12. As one can see, there is no
oriented cycle to flip in the shown orientation, which does not contain (ck, x1), so
any other α̃-orientation of Tk contains this edge in the opposing direction.
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4.4 α-Orientations of plane triangulations

This lemma could even be extended, since for any orientation of a properly inserted Tk,
we have exactly one directed path starting in c0 leaving the token somewhere. There
might be multiple orientations, such that the path leaves the token at the same vertex,
but there is always exactly one such path, which can easily be constructed, starting
with the free edge which leaves Tk and than tracing back.
Now, having established the family of graphs to consider and our the prescribed out-
degrees α̃, it is time to show, that the set of α̃-orientations of G̃k is hour glass-shaped,
which implies, that the face flip Markov chain M mixes ΩG̃k,α̃

torpidly:

Theorem 20

The face flip Markov chain does not rapidly mix the set of α̃-orientations of any graph
of the infinity family of planar triangulations {G̃k ∣ k ∈ N, k > 0}, i.e. the mixing time
of the face flip Markov chain M on the set of α̃-orientations of G̃k is bounded by

τM ≥ 23k−4 − 1.
Proof. The line of arguments, which is going to be applied here is rather obvious, since
it was already made use of twice in this work, namely in Theorem 17 and Theorem 18.
So let k be fixed, consider the graph G̃k, and let Ω be the set of its α̃-orientations. To
show, that Ω is hour-glass-shaped, let

Ωg ∶= {G⃗ ∈ Ω ∣ (ck, x1) ∈ E(G⃗},
Ωr ∶= {G⃗ ∈ Ω ∣ ∃i, j ∶ (bk,j, vi) ∈ E(G⃗)}, and
Ωb ∶= {G⃗ ∈ Ω ∣ ∃i, j ∶ (dk,j,wj) ∈ E(G⃗)}.

So in Ωr the outgoing edge of Tk is left of (x1, ck) and Ωb contains all orientations,
where it is on the right hand side. As previously, the following arguments make sure,
the following three claims are met:

• Claim ∣Ωg ∣ = 1: In a ’green’ orientation the edge {ck, x1} is directed from Tk to
G3k−1. So according to Lemma 15, (3), there is only one such orientation of Tk.
Further, there is only one ’green’ orientation of G3k−1, if it contains (x0, x1), which
combined yields this claim.

• Claim ∣Ωr ∣ = ∣Ωb∣ ≥ 23k−2: As in the previous proofs, the symmetry of G̃k yields
this claim. Flipping an orientation of G̃ at the c−k, c−(k−1), . . . , c0, . . . , ck, x1,
. . . , x3k−1 - axis, we find a bijection between Ωr and Ωb, as exposed twice earlier.

Consider the green orientation of G̃k. There the cycle ck, x1, v1, . . . , v3k−1,
dk,3(k−1), c−(k−1), c−(k−2), . . . , ck−1 in the green orientation is oriented and can
be reversed. This yields a red orientation, where the triangles vi, vi+1, xi for
i = 1, . . . , (3k − 1) − 1 are all oriented and can be flipped independently of each
other. So there are at least 23k−2 red orientations.

• Claim: Ωg separates Ωb from Ωr: In any α̃-orientation of G̃k there is exactly one
edge pointing from Tk to the vertices of G3k−1, except the rigid edges to a and b,
which are on the outer face. Assume G⃗ ∈ Ωr, so this edge goes to some vi. For
any blue orientation, it has to point to some wj , so we have to flip it, step by

92



4.5 Conclusion

step from one side to the other. This can only be done using the edge {ck, x1},
because on the other side of Tk we have rigid edges from c−k to a and b, which
prevent going this path. So on any path from an element of Ωr to an element of
Ωb the outgoing green edge of Tk has to be (ck, x1), which means, that this path
hits Ωg.

So Ω is an hour glass-shaped state lattice. Therefore the requirements of Lemma 9 are
met and it can be applied:

ΦM ≤
π(Ωg)
π(Ωb) =

∣Ωg ∣∣Ω∣ ⋅
∣Ω∣
∣Ωb∣ ≤

1

23k−2

and Theorem 14 leads to

τM ≥ 1

4 ⋅ΦM

−
1

2

≥ 23k−2

4
−
1

2

≥ 23k−4 − 1,

which completes this proof.

This section ends with a remark, which might improve the graph G̃k slightly, depending
on the readers opinion, what a nice graph is:

Remark 6

The vertex c−k of G̃k is connected to 5 rigid edges. It is possible to delete c−k from G̃k

and all of its adjacent edges and insert edges from bk−1,3(k−1)−1 and dk−1,3(k−1)−1 to a.
Since a rigid sub graph is replaced by another rigid one, the resulting graph has the same
set of α̃-orientations (except we have to increase α̃(bk−1,3(k−1)−1) and α̃(dk−1,3(k−1)−1)
by one, since they both got an additional rigid, outgoing edge to a). The resulting
graph looses its symmetry, but does not have any rigid edges, except the ones which go
towards vertices on the outer face.

4.5 Conclusion

We would like to close this capter with some open questions:

• Is there an analogue of Remark 4 for 2-orientations of plane quadrangulations
of maximum degree 4? Even if not, is it really necessary to use the theorem of
Bordewich and Dyer instead of the theorem of Dyer and Greenhill? Remark 4
does not imply, that the Dyer Greenhill is not applicable, but you have to argue
in another manner and you will have to include tower-moves in the argument, to
be able to apply the theorem. To us it is currently unclear, if this is possible or
not.

• Is there an analogue of Corollary 5 to Theorem 17? This means, are we able to
find a family of plane quadrangulations with a maximum degree in the order of√
#vertices, such that the face flip Markov chain is not rapidly mixing?
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• Is it possible to improve the maximum degree of Theorem 19 or its analogue
for plane quadrangulations of maximum degree 6 in [39]? In both cases there
is still quite a bit gap between 6 and O(√#vertices) and respectively 4 and
O(#vertices). We think, it is rather unclear, what the order of the mixing time
of the face flip Markov chain in between is.
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5 Conclusion

We already saw some conclusions, which were part of Chapter 2, 3, and 4. Now, let us
look briefly at the complete picture:

• In Chapter 2 we introduced the method of block coupling and applied it to various
families of graphs, forming sets of 2-heights. Especially, we sat that the up/down-
Markov chain is rapidly mixing the sets of 2-heights of

– toroidal triangle grids,

– triangle grid graphs,

– toroidal rectangular grid graphs, and

– plane triangulations.

Still, we failed providing results for k = 3 or even bigger k, due to the massive
amount of computations for slightly bigger blocks. The original intent of Chapter 3
was to understand the behaviour of k-heights on a path well enough and apply this
knowledge to decrease the required amount of computations. We were able to find
some formulas which explain well the behaviour of these k-heights, or bounded
lattice paths, but did not make the way back to the general block coupling of
k-heights. So the first open question is: Can the explicit formulas for bounded
lattice paths be applied to speed up the computation of EB,δ to produce results for
3-heights or even bigger k? Also, there are some interesting open questions next
to the block coupling method, which we already stated:

– First, obviously there is the question if the coefficients, which occur in the
bound of the mixing time established with the block coupling methods are
required to be that huge. It might be worth it to improve them. Some first
fooling around with coupling from the past indicated much better mixing
times. These experiments could be substantiated and the method itself might
be improveable in terms of the resulting bounds to the mixing time.

– Second, the block coupling method does not guide you, what good blocks
are. Some more insight into what makes a set of blocks good would be very
delightful. Currently, it is not even clear if it is desirable to create blocks
with small or with big border (compared to the amount of interior faces). We
tried some different shapes of blocks, but did not gain experimental insight.

• With Chapter 3 we did some detour from Markov chains into lattice path enumer-
ation. We saw explicit formulas for some families of bounded lattice paths, which
are somewhat the one dimensional instance of the two dimensional problem of
investigating the up/down Markov chain on planar graphs. Maybe these insights
might help to understand, what good blocks look like. Maybe it might even be
possible to use this to improve the required amount of computations to decide if
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a set of blocks is applicable to the block coupling method. We failed do to so,
maybe somebody else proceeds here. Also, the method used to count the bounded
lattice paths are worthwhile itself, so continued study and improvement of them
should be considered.

• The overall question in the first place was to investigate the behaviour of the
face flip Markov chain on α-orientations with the block coupling method. This
is missing in this work. Still some progress on the behaviour of this chain was
presented in Chapter 4 using tower moves as coupling method for positive results
and conductance for negative ones. Especially, we were able to present

– a family of planar triangulations of maximum degree
√
n with O(n) vertices,

such that the face flip Markov chain is not rapidly mixing the set of 3-
orientations of these graphs.

– a family of planar quadrangulation of maximum degree n with O(n) vertices
such that the face flip Markov chain is not rapidly mixing the set of 2-
orientations of these graphs.

– a proof, stating that for planar quadrangulations of maximum degree 4 the
chain is indeed rapidly mixing.

– Presenting a family of triangulations of maximum degree 7, such that for an
α (with α(v) = 3 for most vertices v) the face flip Markov chain is not rapid
lymixing the set of α-orientations.

In the end, the gap of families of graphs for which the chain might be rapidly
mixing has been reduced to quite some extend by this work. Still it might be
worthwhile to repeat the tower moves results with block coupling and try to extend
them.

So, as usual at the end of some mathematical work, some work was done and even more
revealed to be considered in future. . .
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