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CHAPTER I

Introduction

Quantum information processing, holding the promise to revolutionize information

technology by incorporating fundamental laws of quantum mechanics into elements

of information processing, has been attracting tremendous research interests over

the past decade or so. The emergence of the idea of quantum information process-

ing (QIP) can be at least dated back to the year 1982, when Feynman proposed to

simulate one quantum system with another [1]. To simulate an arbitrary quantum

system consisting of a large number of particles on classical computers in general

is intractable, because the huge size of the Hilbert space required to describe the

system grows exponentially with the number of particles in the system. Later on,

interests in QIP were greatly stimulated in the mid 1990’s, when ingenious quantum

algorithms such as Shor’s factoring [2] and Grover’s Search [3] algorithms were de-

veloped. Factoring a large number or searching in an unsorted large database are

classically hard mathematical problems, but with quantum algorithms their com-

plexity can be greatly reduced. Following the discoveries of these intriguing algo-

rithms as well as secure quantum communication protocols [4, 5, 6], great efforts

have been made to pursue their physical implementations [7, 8, 9]. Nowadays, QIP

has evolved into a highly interdisciplinary research field, in which problems of inter-

1
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ests are extraordinarily diverse, including (but not limited to) designing more novel

quantum computing algorithms to outperform classical computation capabilities, de-

vising quantum communication protocols with unprecedented security level, under-

standing and characterizing quantum entanglement, as well as controlling quantum

systems coherently to implement fault tolerant and scalable quantum information

processing(QIP) devices. While it has been mainly focused on how to process infor-

mation quantum mechanically, research in the field of quantum information science

also sheds light on classical computation. The advancement of our understanding

on quantum entanglement has led to the development of several novel algorithms

for efficient classical simulation of strongly correlated quantum many-body physics

[10, 11, 12, 13, 14, 15, 16, 17].

1.1 Basics of quantum information processing

To help understand fundamental principles of quantum information theory, it

would be instructive to make comparison with its classical counterpart. As is well

known, the primary building block of classical information is called a “bit”, which

takes values of either 0 or 1. Classical information is encoded as strings of bits and is

processed by electric circuits constructed with classical logical gates. Naturally, the

unit of quantum information is called “quantum bit”, also known as “qubit”. Unlike

the classical bit, a qubit is a vector in a Hilbert space spanned by basis vectors

|0〉 and |1〉, which can be visualized with the so-called Bloch sphere as shown in

Fig. 1.1. While a classical bit is usually implemented by the voltage of either 0

or V across a capacitor, a qubit is physically represented by an effective two-level

quantum system whose state can be generally expressed as a superposition of basis

vectors in the form α|0〉 + β|1〉. Correspondingly, quantum information encoded in
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Figure 1.1: Bloch sphere representation of qubits. (a) An arbitrary qubit |ψ〉 = α|0〉+ β|1〉 can be
parameterized with two real numbers θ and φ corresponding to the polar and azimuthal
angles in spherical coordinates as |ψ〉 = cos θ

2 |0〉+eiφ sin θ
2 |1〉; (b) Bloch representations

of four frequently used qubit states: |0〉 and |1〉 corresponds to spin-up and spin-down
eigenvectors along z-axis; |+〉 and |−〉 corresponds to spin-up and spin-down eigenvec-
tors along x-axis.

a string of N qubits is in general described by
∑

in=0,1 Ci1i2···iN |i1〉 ⊗ |i2〉 ⊗ · · · |iN〉.

Many intriguing features of quantum information are due to the superposition nature

of quantum states together with the laws governing the measurement of a quantum

state. For example, intuitively, a qubit seems to be able to contain more information

than a classical bit as it could have arbitrary superposition coefficients. However,

since measurement (of von Neumann type) on quantum systems induces collapse

of quantum states into eigenstates of measured observables, given one copy of a

qubit, one has no way to completely retrieve the magnitudes and phases of the

original superposition coefficients. As a matter of fact, one qubit can only contain

at most one bit of accessible classical information [18]. Besides, the superposition

of quantum states also leads to quantum parallelism which is exploited in many

quantum algorithms or quantum communication protocols [2, 3].

To process quantum information quantum mechanically, we also need to imple-
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ment the quantum analogue of classical gates, namely quantum gates, which nor-

mally work on small number of designated qubits. Mathematically, quantum gates

are represented by unitary operators (matrices). Due to their unitarity, it is not sur-

prising that quantum gates are reversible, unlike most classical gates. A well-known

example of reversible classical gates is the so-called Toffoli gate, which together with

NOT and XOR gates constitutes a universal set of reversible classical gates. With

a universal set of gates, one can construct any other gate and realize arbitrary al-

gorithms. Fortunately, for quantum computation there also exist universal sets of

quantum gates. For example, a continuous set of all single-qubit quantum gates

and two-qubit controlled-NOT gate are sufficient to reproduce any arbitrary unitary

operator exactly, thereby realizing universal quantum computing [19]. As a matter

of fact, every single-qubit gate can be approximated to arbitrary accuracy with a

finite number of discrete single-qubit gates. The controlled-NOT gate (see Fig. 1.2)

is of great importance for QIP. Nonetheless it is only one choice from many uni-

versal controlled-unitary gates. For example, the controlled phase flip (CPF) gate is

known to be equivalent to the controlled-NOT up to single-qubit unitary transforma-

tions. With current experimental technology, single-qubit rotations can be achieved

with high precision relatively easily for most QIP candidate systems as compared

with generic multi-qubit gates (which can not be reduced to products of single qubit

gates).

Multi-qubit quantum gates are of central importance for QIP, in large part be-

cause they are indispensable for the manipulation of a precious resource in QIP

called entanglement. When shared by remote parties, entanglement is especially

useful for novel quantum communication protocols, such as quantum cryptography

[4, 5, 6], quantum teleportation [20], and dense coding [21], etc. Entanglement,
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Figure 1.2: Controlled-NOT and controlled phase flip gates. (a) Controlled-NOT (CNOT) gate
transforms two-qubit basis vectors according to |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉,
and |11〉 7→ |10〉; (b) Controlled phase flip (CPF) gate transforms two-qubit basis vectors
according to |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |10〉, and |11〉 7→ −|11〉; (c) CNOT
and CPF are equivalent to each other up to single-qubit Hadamard transformation
(represented by the box labeled with “H” ). The Hadamard gate transforms |0〉 to |+〉
and |1〉 to |−〉, and vice versa.

with no counterpart in classical physics, is a unique yet subtle phenomenon in quan-

tum mechanics. For a bipartite or multipartite system with entanglement, states

of its subsystems are correlated with each other and our knowledge about any spe-

cific subsystem is indefinite if we don’t know what is going on in other subsystems.

Understanding of entanglement has been a source of controversy since the birth of

quantum mechanics [22, 23]. After many years of extensive study, people have not

yet thoroughly understood the physics of quantum entanglement. For now, char-

acterization and quantization of entanglement have only been achieved for limited

cases [24, 25, 26, 27, 28]. The role of entanglement for generic quantum computation

has not been fully revealed either. While the presence of entanglement is a necessary

condition for quantum exponential speed-up compared with classical computation,

it is not sufficient. Nontheless, advancement in quantum entanglement study has

shed light on classical simulation of quantum many-body systems and led to the

development of novel algorithms [10, 11, 12, 13, 14, 15, 16, 17].
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Uncontrolled entanglement, however, could cause great trouble for implementa-

tion of QIP, inducing decoherence of qubit states [29]. In general, no QIP system

can be completely isolated from its surroundings. The interaction between a quan-

tum system and its environment generates entanglement between them, leading to

leakage of quantum information from the system into the environment. In order to

allow practical applications, the decoherence time of a qubit must be much longer

than operation time of quantum gates. Nevertheless errors due to qubit decoherence

as well as imperfect gate operations are often inevitable. In classical information

processing, errors do occur too, but they can be efficiently corrected with redundant

coding so that reliable performance of classical information processing is still guar-

anteed. But quantum error correction (QEC) is much more difficult than its classical

counterpart. One reason is that errors themselves in QIP are much more complicated

than classical errors which are simply bit flips. Various schemes of QEC have been

proposed and extensively studied [30, 31, 32, 33, 34, 35]. Due to huge resource costs

imposed by current QEC schemes, alternate paradigms to fault tolerant QIP are also

being actively under pursuance [36, 37, 38].

1.2 Physical implementation of quantum information processing

Quantum information science has solid theoretical foundations as well as great

potentials of practical applications. It is not hard to figure out why great efforts

have been invested on construction of quantum information processors for quantum

communication and computation. Quantum communication, in which usually only

a few quantum computational steps are involved, is relatively easy to achieve as

compared with universal quantum computing, and many quantum communication

protocols can now be routinely implemented in laboratories. Nonetheless, to real-
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ize long distance and high bit-rate communication, there are still great challenges

to be overcome. On the other hand, for quantum computing, due to demanding

requirements on reducing error rates below certain threshold, people are still work-

ing toward the goal of constructing a prototype quantum computer in laboratory.

And until now, only certain quantum algorithms have been demonstrated with very

limited number of qubits [39, 40, 41]. In principle, any effective two-level quantum

system can be chosen as a physical qubit. However, considering practicality, only

those systems satisfying the famous DiVincenzo criteria are viable choices for scal-

able quantum computing (5 criteria) and quantum networking (with 2 additional

criteria). The criteria can be summarized as: 1. system is comprised of well char-

acterized qubits and allows for scalability; 2. ability to initialize the state of the

qubits; 3. system provides long coherence times, much longer than a gate operation

time; 4. a universal set of gates is experimentally feasible; 5. qubit specific measure-

ment capability; 6. ability to interconvert stationary and flying qubits; 7. faithful

transmission of flying qubits between specified locations.

Based on the choice of physical qubit and control mechanism for QIP implemen-

tation, QIP candidate systems can be roughly divided into two categories, namely

AMO and Condensed Matter systems. Trapped ions [42, 43, 44, 45], neutral atoms

[46, 47, 48, 49, 50, 51, 52, 53], and photons [54, 55, 56] are common physical car-

riers of quantum information in AMO systems, which can usually be coherently

manipulated with quantum optical techniques, while electron spins in quantum dots

[57, 58, 59, 60, 61], Cooper pairs as well as current flux in superconducting circuits

[8, 62, 63], and impurity spins in solids [64] are examples of physical carriers of qubits

in condensed matter systems. An intriguing merit of condensed matter candidate

systems is their association with the highly mature fabrication technology, which has
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been developed for many years and has made great contribution to modern (classi-

cal) information technology. From this perspective, solid state systems could allow,

more readily than AMO systems, highly compact and integrated construction of

future quantum information processors. Nonetheless AMO systems in general pro-

vide “cleaner” environment for qubits as compared with condensed matter systems,

therefore decoherence time of AMO qubits is usually longer than condensed matter

qubits. As a tradeoff, gate operations on AMO qubits normally take longer time

than those on condensed matter qubits. However, there is no sharp boundary for the

division of condensed matter and AMO implementation of QIP. On one hand, quan-

tum optical methods, which are considered as traditional tools for manipulations of

AMO systems, are also being exploited in certain condensed matter QIP candidate

systems [58, 59, 60]. On the other hand, fabrication techniques for condensed matter

systems are now utilized to build new generation of traps for ions and neutral atoms

on-chip [65, 66]. Moreover, interfaces between different systems are also under ac-

tive pursuit. Although the exploration of QIP implementation in various quantum

systems has been going on for many years, it is still not clear yet which (known

or unknown) physical system(s) could finally fulfil all the stringent requirements for

fault tolerance and scalability and could be adopted to build up the first prototype

quantum computer in the future. In the rest of this section, we briefly introduce a

few AMO candidate systems for quantum optical implementation of QIP.

Ions can be trapped relatively easily as compared with neutral atoms, by time-

varying electric fields. Trapped alkaline earth ions have well-defined hyperfine mani-

folds of ground states with long decoherence time (on the order of 10 min), from which

one can choose two levels as physical representation of qubits. The motion of ions is

quantized in ion trap and can be cooled to its ground state with state-of-art quantum
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optical techniques. The coupling of the motional states (environment) with internal

levels (qubits) is a major source of decoherence for ion-trap based schemes. Using

the quantum jump technique, a qubit can be efficiently read out with high accuracy.

Single qubit operations can be readily achieved by applying the so-called Stimulated

Raman Adiabatic Passage technique. Two-qubit gate has also been demonstrated

with the original scheme proposed by Cirac and Zoller [42] or phase space geometric

schemes [67, 68]. It is difficult to hold a large number of ions in a single linear trap

for large scale QIP. To circumvent this scalability problem associated with ion-trap

based system, it is proposed that one could store ions at different sections of a trap

complex and then try to transport desired qubits to an operational region to get them

interacting with each other [69, 70]. For now, experimentalists have demonstrated

Grover’s search algorithm for 4 ion qubits [41] and achieved entangled state W-state

for up to eight ions [71].

Neutral atoms are relatively more insensitive to their environment as compared

with ions, thereby in principle having a better qubit-scalability potential than ions.

On the other hand, it is more difficult to trap and harness neutral atoms due to

this property. Neutral atom qubits have long decoherence time. As with ions, ini-

tialization, detection, and single qubit rotation can be realized with standard quan-

tum optical techniques. Cavity QED [72], either in the microwave [46] or optical

[47] regime, is one of the promising candidate systems for neutral-atom based QIP.

Alternate approaches for neutral atom quantum computation are based on state-

dependent collision or dipole-blockade mechanisms for Rydberg atoms trapped in

optical lattice systems [52, 53]. To load atoms in optical lattices, a superfluid-Mott

insulator transition was proposed theoretically [73] and has been demonstrated in

experiments [74].
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Photons can be transported over long distance either through optical fibers or

even in free space, thus they are well-suited for quantum communication and net-

working. Photons normally interact weakly with each other and with their envi-

ronment, thereby having long decoherence time, but they could be easily absorbed.

Errors in using photonic qubits mainly come from photon loss. In principle, there

are many ways to encode qubits in photon pulses. One of the promising approaches

is to use polarization states of single-photon pulses as qubits. For such photonic

QIP schemes, single-qubit rotations can be routinely realized by using wave-plates

or electro-optical crystals [55]. Entangled pair of photonic qubits and even more

complicated entangled states of photons have been demonstrated based on paramet-

ric down conversion technique in nonlinear media [75, 76] as well as measurement

induced entanglement generation technique with beam splitter and photon detectors

[54]. It has also been proposed to use single atoms trapped in optical cavity to me-

diate effective interaction between photon pulses to realize photonic conditional gate

operation [56]. Challenges for scalable QIP with these photon qubit based schemes

are the relatively low generation rate of high quality single-photon pulses and low

efficiency photon detectors.

Applications of optical cavity QED systems to quantum information processing

(QIP) are mainly based on the ability to coherently convert quantum states between

atomic qubits and photonic qubits. In particular, such ability has made cavity QED

the most promising technique for realizing interface between different physical carri-

ers of quantum information[77], which is indispensable for distributed QIP protocols.

Over these years, many schemes for implementation of two-qubit entangling gate

have been proposed for creating atom-photon, atom-atom, or photon-photon entan-

glements with cavity QED [48, 49, 56, 77, 78, 79]. In laboratories, the achievement of
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trapping individual atoms and realizing strong atom-cavity field coupling has allowed

only a few proof-of-principle demonstrations for some of these ideas [47]. In addition,

optical cavity QED systems have provided an efficient approach to robust determin-

istic generation of single- and multiple- photon sources [80, 81, 82, 83, 84, 85, 86].

As first part of this thesis, in the following four Chapters, we will introduce opti-

cal cavity QED system in more details and present several pieces of our work on

applications of such system to QIP [49, 79, 87].

1.3 Classical simulation of many-body physics from quantum informa-
tion perspective

Along with the efforts in physical implementation of QIP, a great deal of atten-

tions has also been given to foundations of quantum information theory, especially

the theory of entanglement [24, 25, 26, 27, 28]. More recently the study of the en-

tanglement properties of quantum many-body systems has already born fruits in

the development of novel classical simulation techniques for quantum many-body

systems [10, 11, 12, 13, 14, 15, 16, 17], i.e. generalizations of the Density Matrix

Renormalization Group (DMRG) method [88, 89], as well as understanding of phase

transitions in quantum spin systems [90, 91, 92, 93]. In Chapter VI, we will introduce

an extension of the DMRG algorithm, namely the time evolving block decimation

(TEBD) in detail [10, 11]. And by implementing such an algorithm, we have studied

ground state properties of a novel effective Hamiltonian which can be engineered in

optical lattice systems, and our work on this topic will presented in Chapters VII

and VIII [94, 95].

Simulation of quantum many-body physics in general requires a lot of classical

computing resources, which grow exponentially with the number of particles in the

simulated quantum system. This fact has served as an early motivation for QIP,



12

although until now we are still unable to give a definite estimate on when a reliable

large-scale (on the order of one hundred qubits) quantum simulator will become

available. Nonetheless, certain strongly interacting quantum many-body systems can

be efficiently simulated with classical computers by devising smart algorithms. As an

outstanding example, DMRG has been a very powerful numerical method, which can

be applied to study ground state properties of one-dimensional (1D) as well as quasi-

two-dimensional strongly correlated quantum many-body systems. However, it did

not perform well in simulations of quantum dynamics until very recently, when TEBD

was developed. The TEBD algorithm catches the essence of entanglement scaling in

1D strongly interacting quantum systems. Unfortunately, TEBD can not be directly

generalized to simulate generic two-dimensional (2D) strongly interacting systems,

where more interesting physics is yet to be discovered. For example, solving 2D

Hubbard model has been a long-standing goal in condensed matter physics, as it could

reveal the theoretical mystery of high TC superconductivity [96]. Fractional quantum

Hall effect in 2D electron gas is another important problem remaining to be fully

solved, which is critical for the study of topological quantum computation [38] besides

its importance for fundamental physics. More recently, projected entangled pairs

state (PEPS) [13, 17] and multiscale entanglement renormalization ansatz (MERA)

[16] are proposed and developed, aiming to simulate certain classes of 2D quantum

systems. It is not yet clear if one could ultimately conquer those interesting problems

with classical computers by implementing the novel ideas such as PEPS or MERA.

Nonetheless, stretching the capabilities of classical computers for quantum many-

body systems is definitely worth a try while we are still working toward the goal of

constructing a quantum computer.
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1.4 Thesis Outline

In this thesis, we will present our study on theoretical proposals for various optical

cavity QED implementation of QIP, as well as our numerical investigation on a

strongly interacting ultracold fermionic system with the TEBD algorithm.

The main results of this thesis are summarized as follows:

• We propose a scheme for implementation of Schrodinger cat states in optical

pulses with cavity QED. Our scheme can be readily extended to realize larger

class of cat states targeting various QIP applications. We model the system and

solve it numerically, so that we can estimate quantitatively the performance of

our scheme. Our calculation shows that cat states with appreciable sizes could

be realized with high fidelity.

• We propose a scheme to realize a robust conditional quantum gate acting on

neutral atoms. The scheme exploits cavity aided scattering of single-photon

pulses to mediate the strong interaction between the atoms. We numerically

study the dynamics of the system and demonstrate that high fidelity gate op-

eration can be achieved with finite success probability. Even with low success

probability, our scheme still allows efficient fault tolerant quantum computing.

• We propose to implement a hybrid controlled-SWAP gate with a two-sided op-

tical cavity system. We explicitly construct a photonic controlled phase flip

gate to show that our scheme can be applied to realize universal photonic quan-

tum computation. We analytically solve the model describing our system and

quantitatively characterize the performance of our scheme.

• We implement an infinite lattice TEBD algorithm and apply it on a system

of strongly interacting fermions in 1D optical lattice across a wide Feshbach
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resonance. The system is described by a general Hubbard model with parti-

cle assisted tunnelling. Our results demonstrate that for such a system with

equal spin population and repulsive on-site interaction superfluid and charge

density wave could become dominant quasi-long-range orders when hole-doped

below half filling. This feature is qualitatively different from the conventional

repulsive-U Hubbard model in which regardless of the filling fraction superfluid

and charge density wave are always suppressed and spin orders are dominant.

• With the TEBD algorithm, we numerically investigate the effect of particle

assisted tunneling in a general Fermi-Hubbard model with spin-polarization

and attractive on-site interaction. Our results demonstrate that FFLO type

order in 1D attractive Hubbard model could be suppressed due to the presence

of particle assisted tunneling. We also discuss the possible effect of particle

density inhomogeneity based on local density approximation, and compare with

the two-shell structure results of other groups.

In the following Chapter, we first introduce in detail the basic concepts in optical

cavity QED systems as well as theoretical methods in quantum optics relevant to

studies on such systems. Then in Chapters III, IV, and V, we present our theoretical

proposals for Schrödinger cat state generation, robust conditional atomic gates op-

eration, and hybrid controlled SWAP gate implementation with optical cavity QED.

Chapter VI serves as an introduction to numerical methods for the second part of

this thesis, where key ideas and formalism of the TEBD algorithm are explained

with some details. Our TEBD study on a general Hubbard model with equal spin

population and repulsive on-site interaction is presented in Chapter VII. In Chapter

VIII, we present our work on the same general Hubbard model Hamiltonian but

with spin-polarization and attractive on-site interaction. Finally, in Chapter IX, we
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summarize the thesis and discuss possible directions for future studies.



CHAPTER II

Review of Optical Cavity QED

Trapping of neutral atoms in high finesse optical cavities constitutes one of the

foremost frontiers of quantum optics. Strong coherent interactions between trapped

atoms and cavity field have been achieved and opened up possibilities for various

applications in quantum information processing (QIP). Before presenting our work

on theoretical proposals for QIP implementation with cavity QED systems, in this

chapter, we first review basic concepts associated with cavity QED experiment. Then

we present an introduction to some theoretical models and methods of quantum

optics relevant to cavity QED.

2.1 Basics of Optical Cavity QED

An optical cavity or optical resonator is an arrangement of mirrors that forms a

standing wave cavity resonator for light waves [72]. We consider a one-dimensional

optical cavity with a pair of mirrors separated by a distance l as is shown in Fig.

2.1. The cavity mirrors usually have high reflectance R, which could be very close

to unity, and small yet non-vanishing transmittance T . Another important basic

parameter to characterize the cavity mirrors is the mirror absorption loss L, as real

cavity mirrors are not perfect and they absorb photons inevitably.

With the above basic parameters, we can further characterize optical cavities by

16
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l

Cw2

input output

Figure 2.1: Schematic plot of an optical cavity. The cavity mirrors are characterized with its re-
flectance R, transmittance T , and absorption loss L. The waist of the cavity’s Gaussian
TEM00 mode is given by wC , which determines the spatial distribution of the field in-
tensity of the corresponding mode.

defining other important parameters. The finesse of a cavity, indicating the number

of bounces of a photon in the cavity, can be expressed as F = π
√R/(1 −R). The

transmission of light through cavity mirrors is periodic in light frequency and reaches

its maximum when the light frequency is on resonance with a cavity mode. The so-

called free spectral range is defined as the frequency difference between two adjacent

transmission maxima and can be expressed as δfsr = πc/l. Near resonance the cavity

transmission can be described by a Lorentzian T ∝ κ2/(κ2+∆2), where ∆ = ωL−ωC

is the detuning between laser frequency ωL and cavity resonance frequency ωC . The

half line-width of the Lorentzian gives the decay rate of the cavity field, which can

be obtained through κ = δfsr/2F .

In optical cavity experiments, cavity mirrors are usually processed to be slightly

curved to achieve stable single-mode operations. The curvature of the mirrors nor-

mally leads to Gaussian eigen-modes. For a Gaussian TEM00 mode, the waist wC of

the mode, i.e. the smallest radius where field strength is e−1 of that at the center, is

given by w2
C = λ

√
l(2R− l)/2π, where λ is the wavelength of the laser sent toward
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the cavity and R stands for the curvature of cavity mirrors. The spatial distribution

of the TEM00 mode is given by ψ(r) = cos (kz) exp [−(x2 + y2)/w2
C ], where we have

chosen the longitudinal axis of the cavity system to be z-axis and k stands for the

wave vector of the laser shining on the cavity mirror along the z direction. The

electromagnetic mode volume can be obtained by integrating over the spatial distri-

bution of the cavity mode: Vm =
∫ |ψ(r)|2dV . For the Gaussian TEM00 mode, the

mode volume can be readily evaluated and is given by πw2
C l/4. It is straightforward

to understand that a smaller mode volume will lead to a stronger electromagnetic

field in the cavity, thereby a stronger coupling between the cavity field and the atoms.

Given a high finesse optical cavity with a small mode volume, in order to achieve

a strong atom-cavity coupling one also needs to create an appropriate optical po-

tential to confine atoms in the cavity. Diverse approaches to the creation of such

confinement potentials have been pursued, including the use of Far Off Resonant

Trapping (FORT) beams [97] and the use of th cavity optical field itself [98, 99].

Trapping techniques which are compatible with strong coupling while not interfering

with cavity QED interactions are crucial for the applications of cavity QED to QIP.

To understand the physics of the optical confinement of an atom, let us consider an

atom in an oscillating electromagnetic field created by laser beams which are far off

resonance with the atomic transitions. The atom will acquire an induced electric

dipole moment following the oscillating field, d = αE(r, t), thereby experiencing an

electric dipole potential U = −d · E ∝ I(r), where α represents in general the di-

electric polarizability tensor of the atom and I(r) is the intensity of the optical field.

Therefore, a desired trapping potential can be achieved in principle by arranging

an appropriate spatial distribution of the field intensity. For a two-level atom, the

potential can be analytically evaluated in the large detuning limit and it assumes
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Figure 2.2: Cartoon illustration of trapping of atoms in an optical cavity and coupling between
atomic transition with cavity mode. (a) Atoms are cooled and held in a MOT trap
above an optical cavity. After optical trapping potential for atoms in the cavity is
established with FORT beams, the atoms are released from the MOT trap. Certain
number of atoms will be caught by the confining potential in the cavity and with the
aid of cooling beams, they can be confined in the cavity for seconds. (b) The atomic
transition between two levels |g〉 and |e〉 is strongly coupled with a cavity mode ac. ∆
measures the detuning between cavity mode ac and the atomic resonance.

the form U = 3πγc2I/(ω3
0∆) [100], where γ is the spontaneous emission rate of the

atom, ω0 is the atomic resonance frequency and ∆ is the large detuning between the

laser frequency and ω0. To load the atoms into cavities, in experiments the atoms

are usually first cooled and held in MOT traps above a cavity. Once the trapping

potential in the cavity is established, the atoms are released from the MOT trap and

a certain number of atoms will be trapped in the cavity [101, 102]. See Fig. 2.2(a)

for an illustration. The number of trapped atoms can be resolved by sending probing

laser beams followed by detecting transmitted light signals [103].

2.2 Jaynes-Cummings Hamiltonian and Beyond

The light field in a cavity is treated as a quantized optical field, as indicated by the

term “cavity QED”. The quantized electromagnetic field is described by annihilation

and creation operators associated with the field, for example, ac and a†c for a cavity

mode c. The field operators satisfy the standard commutation relations [ac, a
†
c′ ] =
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δc,c′ , [ac, ac′ ] = 0, and [a†c, a
†
c′ ] = 0. An atom with two discrete orthonormal levels, |g〉

and |e〉, can interact with a mode of the quantized cavity field through electric dipole

interaction if not forbidden by the selection rules (Fig. 2.2(b)). The dipole operator

of the two-level atom has the general form µ = µ∗σ+ + µσ− with σ+ = |e〉〈g| and

σ− = (σ+)† = |g〉〈e|, while the electric field (here we only consider a single cavity

mode strongly coupled with the atomic transition) is given by

E(r, t) =

(
~ωc

2ε0Vm

)1/2

ψ(r)ε
[
ac + a†c

]
, (2.1)

where ωc is the resonant frequency of cavity mode c, Vm is the mode volume, ε0 is the

vacuum permittivity constant, ψ(r) describes the spatial distribution of the electric

field, and ε stands for the polarization vector of the field. Therefore, the electric

dipole interaction Hamiltonian Hint = −µ · E(r, t) can be obtained to be

Hint = −~g(σ+ + σ−)(ac + a†c), (2.2)

where we have assumed that µ is real and

g = µ · ε
(

ωc

2~ε0Vm

)1/2

ψ(r) ≡ g0ψ(r) (2.3)

characterizes the strength of the atom-cavity field coupling. Consider an atom locat-

ing at an antinode of the standing wave formed in the cavity, where the coupling takes

its maximal value g = g0. In this case, the complete Hamiltonian of the atom-cavity

system is then given by:

H = ~ωg|g〉〈g|+ ~ωe|e〉〈e|+ ~ωc

(
a†cac +

1

2

)
− ~g0(σ+ + σ−)(ac + a†c), (2.4)

which can be transformed into an interaction picture Hamiltonian HI according to

HI = i~U̇U † + UHU †, with

U = exp

[
i
ωe + ωg − ωc

2
t|g〉〈g|+ i

ωe + ωg + ωc

2
t|e〉〈e|+ iωct

(
a†cac +

1

2

)]
. (2.5)
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After some straightforward algebra, one can obtain:

HI =
~∆
2

σz − ~g0 (σ+ exp (iωct) + σ− exp (−iωct))
(
ac exp (−iωct) + a†c exp (iωct)

)
,

(2.6)

where ∆ = ωe − ωg − ωc is the detuning between the cavity mode frequency and the

atomic resonance frequency and σz = [σ+, σ−] = |e〉〈e| − |g〉〈g| is the pseudospin-z

operator for the two-level atom. After throwing away the fast-oscillating terms, i.e.

σ−ac exp (−2iωct) and its hermitian conjugate, according to the well-known Rotat-

ing Wave Approximation (RWA), we finally arrive at the famous Jaynes-Cummings

Hamiltonian describing the electric dipole interaction between a two-level atom and

a single-mode cavity field: [104]

HI =
~∆
2

σz − ~g0(acσ+ + a†cσ−). (2.7)

It is obvious that for an arbitrary intra-cavity photon number n ≥ 1, only the pair

of states |g, n〉 and |e, n − 1〉 is coupled. Therefore, the system can be effectively

viewed as a set of independent two-level systems. From this analogy, one can easily

write down the eigen-frequecies of the system:

ω±n = ωc

(
n +

1

2

)
+

1

2

(
∆±

√
4ng2

0 + ∆2

)
, (2.8)

with the corresponding eigenvectors:

|+〉n = cos φn|g, n〉 − sin φn|e, n− 1〉; (2.9)

|−〉n = sin φn|g, n〉+ cos φn|e, n− 1〉, (2.10)

where φn is given by tan φn =

√
4ng2

0+∆2+∆

2g0
√

n
. The coupling between the atom and the

cavity field leads to the splitting of photon number states into doublets of dressed

states (except for the case when the atom is in its ground state and there is no photons
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in the cavity). Therefore one can expect that the presence of a resonant atom-cavity

coupling would dramatically change the transmission property of the cavity system.

The vacuum-Rabi frequency 2g0 can actually be obtained by measuring the cavity

transmission spectrum. With suitable parameters, each cavity transmission peak will

be split into two peaks with one appearing below and the other above the unperturbed

cavity resonance. This effect is known as normal mode splitting [105].

To describe the scattering of an optical pulse with the atom-cavity system, one

has to go beyond the standard Jaynes-Cummings model as the external driving field

and the cavity decay κ, as well as the atom spontaneous emission, must be taken

into account. In principle, for different purposes, one could use different theoretical

methods. As an example, we consider the normal mode splitting effect by adopting

a non-Hermitian Hamiltonian to include the relevant relaxation rates. The effective

non-Hermitian Hamiltonian under RWA can be written as

H = Hc + Ha − ~g0(acσ+ + a†cσ−)− i~γ|e〉〈e| − i~κa†cac, (2.11)

where Hc = ~ωc(a
†
cac + 1/2) and Ha = ~ωg|g〉〈g| = ~ωe|e〉〈e| are interaction-free

Hamiltonians of the cavity field and two-level atom, respectively. The solution to the

eigenvalue problem of this non-Hermitian Hamiltonian gives complex eigen frequen-

cies. The real part of the complex eigen-frequency characterizes the mode splitting,

while the imaginary part describes the decay of its corresponding eigen-state. In par-

ticular, in the low excitation case when only the states |±〉n with n = 1 are relevant,

the splitting is given by δ =
√

4g2
0 − (γ − κ)2. To further study the transmissivity of

the cavity in this case, one can add another term to the non-Hermitian Hamiltonian

to account for the weak laser beam driving the cavity field Hp = −i~η(ac − a†c). In

the case of low cavity excitation (at most one photon presents in the cavity), the
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quantum state of the atom-cavity system can be expanded in the form:

|Ψ(t)〉 = c0|g, 0〉+ cg|g, 1〉+ ce|e, 0〉. (2.12)

According to the Schrödinger equation, one can write down a set of differential

equations for the expansion coefficients. The equations can in general be numerically

solved. Nonetheless, with some reasonable approximations, we can analytically solve

the problem under certain conditions. As the cavity mirrors have high reflectance and

the driving field is weak as we assumed previously, we expect that c0 ≈ 1 throughout

the process. We further assume that the atom-cavity coupling is in resonance, while

the driving laser has a detuning with respect to the cavity resonance, ∆L = ωc−ωL.

In this case, after transforming the Hamiltonian to a frame rotating with the driving

laser frequency ωL and applying RWA, we obtain:

iċe = −g0cg + (∆L − iγ)ce; (2.13)

iċg = −g0ce + (∆L − iκ)cg + iη. (2.14)

The transmittance is proportional to the average photon number 〈n〉 in the cavity

under steady-state condition (ċg = ċe = 0), therefore we can easily solve the set of

linear equations and write down:

T ∝ 〈n〉 = cgc
∗
g =

(η

κ

)2
∣∣∣∣

κ(γ − i∆L)

(∆L − ω+
1 )(∆L − ω−1 )

∣∣∣∣ , (2.15)

where ω±1 = ±
√

4g2
0 − (γ − κ)2 − i(γ + κ). Other interesting phenomena, such as

the enhanced spontaneous emission of the trapped atoms [106, 107], etc could also

be studied with similar method. In the following three chapters, we will present our

work on theoretical proposals for the applications of cavity QED to QIP, along with

which we will also encounter more theoretical methods for our models beyond the

Jaynes-Cummings Hamiltonian.
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2.3 Chapter Summary

In this chapter, we have introduced fundamental concepts of optical cavity QED,

as well as basic model and methods for theoretical study on the atom-cavity system.

This chapter serves as an introduction to the first part of this thesis, namely quan-

tum optical implementation of QIP with optical cavity QED. In the following three

chapters I will present our work on optical cavity QED applications to cat states

engineering, robust neutral atom conditional gates implementation, and a hybrid

controlled SWAP gate operation scheme.



CHAPTER III

Engineering Schrödinger Cat States of Optical Pulses with
Cavity QED

In the previous chapter, we have introduced basic concepts in cavity QED as

well as some relevant theoretical models and methods. In this chapter, we present a

scheme for the implementation of Schrödinger cat states with optical cavity QED. We

develop a numerical method to solve the dynamics of the system, which enables us to

investigate the effects of possible sources of noise and characterize the performance

of our scheme.

3.1 Introduction

Schrödinger’s cat originally referred to a thought experiment proposed by Erwin

Schrödinger [108], in which the quantum state of a macroscopic object, a cat, being

either ’alive’ or ’dead’, gets entangled with the quantum state of a radiative two-level

atom. The system of the cat and the atom is well shielded from its environment and

its total state can be expressed in the form |ψ〉 ∝ |0〉|alive〉+ |1〉|dead〉. This thought

experiment was first brought up to challenge the interpretation of quantum mechan-

ics, specifically the collapse of a superposition state upon quantum measurements.

Later on, it has also invoked numerous thoughts on interesting questions of funda-

mental importance, such as quantum decoherence, classical-quantum boundary [109],

25
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local reality [110], etc. Besides its impacts on our understanding of the foundations of

quantum physics, Schrödinger’s cat states also possess potentials for practical appli-

cations in the field of quantum communication and computation [111, 112, 113, 114]

as well as high precision interferometry [115], if properly implemented in real exper-

iments.

In the context of quantum information science, cat states are now often referred to

as coherent (equal) superposition states of mesoscopic or even macroscopic systems.

Here we will restrict our attention on one specific class of cat states, which are

superposition states of two classically distinguishable coherent states |α〉 and | −α〉.

In quantum optics, coherent states are one of the most important classes of states

of radiation fields. One reason to justify their importance is that they can serve as

an accurate description of the (low amplitude) field produced by a stabilized laser

operating well above threshold. Cat states of the form |α〉 + | − α〉 are called even

cat states, while those of the form |α〉 − | − α〉 are referred to as odd cat states.

To quantify the ”size” of a cat state in such form, the amplitude of its component

coherent state |α|2 is often used. The reason why these cats have ”even” and ”odd”

in their names can be readily seen if we expand the coherent states in the basis of

Fock (number) states. For even (odd) cat states of optical field, the terms with odd

(even) photon number are cancelled out, while only terms with even (odd) number

of photons survive. These cat states are highly non-classical, as demonstrated by the

presence of a negative value in their Wigner functions at the origin of phase space

[116, 117]. It has been proposed how to implement universal quantum computation

by encoding quantum information in these even and odd cat states of optical pulses

and manipulating them with linear optics apparatus [111, 112]. Now an immediate

question naturally arises would be how one can realize cat states in laboratories.
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Significant theoretical and experimental efforts have been made to realize such

cat states in different physical systems [109, 118, 119, 120]. On the experimental

side, until now, cat states have been successfully generated for phonon modes of a

single trapped ion [109], and for microwave photon modes confined inside a super-

conducting cavity [118]. Although these achievements have been quite exciting, they

can not be readily applied for QIP tasks. In contrast, propagating photon pulses

prepared in cat states could be of more interests for QIP applications. Very recently,

by subtracting a photon from an optical beam prepared in a squeezed vacuum state,

an approximate small cat (”kitten”) state has been implemented [119]. The fidelity

between the generated non-classical optical state and its closest cat state is reported

to be about 70 percent. There is no doubt that further improvement is still neces-

sary in order to realize well-defined cat-state optical qubits. Theoretical proposals

for generating cat states of optical pulses are typically based on either the Kerr non-

linearity or postselections from non-linear detectors [122, 123, 124]. Although the

Kerr nonlinearity in principle provides a method for the deterministic generation of

the cat states, it is well-known that such nonlinearity in typical materials is too small

to allow the cat state generation from weak coherent pulses.

In the following sections, we will present our work on a novel approach to the im-

plementation of cat states for optical pulses with single-atom cavity QED. It has been

demonstrated experimentally that a single atom can be trapped for seconds inside a

high-Q optical cavity working in the strong coupling regime [125, 97, 126]. With this

setup, we can generate a larger class of cat states simply by reflecting weak coherent

pulses successively from a cavity mirror. With the aid of a few beam splitters, we

can generate multipartite and multidimensional cat states, and the preparation of

such states is a necessary step toward several distinct applications, such as loop-
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Figure 3.1: Schematic setup for the generation of cat states with single-atom cavity QED and the
level configuration of the trapped atom. (a) Generation of Schrödinger cat states by
simply scattering a coherent optical pulse from a single-sided optical cavity with a single
trapped atom. (b) The relevant level structure of the atom trapped in the cavity. The
atomic transition between |1〉 and |e〉 is resonantly coupled to a cavity mode, while level
|0〉 is decoupled.

hole-free detection of Bell inequalities with homodyne detections [127] and quantum

coding and computation [128]. This scheme also extends an earlier photonic quantum

computation scheme proposed by Duan and Kimble [56] to the continuous variable

regime, eliminating the requirement of using single-photon pulses as a computation

resource. To characterize the influences of various sources of experimental noise on

this scheme, we develop a numerical simulation method to quantify the noise effects

due to the atomic spontaneous emission, the photon pulse-shape distortion, and the

cavity mode-matching inefficiency. Our numerical method enables us to find out a

range of the cat-state amplitude achievable with our scheme. And the calculation

shows that the generation of substantial cat states with our scheme could be within

the reach of current cavity QED experimental technology.

3.2 Generation of Cat States with Optical Cavity QED

We consider an atom with three effective levels trapped inside a high-finesse one-

sided optical cavity. The level configuration of the trapped atom is shown in Fig. 3.1,

where |0〉 and |1〉 are levels in the ground-state manifold of the trapped atom with

different hyperfine spins. The atomic transition from level |1〉 to level |e〉 is resonantly

coupled to a cavity mode ac, which is resonantly driven by an input optical pulse
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prepared in a weak coherent state |α〉. The atomic transition between level |0〉 and

level |e〉 is decoupled from the cavity mode due to the large detuning induced by the

hyperfine splitting. If the atom is prepared in level |0〉, the input pulse is resonant

with the bare cavity mode ac, and after resonant reflection it will acquire a phase

of exp (iπ) according to a standard quantum optics calculation [129]. The effective

state of the pulse is then given by |−α〉. However, if the atom is initially prepared in

level |1〉, due to the strong atom-cavity coupling, the frequency of the dressed cavity

mode is significantly detuned from the center frequency of the input pulse. In this

case, one would expect intuitively that the coupling between the atom-cavity system

and the input pulse does not play an important role here, and the reflection of the

pulse is then similar to the reflection from a perfect mirror, which leaves the pulse

shape and phase unchanged. And the pulse will remain in the same state |α〉 after

the reflection, given that the amplitude |α|2 of the input pulse is not too large. Later

we will show that our numerical calculation indeed confirms the above expectations.

With this physical picture in mind, we can proceed to explain how to generate a

Schrodinger cat state with the single-atom one-sided cavity setup. First we simply

prepare the trapped atom in a superposition state (|0〉 + |1〉)/√2, which can be

routinely realized by standard quantum optical control techniques, e.g. STIRAP.

Then, we send an optical pulse prepared in a coherent state |α〉 toward this single-

atom optical cavity. Such an optical pulse can be readily produced by stabilized

laser working well above threshold. After interacting with the atom-cavity system,

following the qualitative analysis presented above, one can easily check that ideally

the final joint state for the atom and optical pulse will become an entangled state

which is described by:

|Ψc〉 = (|0〉| − α〉+ |1〉|α〉)/
√

2. (3.1)
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Next, we perform projective measurement on the trapped atom in the {|±〉 ≡

(|0〉 ± |1〉)/√2} basis. Or, equivalently, one can apply Hadamard gate on the atom,

which transforms |0〉 to |+〉 and |1〉 to |−〉, and then measure the atom in the {|0〉, |1〉}

basis. It is straightforward to check that the state of the optical pulse after the

measurement on atomic state will be projected onto either an even or odd cat state,

conditioned on the measurement outcome for the atom. The generated cat state

can be verified experimentally by standard quantum optical homodyne detection

techniques [116] or through quantum state tomography. With this technique, one

can reconstruct the Wigner function of the optical field. And the non-classicality

of the photonic cat state can be determined by negative values of the function in

certain regions of phase space.

With some extensions to the scheme introduced above, in principle we can gener-

ate more complicated types of cat states targeting different applications. First, by

bouncing a series of coherent pulses (say, n pulses), each initially in the state |α〉,

successively from the same single-atom cavity, one will get an entangled state of the

atom-photon system with the form
(|0〉 |−α〉⊗n + |1〉 |α〉⊗n) /

√
2, which yields entan-

gled multi-partite cat states of optical pulses
(|−α〉⊗n ± |α〉⊗n) (unnormalized) after

carrying out projective measurement on the atomic state in the basis {|±〉}. Sec-

ond, after generation of the state (|−α〉+ |α〉) for one optical pulse, one can transfer

it into the state (|α〉+ |3α〉) through a simple linear optical manipulation (for in-

stance, by interfering this pulse with another phase-locked stronger laser pulse at an

unbalanced beam splitter, one can shift up each coherent component of the cat state

by an amplitude of 2α). Then, if we reflect this pulse again from the same cavity,

we will get a state (|−3α〉+ |−α〉+ |α〉+ |3α〉) for the pulse conditioned on that a

measurement on the atomic state gives the |+〉 state outcome. It is straightforward
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to extend this idea to generate the multi-dimensional cat states
∑n+1

i=−n |(2i− 1) α〉

, and such kind of states have important applications for continuous-variable quan-

tum coding [128] and loop-hole-free detection of the Bell inequalities with efficient

homodyne measurements [127].

3.3 Theoretical Model and Numerical Method

In the previous section, we have explained the physical idea for preparation of

entangled atom-photon state with the form of Eq. (3.1) and described various ex-

tensions to our basic scheme. To understand and characterize our proposed imple-

mentation scheme better, however, we need a more detailed theoretical modeling for

the interaction between the atom-cavity system and the input/output light pulses.

First, we want to know the limit for the size of cat states allowed by our scheme. If

the amplitude |α|2 is too large, one would expect that a single trapped atom will not

be able to significantly affect the property of a strong incoming pulse, therefore the

output state would be different from the state described by Eq. (3.1). Second, in

reality, all experiments inevitably suffer from various kinds of noises or imperfections,

such as photon loss due to the atomic spontaneous emission and the uncontrolled

mirror scattering, the inherent pulse shape distortion induced by the reflection from

the cavity mirror, and the random variation of the cavity mode-atom coupling rate

induced by thermal motion of the trapped atom. To estimate the performance of our

scheme, one must try to characterize possible influences from these sources of noise

on the generation of our cat states. In this section, we will present a detailed model

to describe our proposed system and a numerical method to solve the dynamics of

the system according to this model.

The input pulse sent to the cavity is in coherent state, |α〉in, which can be explicitly
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expressed as |α〉in = exp
[
− |α|2

2

]
exp

[
α

∫ T

0
f ∗in(t)a†in(t)dt

]
|vac〉, where ain(t) is a one-

dimensional quantum field operator satisfying the standard Bosonic commutation

relation [ain(t), a†in(t′)] = δ(t − t′), fin(t) describes the input pulse shape with the

normalization
∫ T

0
|fin(t)|2 dt = 1 (T is the pulse duration), and |vac〉 represents the

vacuum state for all the optical modes. The average photon number of the pulse

is given by |α|2. This input coherent pulse drives the cavity mode ac through the

Langevin equation [129]

ȧc = −i[ac, H]− κ

2
ac −

√
κain(t), (3.2)

where κ is the cavity decay rate, and the Hamiltonian H describes the atom-cavity

interaction with the form

H = ~g
(|e〉〈1|ac + |1〉〈e|a†c

)
. (3.3)

Here, g is the atom-cavity coupling rate. The cavity output field aout is connected

to the input through the input-output relation

aout(t) = ain(t) +
√

κac(t). (3.4)

We need to find out the quantum state of the cavity output field aout by solving

the series of equations (3.2)-(3.4). As they are nonlinear operator equations with

infinite number of modes, it is not very straightforward to solve them even numeri-

cally. For the case of a single-photon pulse input, a numerical method based on mode

discretization and expansion has been developed in Refs. [56] and [130] . However,

since the number of coefficients to be determined grows exponentially with the num-

ber of photons, that method does not work if the photon number of the input pulse is

larger than 1, which is the case for our current problem. So, to attack this problem,
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we propose a variational method based on the following observation: if the atom

is in the state |0〉, the Hamiltonian (3.3) does not play a role, and Eqs. (3.2) and

(3.4) become linear, from which we observe that the state |φ0〉out of the output field

can be exactly written as |φ0〉out = exp
[
− |α|2

2

]
exp

[
α

∫ T

0
f

(0)∗
out (t)a†in(t)dt

]
|vac〉. The

normalized shape function can be expressed as f
(0)
out(t) = − ∫ κ

2
+iω

κ
2
−iω

exp [iωt] fin(ω)dω,

where fin(ω) is the Fourier transform of fin(t). The output optical field is still in

an effective single-mode coherent state, but with the mode shape function f
(0)
out(t) in

general different from the input pulse shape fin(t). If the atom is in the state |1〉, it

is reasonable to make the ansatz that the output optical field is also in an effective

single-mode coherent state |φ1〉out = exp
[
− |α1|2

2

]
exp

[
α1

∫ T

0
f

(1)∗
out (t)a†out(t)dt

]
|vac〉,

but probably with a different normalized mode shape function f
(1)
out(t). In general,

the amplitude α1 can be different from α (actually |α1|2 < |α|2) because of various

relevant photon loss mechanisms. With the presence of photon loss channels, some

of the photons are scattered to other directions, so we will always have an output

field somehow weaker than the input. To find out the functional form of f
(1)
out(t), we

note that under the above ansatz, calculating the expectation value on both sides of

the input-output equation (3.4) leads to

α1f
(1)
out(t) = αfin(t) +

√
κ 〈ac(t)〉 . (3.5)

The expectation value of the cavity mode operator ac(t) can be found by solving the

corresponding master equation for the atom-cavity system density operator ρ

ρ̇ = − i

~
[Heff , ρ] +

κ

2

(
2acρa†c − a†cacρ− ρa†cac

)

+
γs

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (3.6)

where σ− = |1〉〈e| and σ+ = |e〉〈1| are the atomic lowering and raising operators, and

the effective Hamiltonian is given by Heff = ~(gσ+ac + i
√

κ〈ain〉ac)+H.c. Compared
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Figure 3.2: Pulse shape functions for the input and output pulses. The solid curve shows the shape
function of input pulse. The dash-dotted, dashed, and dotted curves correspond to
the output pulses with g = 0(for the atom in the level |0〉), g/κ = 3, and g/κ = 6,
respectively. In the calculation, we assumed γ = κ and an input pulse duration of
T = 210/κ.

with the Hamiltonian (3.3), Heff has two extra terms i~
√

κ〈ain〉ac +H.c. to account

for the driving from the input pulse. After that correction, the cavity decay and

the atomic spontaneous emission loss can then be described by the last two Lindblad

terms of the master equation (3.6), where γs denotes the atomic spontaneous emission

rate. The density operator ρ can be solved from the master equation (3.6) efficiently

with numerical methods. After obtaining the density matrix, we can calculate the

expectation value 〈ac(t)〉 = tr (ρac(t)). Then, following Eq. (3.5), we can determine

the output amplitude α1 and its pulse shape f
(1)
out(t).

With the method introduced above, we can calculate the pulse shape functions

f
(0)
out(t) and f

(1)
out(t) of the output optical field with the atom in levels |0〉 and |1〉,

respectively. For this calculation, we take a Gaussian pulse shape for the input pulse

with the form fin(t) ∝ exp [−(t− T/2)2/(T/5)2] , where T characterizes the pulse

duration. The results are shown in Fig. 3.2, which demonstrates that the shape

functions f
(0)
out(t) and f

(1)
out(t) of the output pulses overlap very well with fin(t) of the
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input pulse as long as the pulse duration satisfies T À 1/κ. Furthermore, the global

phase factors of f
(0)
out(t) and f

(1)
out(t) are given by −1 and 1, respectively, which confirms

our previous expectation: if the atom is initially prepared in a superposition state

(|0〉+ |1〉) /
√

2, the final atom-photon state will be the desired entangled state |Ψc〉

as shown in Eq. (3.1), where |−α〉 and |α〉 are coherent states of the output mode

with the mode shape function −f
(0)
out(t) ≈ f

(1)
out(t) ≈ fin(t). In the same figure, we

have also shown the output shape f
(1)
out(t) for different atom-photon coupling rates g.

Both the phase and the amplitude of f
(1)
out(t) are very insensitive to random variation

of g within a certain range. For instance, even if g varies by a factor of 2 from 6κ to

3κ (which is the typical variation range of g caused by the atomic thermal motion),

the change in f
(1)
out(t) is negligible (< 10−4).

To quantify the limit of the cat states that one can prepare and the possible effects

due to practical sources of noise, we introduce several quantities to characterize the

quality of the cat state preparation. First, the pulse shape distortion between the

output and the input pulses can be characterized by their pulse shape mismatching

ξ1 = 1 − ∫
fin(t)f

(1)∗
out (t)dt and ξ0 = 1 +

∫
fin(t)f

(0)∗
out (t)dt (as f

(0)
out(t) has an opposite

phase). With typical experimental parameters, ξ0 À ξ1, so ξ0 has the dominant

contribution to the imperfection of our scheme. Second, the effect of the spontaneous

emission loss can be quantified by the photon loss parameter η = 1 − |α1|2 / |α|2,

which represents the fraction of the photons scattered to other directions instead of

to the cavity output. Both the pulse shape distortion and the photon loss contribute

to the imperfection of the generated cat state, which can be characterized by the

state fidelity. The ideal cat state is given by |Ψc〉 in Eq. (3.1), while with noise,

the real state obtained is denoted by a density matrix ρreal. The fidelity, defined as
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Figure 3.3: The cat state fidelity is presented as a function of the average input photon number
|α|2 when the spontaneous emission rate is set to zero (γs = 0). Other parameters:
g/κ = 3 and κT = 210 for the solid curve; g/κ = 6 and κT = 210 for the dotted curve
(exactly overlapped with the solid curve); g/κ = 6 and κT = 100 for the dash-dotted
curve; g/κ = 6 and κT = 400 for the dashed curve.

F ≡ 〈Ψc| ρreal|Ψc〉, can be expressed by ξ0 and η as

F ≈
∣∣∣∣∣
e−|α|

2(1−√1−η) + e−|α|
2ξ0

2

∣∣∣∣∣

2

, (3.7)

where we’ve neglected the contribution of ξ1 as ξ1 ¿ ξ0.

3.4 Numerical Results and Discussion

First, let us examine the intrinsic limit to the amplitude of the cat state that one

can prepare even if we neglect the influence of practical photon loss. This intrinsic

limit comes from the fact that a single cavity atom can not affect the state of a

strong optical field (i.e., with a large α) efficiently. For that purpose, we simply set

the spontaneous emission rate γs = 0, and look at the state fidelity as a function of

the cat state amplitude α. The result is shown in Fig. 3.3, which reveals that given a

certain fidelity requirement the maximal achievable cat amplitude |α| depends only

on the pulse duration T if we completely neglect the photon loss noise. In general, a

longer input pulse duration allows the generation of a larger cat state. In particular,
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Figure 3.4: The cat state fidelity as functions of average photon number and atom-cavity coupling
rate. (a) The cat state fidelity shown as a function of the average photon number α2

of the input pulse. The dash-dotted, dashed and solid curves correspond to g/κ = 3,
g/κ = 6, and g/κ = 10, respectively. (b) The fidelity shown as a function of the atom-
cavity coupling rate g. The solid and dashed curves correspond to the average input
photon number |α1|2 = 1 and |α1|2 = 3, respectively. In both calculations for (a) and
(b), we have taken γ = κ and κT = 210.

the fidelity increases dramatically when we increase the pulse duration T as the

shape distortion parameter ξ0 significantly reduces for a pulse with a very narrow

bandwidth.

We then take the influence of practical noise into account, and investigate under

typical experimental configurations, how large the amplitude of an achievable cat-

state can be. We set the spontaneous emission rate γs = κ in our calculation.

The state fidelity F is shown as a function of the cat amplitude in Fig. 3.4a, and

as a function of the coupling rate in Fig. 3.4b. The fidelity increases with the

coupling rate g and decreases with the cat amplitude α, as one would expect. We
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Figure 3.5: The cat state fidelity shown as a function of the mode-matching efficiency ε. The
solid, dashed, and dash-dotted curves correspond to |α|2 = 1, |α|2 = 2, and |α|2 = 3,
respectively. Other parameters:γ = κ, g = 6κ and κT = 210.

note that the photon loss from spontaneous decay reduces when the coupling rate

g increases. Under a reasonable atom-cavity coupling rate g ≈ 10κ comparable

with the experimentally achievable value with current technology, a cat state with

a remarkable amplitude α ≈ 3.4 (corresponding to an entangled state of about 10

photons) could be generated with a fidelity of 90 percent.

Another source of noise for cavity QED experiments is the mode matching ineffi-

ciency between the intra-cavity field and the input-output beams. When the mode

matching is not perfect, a portion of the input pulse will not be able to enter the

cavity, so the state of the pulse will not be affected by the cavity-atom coupling

efficiently. Independent of the atomic state, this portion of light pulse will be di-

rectly reflected without phase flip. This will degrade the fidelity of our cat-state

preparation. To quantify this effect, we note that if we neglect all the other imper-

fections, the cat state fidelity from the mode matching inefficiency can be described

by F ≈
∣∣∣1+e−2|α|2(1−ε)

2

∣∣∣
2

, where ε denotes the efficiency of the mode matching. If we

take into account at the same time the other sources of noise that we’ve considered
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above, the state fidelity will have a more complicated analytic expression. In Fig.

3.5, we show the state fidelity as a function of the mode-matching efficiency ε. In

this calculation we have also included the noise contributions from the atomic spon-

taneous emission and pulse shape distortion. It is shown that for a cat state with a

large amplitude the fidelity could be quite sensitive to the mode-matching efficiency.

3.5 Chapter Summary

In summary, we have proposed a scheme to generate Schrödinger-cat states for

propagating optical pulses, which can be readily extended to further implement and

control multi-partite and high-dimensional Schrödinger-cat states. Our scheme is

based on strong coupling between a single trapped atom and cavity field, which has

been achieved with the state-of-the-art of the cavity technology. We have devel-

oped a efficient variational calculation method. With our method, one can solve the

dynamics of the system dictated by the atom-cavity interaction together with the

coupling of input and output optical field with the cavity field, thereby enabling us

to quantitatively characterize the influence of various sources of practical noise on

the performance of our scheme.



CHAPTER IV

Implementation of Robust Neutral Atom Gates with Optical
Cavity QED

Atom-cavity system working in strong coupling regime provides us a unique plat-

form where single atom or single photon plays central role in determining the quan-

tum dynamics of the system. In the previous chapter, we have described an applica-

tion of optical cavity QED to QIP, namely an implementation scheme for generating

Schrödinger cat states for optical pulses. In the cat state generation scheme, a single

trapped atom is utilized to induce conditional dynamics for coherent optical pulses.

Photons sent to a cavity, on the other hand, can also be used to change the dynam-

ics of atoms trapped in the cavity. In this chapter, we will present a novel scheme

with optical cavity QED to implement robust multiqubit conditional quantum gates

acting on neutral atoms. The interaction between the atoms is mediated by cavity

scattering of single-photon pulses. The dominant noise in our scheme possesses a

special feature, i.e. whenever an error occurs due to this noise, the error is auto-

matically detected. It has been shown that this kind of error, even happening with

high error rate, does not exclude the possibilities of efficient fault-tolerant quantum

computation.

40
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4.1 Introduction

Neutral-atom qubit systems provide intrinsic scalability since properties of indi-

vidual atoms in an atomic ensemble do not differ significantly from those of single

atoms. However, while the weak interactions between neutral atoms insure the scal-

ability of qubits, they also make it difficult to realize non-trivial multiqubit gate

operations. One possible way to circumvent the difficulty in achieving strong effec-

tive atom-atom interaction is to put the atoms in optical cavities and utilize the

cavity field to facilitate the process [7, 47, 77, 131]. As a matter of fact, such an

approach has been one of the pioneering avenues for physical implementation of QIP.

Nevertheless, earlier proposals associated with this approach impose very demanding

requirements on experimental technology. In particular, despite significant experi-

mental progress made recently in transmitting and trapping single atoms in high

finesse cavities [97, 132, 133, 134, 135, 136, 137, 138], no experiment has yet achieved

a well defined number of atoms N ≥ 2 each of which is strongly coupled to the

cavity mode, individually addressable, and localized within the Lamb-Dicke limit, as

required by the protocol of Ref. [131]. To realize a more scalable system, Chapman

et al. proposed an architecture in which a transverse optical lattice is employed to

translate atoms into and out of a high-finesse cavity for atomic entangling gate opera-

tions [132]. Transport that preserves internal state coherence has been demonstrated

for both ions [139] and neutral atoms [140]. However, although the approach of Ref.

[132] does solve the problem of separate addressability of many atoms confined in a

tiny cavity, there remain significant obstacles to achieving Lamb-Dicke confinement

and strong coupling for any scheme that has yet been proposed.

To overcome these difficulties and to provide several new capabilities for quantum
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logic, we propose a scheme for atomic quantum gates, in which atom-atom interac-

tions are catalyzed by single photons in a fashion that is robust to various sources

of practical noise. More specifically, a scheme for implementing controlled phase-flip

gate U12 = exp (iπ|00〉12〈00|) on two neutral atoms localized in an optical cavity is

proposed. In this scheme the desired gate operation can be achieved by scattering

a single-photon pulse from the cavity in which the atoms are trapped [56, 87]. Al-

though it requires both atoms to be strongly coupled with the cavity mode, this

scheme is insensitive to uncertainties in their individual atom-cavity coupling rates,

thereby obviating the demanding requirement for Lamb-Dicke localization. Various

sources of photon loss, including, for instance, atomic spontaneous emission, photon

collection and detection inefficiency, and any vacuum component in the scatterred

pulse, constitute the dominant noise in this scheme. However such noise only affects

the success probability of the gate operation, as once a photon-loss error occurs dur-

ing the process, it will be automatically detected. Although photon loss probability

could be significant in experiments, the special feature of the gate error induced by

it still allows efficient quantum information processing. As shown in Refs. [141, 142],

given nearly perfect single-qubit gates and imperfect entangling gate with signalled

error, one can nevertheless achieve efficient quantum computation even if the as-

sociated failure probability of the entangling gate is close to unity. Moreover, this

scheme can be readily extended to achieve Toffoli gate for N local atoms in a single

step and to realize nonlocal gates on remote atoms trapped in different cavities. The

direct N -qubit Toffoli gate could lead to more efficient construction of quantum cir-

cuits, and the nonlocal gates on remote atoms mediated by photon pulses naturally

integrate local quantum computation with quantum networking.
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Figure 4.1: Schematic setup for implementation of controlled phase flip gate and level configuration
of the trapped atoms. (A) Schematic setup for implementation of the controlled phase
flip (CPF) gate on two neutral atoms inside a single-sided cavity through the photon-
scattering interaction. Any pair of atoms can be transmitted into the cavity for a
collective gate operation aided by a transverse optical lattice potential as suggested in
Refs. [132] and [144]. For a more robust implementation of the gate, we add a single-
photon detector to detect the output photon pulse as illustrated inside the dashed box.
(B) The relevant level structure of the atoms and the coupling configuration.

4.2 Implementation Scheme of Robust Neutral Atom Gates

To explain physical idea behind our implementation scheme, we first consider two

atoms trapped in a single-sided cavity. To have a scalable architecture, one can follow

Ref. [132] to assume that there are transverse optical lattice potentials to move the

target atoms into and out of the cavity [143]. Each atom has three relevant levels

as shown in Fig. 4.1. Qubits are represented by different hyperfine levels |0〉 and |1〉

in the ground-state manifold of the trapped atoms. The atomic transition from |1〉

to an excited level |e〉 is resonantly coupled to a cavity mode ac. The state |0〉 is

decoupled due to the large hyperfine splitting.

To perform a collective quantum gate on the two atoms, we reflect a single-photon

pulse from the cavity. This single-photon pulse, with its state denoted as |p〉, is

resonant with the bare cavity mode ac. If the photon pulse is sufficiently long so

that its bandwidth ∆Ω is much smaller than the cavity decay rate κ, reflection of

the pulse from a resonant cavity with no atom-cavity coupling will leave the pulse

shape almost unchanged (the longer the pulse duration, the smaller the pulse shape
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distortion), but will flip its global phase, as we will characterize later in this chapter

in greater detail. For the case that both of the atoms are in the |0〉 state, this is

precisely the nature of the resonant reflection since there is negligible atom-cavity

coupling and hence no shift of the resonant frequency of the cavity mode. After

reflection, the atom-photon state |0〉1 |0〉2 |p〉 evolves into − |0〉1 |0〉2 |p〉, where the

subscripts 1, 2 denote the two intracavity atoms. However, if either or both of the

atoms are in the state |1〉, the effective frequency of the dressed cavity mode will be

shifted due to the atom-cavity coupling, which is described by the Hamiltonian

H = ~
∑
i=1,2

gi

(|e〉i〈1|ac + |1〉i〈e|a†c
)
. (4.1)

If the coupling rates gi À (∆Ω, κ, γs), where γs is the rate of spontaneous decay of

|e〉, then the frequency shift will have a magnitude comparable with gi, so that the

incident single-photon pulse will be reflected by an off-resonant cavity. Hence, both

the shape and global phase will remain unchanged for the reflected pulse. Due to this

property, the component states |0〉1 |1〉2 |p〉 , |1〉1 |0〉2 |p〉 , and |1〉1 |1〉2 |p〉 are likewise

unaffected by reflection process. The net effect of these two subprocesses is that

the reflection of a single-photon pulse from the cavity actually performs a controlled

phase-flip gate (CPF) U12 = exp (iπ |00〉12 〈00|) on the two atoms while leaving the

photon state unchanged and unentangled with the atoms. Hence, in the ideal case

the reflected photon can be utilized to catalyze subsequent gate operations.

However, in a realistic setting our scheme can be performed in a more robust

fashion by detecting the output pulse with a single-photon detector. By this means,

gate errors due to all sources of photon loss, including atomic spontaneous emission,

cavity mirror absorption and scattering, imperfection in the photon source, and

photon collection and detection inefficiencies, are always signaled by the absence of

a photon count at the detector. As a result, these dominant sources of noise only
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lead to probabilistic signaled errors, which yield a finite failure probability of the

gate but have no contribution at all to the gate infidelity if the operation succeeds

(i.e., if a photon count is registered). For this class of errors, efficient quantum

computation is possible even with an arbitrarily small gate success probability p [141].

Compared with deterministic gates, the required extra computational overhead due

to the small gate success probability p scales efficiently (polynomially) both with 1/p

and the computational scale characterized by the number of qubits n [141]. Because

of this robustness, the input single-photon pulse can also be replaced by a simple

weak coherent pulse |α〉 with the mean photon number |α|2 ¿ 1. This replacement

greatly eases the requirement for photon sources, while it does not give any essential

problem in terms of scaling. Nonetheless, the individual gate efficiency (the success

probability) is indeed significantly reduced by a factor of |α|2.

Before going to the detailed theoretical characterization of the gate fidelity and ef-

ficiency, we next present some extensions to the above scheme. First, our scheme can

be readily extended to perform a Toffoli gate on N atoms in a single time step. If one

reflects a single-photon pulse from a cavity with N atoms trapped inside, the pulse

will have a flip of its global phase if and only if all the atoms are in the |0〉 state. So,

this reflection performs a Toffoli gate U12···N = exp (iπ |00 · · · 0〉12···N 〈00 · · · 0|) on all

the trapped atoms while leaving the photon state unentangled. This direct N -qubit

gate could lead to more efficient construction of circuits for quantum computation.

For instance, the reflection operation in the Grover’s search algorithm can be realized

in a single step with the N -qubit Toffoli gate [144]. Second, the above scheme can

also be extended to perform nonlocal gates on two remote atoms trapped in differ-

ent cavities, as illustrated in Fig. 3.2. For this purpose, one uses a single-photon

(or weak coherent) pulse which is in an equal superposition state (|h〉+ |v〉) /
√

2 of
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Figure 4.2: Schematic of the setup for implementation of nonlocal gates on two atoms 1 and 2
trapped in distant cavities. Not shown are circulators (e.g., Faraday devices) to redi-
rect the output beams along paths distinct from the inputs. See the text for further
explanation.

the h and v polarization components. With a polarization beam splitter (PBS1),

the h and v components of the pulse are “bounced” back from the atom-cavity sys-

tem and a mirror M, respectively, with the reflection from M leaving the incident

pulse unchanged. The overall reflection from the cavity and the mirror M actually

performs the gate operation U1p = exp
(
iπ |0h〉1p 〈0h|

)
on atom 1 and the photon

pulse p, so that there is a phase flip only when the atom is in the state |0〉 and

the photon is in the polarization |h〉. The pulse is reflected successively from the

two cavity setups, with a quarter-wave plate (QWP1) inserted into the optical path

between the two reflections which performs a Hardmard rotation on the photon’s

polarization |h〉 → (|h〉+ |v〉) /
√

2, |v〉 → (|v〉 − |h〉) /
√

2. The photon is detected

by two single-photon detectors D1 and D2 after the reflections, which corresponds to

a measurement of its polarization in the basis {|v〉 ± |h〉}/√2 (after the QWP2 and

the PBS3; see Fig. 4.2). For a detection event in D2, a phase flip operation σz
1 is

performed on the atom 1, while no operation is applied if D1 clicks. The net effect of

these operations is the desired CPF gate U12 = exp (iπ |00〉12 〈00|) on the two atoms

1, 2 localized in two remote cavities. Among other applications, this nonlocal gate

and its extension to multiple atom-cavity systems provide a convenient avenue for
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quantum networking. Similar to the case of a single cavity as described above, in

this distributed setting any noise leading to photon loss is always signaled by the

absence of a photon count from either D1 or D2.

4.3 Theoretical Model and Numerical Method

We now present a more detailed theoretical model for our scheme and character-

ize the influence of some practical sources of noise. The input single-photon pulse

with a normalized shape function fin (t) and a duration T can be described by the

state |p〉 =
∫ T

0
fin (t) a†in (t) dt |vac〉, where |vac〉 denotes the vacuum state and a†in (t)

is the one-dimensional optical field operator satisfying the commutation relation
[
ain (t) , a†in (t′)

]
= δ (t− t′) [129]. The cavity mode ac is driven by the input field

ain (t) through the Langevin equation [129]

ȧc = −i[ac, H]− (κ/2) ac −
√

κain (t) , (4.2)

where κ is the cavity decay rate and the Hamiltonian H is given in Eq. (4.1) for the

case of two atoms; generalization to multiple atoms is straightforward. To account

for atomic spontaneous emission with a rate γs, we add an effective term (−iγs) |e〉 〈e|

to the Hamiltonian H. The output field aout (t) of the cavity is connected with the

input through the input-output relation aout (t) = ain (t) +
√

κac.

In the case of single-photon input, there is an alternative, yet more convenient

way to attack the problem [56, 130]. Instead of dealing with Langevin equations

for operators, we can try to use the Hamiltonian approach by (1) writing down

an effective Hamiltonian for the whole system consisting of the trapped atoms, the

cavity field as well as the effective one-dimensional free-space field; (2) expanding

the state of the system with restricted set of basis vectors; and (3) directly apply the

Schrödinger equation to obtain differential equations for the expansion coefficients. In
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the following, we briefly outline this approach step by step. The effective Hamiltonian

for our system can be written as (~ = 1):

Heff =
N∑

l=1

(
∆− i

γs

2

)
|e〉l〈e|+

N∑

l=1

gl (|e〉l〈1|ac + h.c.)

+ i

√
κ

2π

∫ +∞

−∞
dω

[
b(ω)a†c − b†(ω)ac

]
+

∫ +∞

−∞
dω

[
ωb†(ω)b(ω)

]
, (4.3)

where ∆ = ωe − ω1 − ωc is the detuning of cavity resonant frequency ωc from the

atomic resonant frequency corresponding to the transition between |1〉 and |e〉 and

b(ω) (b†(ω)) is annihilation (creation) operator for the effective one-dimensional free-

space mode with frequency ω. The free-space mode operators satisfy the standard

Bosonic commutation relation
[
b(ω), b†(ω′)

]
= δ(ω−ω′). Theoretically, there are in-

finite number of free space modes coupled with the cavity field. Nonetheless, in prac-

tice, it suffices to only consider the modes lies in a finite bandwidth [ωc − ωb, ωc + ωb]

where ωb is the cut-off frequency chosen artificially. To attack the problem numer-

ically, we also need to discretize the originally coninuous modes within frequency

range. Choosing M discrete modes uniformly, we have a frequency increment of

δω = 2ωb/M between two adjacent modes. The continuous mode operators in the

effective Hamiltonian should now be replaced by the descretized ones according to

b(ω) → bωj
/
√

δω and the corresponding integrations are replaced by summations

according to
∫

dω → ∑M
j=1 δω. We note that to get reliable numerical results, the

cut-off frequency as well as the number of discretized mode need to be chosen care-

fully so that ωb is sufficiently large as compared with cavity decay rate κ while δω

is sufficiently small as compared with inverse of the pulse duration 1/T . Next we

expand the quantum state of the whole system into the form (for simplicity we show
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the case with only two atoms):

|Ψ〉 =


 ∑

{q1,q2}=0,1

cq1,q2|q1, q2〉a|1〉c +
∑

q1=0,1

cq1,e|q1, e〉a|0〉c +
∑

q2=0,1

ce,q2|e, q2〉a|0〉c




⊗ |vac〉f +
∑

{q1,q2}=0,1

(
|q1, q2〉a|0〉c ⊗

M∑
j=1

cj
q1,q2

b†ωj
|vac〉f

)
, (4.4)

where the subscripts a, c, and f denote the state of atoms, cavity field, and free-

space field respectively. The efficient expansion works thanks to the condition that

at most one photon presents in the system. As indicated by the expression, the

single-photon could be found in the cavity mode ac, or in the free-space modes bω,

or to be absorbed by one of the trapped atoms. Then, it is straightforward for

one to obtain a set of differential equations of expansion coefficients according to

Schrödinger equation i d
dt
|Ψ〉 = Heff |Ψ〉. For the two-atom case, there are in total a

number of (4M + 8) equations, from which one can easily determine the (4M + 8)

expansion coefficients numerically. In general, the number of equations (or expansion

coefficients) for N -atom case is given by 2N−1× (2M + N + 2), where the number of

discretized modes M is normally much larger than the number of trapped atoms N .

Once the dynamics of the system is solved, we can use the following two quantities

to characterize the performance of our atomic gate scheme. (1) Due to various

sources of photon loss, photons in the cavity may be lost with then no photon count

at the detectors. Hence, we calculate the success probability of a photon count

at the detector to characterize the efficiency of the scheme. (2) Even if a photon

emerges (neglecting dark counts), there may still be imperfections of the atomic gate

mainly due to the shape distortion of the photon pulse after reflection from the cavity,

which can be characterized through the gate fidelity. Without loss of the photon, the

final atom-photon state can in general be written as |Ψout〉 =
∑

i1i2
ci1i2 |i1i2〉a |p〉i1i2

,

where
∑

i1i2
ci1i2 |i1i2〉a (i1, i2 = 0, 1) is the general form for the input state of the two
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atoms. The output photon state |p〉i1i2
corresponds to the atomic component |i1i2〉a,

and is given by |p〉i1i2
=

∫ T

0
f out

i1i2
(t) a†out (t) dt |vac〉 with a shape function f out

i1i2
(t).

Ideally, the output state
∣∣Ψid

out

〉
would have the shape functions f out

00 (t) = −fin (t)

and f out
i1i2

(t) = fin (t) (for i1, i2 6= 0), which realizes a perfect CPF gate U12 on

the atoms. Hence to characterize the gate imperfection, we calculate the fidelity

F ≡
∣∣〈Ψid

out |Ψout〉
∣∣2, which is directly extendable to any number of atoms. In the

following calculation of the fidelity F , we choose the input state
[
(|0〉+ |1〉) /

√
2
]⊗N

for the case of N atoms.

4.4 Numerical Results and Discussion

The results from our calculations are summarized in Fig. 4.3. First, Fig. 4.3A

shows the component pulse shape f out
i1i2

(t) corresponding to a Gaussian input fin (t)

for the case of two atoms. Only the component f out
00 (t) has a notable phase distortion;

all others are basically indistinguishable from the input. To account for random

variation in the coupling rates gi, we have also calculated f out
i1i2

(t) for gi varying from

2κ to 6κ. The output pulse shapes are nearly identical for gi varying in this range,

which is typical of current experiments. Figure 4.3B shows the corresponding fidelity

F of the CPF (or Toffoli) gate from the shape distortion noise with the atom number

N = 2, 3, 4, 5. The fidelity F improves with increase of the pulse duration T since

the shape distortion is reduced for longer pulses. F also increases with the atom

number N , which is a bit surprising but actually reasonable: for the N -atom state

[
(|0〉+ |1〉) /

√
2
]⊗N

, the fraction of the component |0〉⊗N goes down as 1/2N , and

the pulse shape distortion noise comes dominantly from this component. Because

the component |0〉⊗N dominates the contribution to the gate infidelity, F is also very

insensitive to variation of the coupling rates gi. We have verified that there is no
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Figure 4.3: (A) The shape functions |f (t)| for the input pulse (solid curve) and the reflected pulses
with the atoms in different component states |i1i2〉a. The shape function for the atom
in the state |00〉a is shown by the dash-dot curve. With the coupling rate g in a typical
range from 2κ to 6κ, the shape functions for the atoms in all the other component states
are indistinguishable from that of the input pulse (the solid curve). We have assumed
a Gaussian shape for the input pulse with fin (t) ∝ exp

[
− (t− T/2)2 / (T/5)2

]
, where

t ranges from 0 to T and T = 210/κ for this example. (B) The gate fidelity versus
the number of atoms with the pulse duration T = 100/κ and T = 210/κ, respectively.
(C) The photon loss probability Psp due to atomic spontaneous emission shown as a
function of the coupling rate g in units of κ with the atom number N=2,3,4. The
dotted curves shows Psp calculated from the empirical formula given in the text for
N=4. (D) Comparison of the photon loss Psp for a constant coupling rate g = 3κ and
for a time varying rate gi(t) = 3κ(1 + sin(νt + φi)/3) for the ith atom, where ν = κ/6
corresponds to a typical atom’s axial oscillation frequency in the trap, and φi are taken
as random numbers accounting for the atoms’ random initial positions. gi(t) is chosen
so that its maximum and minimum differ by a factor of 2, which exceeds that in current
experiments [135]. Other parameters for Figs. (A) and (B) are γs = κ and g = 3κ, and
for Figs. (C) and (D), γs = κ and T = 210κ.
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notable change of F in Fig. 4.3B for gi varying from 2κ to 6κ.

Any source of photon loss has no contribution to the gate fidelity but instead

influences gate efficiency (success probability). A fundamental source of photon loss

is atomic spontaneous emission. Figure 4.3C shows the failure probability Psp of the

gate due to this source of noise, with the noise rate γs = κ. For N atoms with equal

gi = g, the probability Psp can be well fit by an empirical formula Psp ≈ Pemp ≡
∑N

n=1

(
N !/n!(N − n)!2N

)
[1 + ng2/κγs]

−1
. The empirical Pemp can be understood

as a probability averaged over all the Dicke-state components in the input state

[
(|0〉+ |1〉) /

√
2
]⊗N

, with the nth Dicke-component having an effective coupling rate

√
ng to the cavity mode. We have also simulated the loss probability Psp when

the coupling rates gi are different and vary during the gate operation, for instance,

as would be caused by the atoms’ thermal motion. With some typical choice of

the relevant experimental parameters, the result is shown in Figure 4.3D, which is

qualitatively similar to the constant coupling rate case with an effective average over

|gi|. Other sources of photon loss can be similarly characterized. For instance, with

a finite photon collection and detection efficiency η, the success probability of each

gate will be simply reduced by a factor of η.

4.5 Chapter Summary

In summary, we have proposed a novel scheme for robust atomic gates by utilizing

interactions mediated by cavity-assisted photon scattering. These gates are robust

to all sources of photon loss which is typically the dominant source of error in cavity

QED experimental implementations. Furthermore performance of our gate scheme

is insensitive to randomness in the coupling rates caused by fluctuations in atomic

position. Beyond two-atom gates as illustrated in Fig. 4.1, our scheme can also
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be employed for realization of an N -atom Toffoli gate in a single step and for the

implementation of nonlocal gates on distant atoms as depicted in Fig. 4.2. We

have characterized the efficiency and fidelity of our scheme through exact numerical

simulations which incorporate various sources of experimental noises. These results

demonstrate the practicality of our scheme, current experimental technology.



CHAPTER V

Implementation of Quantum Controlled-SWAP Gate with
Optical Cavity QED

In previous chapters, we have presented our theoretical work on generation of

cat states and neutral atom gates with single-sided optical cavity. This chapter will

be devoted to another piece of our work on exploiting optical cavity QED for QIP

applications. Instead of using a single-sided cavity, the scheme we discuss in this

chapter utilizes a double-sided cavity, which is more practical for real experiments.

We show how to realize a universal multiqubit entangling gate, namely a quantum

controlled-SWAP (CSWAP) gate, with the single-atom cavity QED system. In our

scheme, a single trapped atom with four relevant levels serves as the controlling

qubit. Conditioned on the atom being in |0〉 or |1〉, single-photon pulses incoming

from different sides of a double-sided cavity either resonantly tunnel through or

get reflected back from the cavity mirrors, leading to an effective CSWAP unitary

for optical qubits. We also demonstrate the universality of CSWAP by explicitly

constructing a controlled phase flip gate (CPF) with CSWAP and single-qubit gates.

5.1 Introduction

For a CSWAP gate, conditioned on the presence of state |1〉c of a control qubit c,

two strings of target qubits A = {1, 2, · · · , n} and B = {1′, 2′, · · · , n′} exchange their

54
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quantum states. In general, the (2n+1)-qubit CSWAP gate represented by a unitary

operator UCSWAP transforms the qubit states according to

UCSWAP (c0 |0〉c + c1 |1〉c)⊗ |Ψ〉A ⊗ |Ψ′〉B

= c0 |0〉c ⊗ |Ψ〉A ⊗ |Ψ′〉B + c1 |1〉c ⊗ |Ψ′〉A ⊗ |Ψ〉B . (5.1)

The quantum CSWAP gate is universal, in the sense that together with single-qubit

gates they can realize arbitrary unitary transformations. Our scheme realizes a ”hy-

brid” CSWAP gate, as the control qubit and target qubits are carried by an atom

and series of single-photon optical pulses respectively. The hybrid CSWAP gate can

be used to construct a controlled phase flip gate on optical qubits, thereby realizing

universal photonic quantum computation. Compared with a recent photonic compu-

tation scheme based on single-sided cavities [56], this scheme has the advantage that

it is directly built on the state-of-the-art two-sided cavities [134, 135, 136]. It can

also be readily applied in quantum dot-cavity systems [147, 148, 149, 150, 151, 152].

Moreover, photons are the most viable choice for remote quantum communication

as they can be transmitted over long distance in optical fibers or even in free space

while preserving the encoded information. Therefore our gate scheme have a great

potential for practical applications in implementing quantum networking and quan-

tum communication protocols. In fact, the quntum CSWAP gate has been proposed

as a critical element for several interesting quantum cryptographic schemes, includ-

ing quantum fingerprinting [145] and quantum digital signatures [146]. The essential

function of the CSWAP gate in the quantum fingerprinting and quantum digital sig-

natures protocols is to efficiently evaluate the overlap between two strings of quantum

information.

Quantum fingerprinting is a communication protocol between three parties. Two
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parties, Alice and Bob, have two strings of information x and y respectively. They

are not allowed to communicate directly. Instead, they follow a recipe to associate

their string of information with a ”fingerprint”, which is normally constructed with

a much fewer number of qubits than the original information, and then send their

fingerprints to a third party, Richard, the referee. Richard determines if the strings

held by Alice and Bob are the same or not, solely by comparing the fingerprints

received from them. The ultimate goal of the three parties is to allow the referee to

get with high probability the correct answer, i.e. x = y or not, (or more generally,

f(x, y) = 0 or 1), while minimizing the communication costs from Alice and Bob. To

compare the fingerprints, the referee can use a CSWAP gate to efficiently measure

the overlap of two quantum states |ψ〉 and |φ〉. The quantum circuit for the referee

to determine if |〈ψ|φ〉|2 = 1 or |〈ψ|φ〉|2 ≤ δ is shown in Fig. 5.1, where the gate

labeled with H is the Hadamard gate, which transforms |0〉 to (|0〉+ |1〉)/√2 and |1〉

to (|0〉 − |1〉)/√2. The whole circuit transforms the quantum states according to

(H⊗I)UCSWAP (H⊗I)|0〉|ψ〉|φ〉 = (|0〉(|ψ〉|φ〉+|φ〉|ψ〉)+|1〉(|ψ〉|φ〉−|φ〉|ψ〉)/2. (5.2)

After this transformation, the referee measures the control qubit and the probability

for him to obtain outcome |1〉 is given by (1 − |〈ψ|φ〉|2)/2, which is 0 if x = y and

is at least (1− δ2)/2 if x 6= y. We note that although the senario and goal in quan-

tum digital signature protocol is different from quantum fingerprinting, essentially it

also exploits similar coding strategy and utilizes the CSWAP gate to compare two

quantum states.

In the following sections, we will explain the basic physical idea of realizing

the multi-qubit CSWAP gate on two sequences of photon pulses 1, 2, · · · , n and

1′, 2′, · · · , n′ by simply scattering them from a two-sided optical cavity with a single

trapped atom. We provide a detailed theoretical modeling, and with some approx-
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Figure 5.1: A quantum circuit measuring the overlap between two quantum states. The control
qubit is initialized in the state |0〉 before each trial. It undergoes Hadamard gate
transformations before and after the controlled-SWAP gate operation. At the end of
each trial, the control qubit is measured in the |0〉, |1〉 basis. The overlap between |φ〉
and |ψ〉 is extracted from the probabilities of measurement outcomes (0 or 1) after a
number of trials.

imations we solve the model analytically. Our results demonstrate the practicality

of our gate scheme under typical experimental conditions of either the atomic or

the solid-state cavities. In particular, the scheme requires neither the good cavity

limit nor the Lamb-Dicke condition for the localization of the trapped atom, which

significantly simplifies its experimental realization.

5.2 Implementation Scheme for CSWAP Gate

In this section, we first explain the basic idea of our scheme for the implementation

of the multi-qubit CSWAP gate. Consider an atom trapped in a two-sided optical

cavity as shown in Fig. 5.2(a). Relevant energy levels of the trapped atom are

shown in Fig. 5.2(b). The cavity supports two eigenmodes ah and av with different

polarizations (horizontal “h” and vertical “v”, respectively). These two modes are

resonantly coupled to the atomic transitions |0〉 ↔ |eh〉 and |0〉 ↔ |ev〉 respectively

(|eh〉 and |ev〉 could be superpositions of the Zeeman states on the same excited

hyperfine manifold). Level |1〉 is on a different hyperfine level in the ground-state

manifold, and is decoupled from the cavity modes due to the large hyperfine splitting.
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The two cavity modes ah and av are resonantly driven by the “h” and “v” polarization

components of the single-photon pulses incident on the cavity mirrors, respectively.

Each single-photon pulse carries an optical qubit, with basis vectors being the optical

polarization states “h” or “v”.

If the atom is prepared in the state |1〉, the input pulses basically see an empty

cavity as the atom is decoupled from the cavity modes. With such a resonant cav-

ity, the input pulses from both sides will directly go through if their bandwidth is

significantly smaller than the cavity decay rate κ (assuming that both mirrors of

the cavity give rise to the same decay rate). The states of the two pulse sequences

from different sides are exchanged. (See Fig. 5.2(a) for convention of the notation

on cavity input and output. We assume that the pulses from different sides have

the same pulse shape.) However, if the atom is prepared in the state |0〉, due to

the strong atom-cavity coupling, the transmission spectrum of the dressed cavity is

significantly modified, and the pulses from both sides will be reflected by the cavity

mirrors if their bandwidth is significantly smaller than g2/κ, where g is the atom-

cavity coupling rate (see the following theoretical modeling). The states (pulse shape

and phase) of the pulses remain unchanged after the reflection. Based on the above

considerations for the two different cases, we see that if the atom is prepared in a su-

perposition of the states |0〉 and |1〉, this cavity setup performs exactly the CSWAP

gate transformation as is described by Eq. (5.1), with the atom being the control

qubit and the two n-qubit pulse-sequences incident on different side mirrors being

the target qubits.
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Figure 5.2: (a) Schematic setup for implementation of the multi-qubit CSWAP gate. Two pulse
sequences i, (i = 1, 2 · · ·n) and i′, (i′ = 1′, 2′ · · ·n′) are incident on and then reflected
from (or transmitted through) the single-atom cavity. (b) Configuration of relevant
atomic levels.

5.3 Theoretical Model and Solution

Now we proceed to present a detailed theoretical modeling of interaction between

photonic pulses and an atom confined inside a two-sided optical cavity. This calcu-

lation serves for two purposes; first, we need to prove the statements made before

for the principle of the CSWAP gate. In particular, we will show that the pulse

will undergo reflection or transmission conditional on the atomic state if its band-

width is much smaller than the coupling rates κ and g2/κ. Second, we also want to

characterize the influence of noise on this gate scheme. The most important noise

here is the intrinsic atomic spontaneous emission, which causes loss of photons to

uncontrolled directions. There could be other source of photon loss noise, such as

the light absorption/scattering at the cavity mirrors. The effect of other photon loss

mechanisms, however, is very similar to the atomic spontaneous emission and thus

can be similarly modeled.

The interaction between the atom (or, in general, the dipole) and the cavity

modes is described by the Hamiltonian in the rotating frame (see Fig. 5.2(b) for the
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notations)

H =
∑

µ=h,v

gµ

(
σ+

µ aµ + σ−µ a†µ
)
, (5.3)

where σ+
µ ≡ |eµ〉〈0| and σ−µ ≡ σ+

µ are the atomic raising and lowering operators re-

spectively with µ = h, v denote the polarization modes, and gµ are the corresponding

atom-cavity coupling rates. The cavity modes aµ are driven by the corresponding

input fields ain
µ,l and ain

µ,r from both the left and the right sides of the cavity. The

Heisenberg-Langevin equations for aµ assume the form [129]

ȧµ = −igµσ
−
µ − (κµ,l + κµ,r) aµ/2 +

√
κµ,la

in
µ,l +

√
κµ,ra

in
µ,r, (5.4)

where κµ,l and κµ,r are the cavity decay rates for mode µ of the left and right mirrors

respectively. The output fields aout
µ,j (µ = h, v and j = l, r) are connected with the

input fields through the cavity input-output relation [129]

aout
µ,j = ain

µ,j +
√

κµ,jaµ. (5.5)

Both the input and the output fields satisfy the standard commutation relations
[
ain

µ,j(t), a
in†
µ′,j′(t

′)
]

=
[
aout

µ,j (t), a
out†
µ′,j′(t

′)
]

= δµµ′δjj′δ(t − t′). To solve the dynamics of

the system, we also need the Heisenberg-Langevin equations for the relevant atomic

operators to complete the equation set, which have the form

σ̇−µ = −i
[
σ−µ , H

]− γµσ
−
µ /2 +

√
γµσ

z
µN̂µ, (5.6)

where γµ denotes the spontaneous emission rate of the atomic level |eµ〉, σz
µ ≡

|eµ〉〈eµ|−|0〉〈0|, and N̂µ is the corresponding vacuum noise operator which in needed

to preserve the desired commutation relations for the atomic operators.

To characterize the CSWAP gate operation, we need to know the cavity output

fields given the inputs. Equations (3)-(5) completely determine the dynamics of the

system, but in general it is hard to solve this set of nonlinear operator equations.
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However, we note in this scheme the atom has a rare opportunity to stay in the excited

states |eµ〉, so the matrix elements for the components |eµ〉〈eµ′ |, where µ, µ′ = h or

v, should be negligible. We have done some exact numerical simulation with the

method specified in Refs. [49, 56, 87, 130], which also confirms this approximation.

Under this approximation, −σz
µ is replaced by the state projector P0 = |0〉〈0|, and the

set of equations (5.3)-(5.5) become linearized [148, 153]. The linearized equations

can be easily solved analytically by carrying out Fourier transformations on both

sides of the equations, and the output fields are specified by the solution of the form:

aout
µ,j (ω) = Rµ(ω)ain

µ,j(ω) + Tµ(ω)ain
µ,j̄(ω) + mµ(ω)N̂µ(ω), (5.7)

where {j, j̄} ≡ {l, r} or {r, l}, and for simplicity we have taken κµ,r = κµ,l ≡ κµ.

The operators ain
µ,j(ω) and aout

µ,j (ω) denote the Fourier transforms of the input and the

output field operators ain
µ,j(t), a

out
µ,j (t) with respect to time t. The reflection, the trans-

mission, and the noise coefficients Rµ(ω), Tµ(ω), and mµ(ω) are given respectively

by

Rµ(ω) =
iω + g2

µP0/ (iω − γµ/2)

κµ − iω − g2
µP0/ (iω − γµ/2)

, (5.8)

Tµ(ω) =
κµ

κµ − iω − g2
µP0/ (iω − γµ/2)

, (5.9)

mµ(ω) =
i
√

κµγµgµP0/ (iω − γµ/2)

κµ − iω − g2
µP0/ (iω − γµ/2)

. (5.10)

Note that our formalism is in the rotating frame where ω measures the frequency

detuning with respect to the eigen-frequency of the relevant bare cavity modes. From

these expressions, we see that for an incoming pulse with its central frequency res-

onant with the bare cavity mode, if the pulse bandwidth δω (inverse of the pulse

duration) is much smaller than the rates κµ and g2
µ/κµ, and the atomic spontaneous

emission noise satisfies the condition γµ ¿ g2
µ/κµ, we have the reflection coefficient
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Figure 5.3: Left column: The loss probability p and the fidelity F as a function of the scaled
bandwidth δω/κ, with g = 3κ for the solid line, g = 6κ for the dashed line, and g = 10κ
for the dash-dotted line. Right column: The loss p and the fidelity F as a function
of the scaled atom-cavity coupling rate g/κ, with δω = 0.05κ for the solid line and
δω = 0.1κ for the dashed line. In the whole figure, we take κh = κv = κ, γh = γv = γ,
and γ = κ for simplicity.

Rµ(ω) ' −1 for the atom in the state |0〉 and the transmission coefficient Tµ(ω) ' 1

for the atom in the state |1〉. This exactly confirms the statements that we used for

the establishment of the CSWAP gate in the previous section.

To quantitatively characterize the gate performance, we need to specify the evo-

lution from the input state to the output state. The atom is assumed to be initially

in the state |ϕ〉a = (|0〉 + |1〉)/√2. The input state of the two single-photon pulses

from two sides of the cavity can be expressed as |Ψ〉p =
∑

µ,µ′ Cµµ′|µ〉l|µ′〉r, where

µ, µ′ = h, v. The qubit basis state |µ〉j for a single-photon pulse is connected with

the input field operator ain
µ,j(ω) through |µ〉j =

∫
f(ω)ain†

µ,j (ω)dω|vac〉, where |vac〉
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denotes the vacuum state, and f(ω) is the normalized pulse shape function in the

frequency domain (which has been assumed to be the same for all the input pulses).

The state of the output pulses has a similar form but with aout†
µ,j (ω) replacing ain†

µ,j (ω).

As the output field operator aout
µ,j (ω) in Eq. (6) depends on the atomic projector P0,

the output state of the photons gets entangled with the atomic state, as one would

expect for the CSWAP gate.

We can use two quantities to characterize the gate performance: first, due to the

atomic spontaneous emission, we could lose a photon during the gate operation with

one of the output modes going to the vacuum state. So we use the loss probability p to

characterize the inefficiency of the gate operation. Second, even if both photons show

up in the output, their pulse shapes will be slightly distorted due to the frequency-

dependent reflection and transmission of the finite bandwidth input pulses. We

can use the fidelity to characterize the effect of this pulse shape distortion. To

be more specific, we consider a typical initial state |Ψin〉 = |ϕ〉a ⊗ |hv〉l,r for the

atom and the photons. In the ideal case, we should get the entangled output state

|Ψout〉 = (|0〉|hv〉l,r + |1〉|vh〉l,r) /
√

2, but in real case we in general get a density

matrix ρout after tracing over the noise operator. The overlap F ≡ 〈Ψout| ρout|Ψout〉

defines the fidelity, and we use it to characterize the gate performance. In the above

characterization, we distinguish the inefficiency and the infidelity errors for the gate,

as the dominant error in this scheme is the inefficiency error which allows for efficient

quantum error correction.

From the solution of aout
µ,j (ω) in Eq. (6) and its connection with the output state,

we can calculate the loss probability p and the fidelity F as defined above. Their

expressions are given by p = 1−
(
t
(1)
h t

(1)
v + r

(0)
h r

(0)
v

)
/2 and F =

∣∣∣ξ(0)
h ξ

(0)
v + ξ

(1)
h ξ

(1)
v

∣∣∣
2

/4,

where the superscripts (0) and (1) denotes the corresponding atomic state, t
(1)
µ =
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∫
dω

∣∣∣f (ω) T
(1)
µ (ω)

∣∣∣
2

, r
(0)
µ =

∫
dω

∣∣∣f (ω) R
(0)
µ (ω)

∣∣∣
2

, ξ
(1)
µ =

∫
dω |f(ω)|2 T

(1)
µ (ω)/

√
t
(1)
µ ,

ξ
(0)
µ =

∫
dω |f(ω)|2 R

(0)
µ (ω)/

√
r
(0)
µ . We take the pulse shape f(ω) to be a Gaussian

function in the form f(ω) = exp(−ω2/δω2)/ (
√

πδω) with a bandwidth δω. From

these expressions, we calculate the loss probability p and the fidelity F as functions

of the scaled pulse bandwidth and the atom-cavity coupling rate. The results are

shown in Fig. 5.3.

Several remarks are in order from this calculation. First, the fidelity F is basically

independent of the coupling rate g in the parameter regime we considered. The loss

probability p depends on g, but p remains small as long as the variation in g does

not reduce g close to zero. This shows that the scheme here allows random variation

of the coupling rate g in a significant range. That is a valuable feature for the

atomic cavity, as the thermal motion of the atom typically brings it outside of the

Lamb-Dicke limit which induces significant random variation of the coupling rate g

in current experiments [134, 135, 136]. Second, the scheme here does not require

the good cavity limit g > κ. Independent of the ratio g/κ, the loss remains small

as long as we have the strong coupling condition g2/κγ À 1 (or called the Purcell

condition). This is a valuable feature for the solid state cavity as it is typically

hard to get g > κ for this setup although the Purcell condition g2/κγ À 1 can

be satisfied [148, 149, 150, 151, 152]. Third, we note that in this scheme the gate

infidelity is basically set by the finite pulse bandwidth δω/κ, which in principle can

be arbitrarily reduced. The intrinsic noise, such as the atomic spontaneous emission

(or other kinds of photon loss) only leads to the gate inefficiency errors. Finally,

as some explicit parameter estimation, we have the fidelity F = 99.75% and the

loss p = 1.3% with the parameters (g, κ, γ)/2π = (32, 4.2, 2.6) MHz and δω = 0.1κ,

as typical for the atomic cavity [134, 135, 136]; and F = 99.76%, p = 1.59% with
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(g, κ, γ)/2π = (0.66, 6, 0.001) THz and δω = 0.1g2/κ, as typical for a solid state

cavity [149, 150, 151, 152].

5.4 Construction of Photonic Controlled Phase Flip Gate from CSWAP

As mentioned before, the multi-qubit CSWAP gate implemented by this cavity

setup is ideal for the measurement of overlap of two n-qubit wave functions carried

by the photon pulses. Therefore, the scheme is critical for realization of a number

of quantum cryptographic protocols, such as quantum fingerprinting and quantum

digital signature [145, 146]. Beyond this application, here we also want to show

that the simplest version of this gate, the CSWAP on two optical qubits (denoted

as CSWAP2), also provides a critical gate, which, together with simple single-qubit

rotations, realize universal photonic quantum computation. In this computational

scheme, the qubits are represented by the single-photon pulses, which have the advan-

tages of being relatively easy to scale to many qubits and to integrate into quantum

networks. The atom (or the quantum dot in the solid-state cavity) only acts as

an ancilla qubit which mediates strong interaction between the photons during the

gate operation. To see the universality of the CSWAP2 gate, it is enough to show

that, together with single-bit rotations, it leads to the standard controlled phase flip

(CPF) gate on two arbitrary photonic qubits. In Fig. 5.4(a), from the CSWAP2

gates we give one construction of the CPF gate UCPF = eiπ|hv〉12〈hv|, which flips the

phase of the photons 1 and 2 if and only if they are in the state component |hv〉.

The atomic qubit is initially prepared in the state |ϕ〉a = (|0〉 + |1〉)/√2, which

is recovered after the whole operation. In this construction, we use four CSWAP2

gates, together with a few single-bit Hadamard gates H and eiπ/2-phase gates (the

latter adds a phase eiπ/2 to the state component |1〉). This construction can be fur-
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Figure 5.4: (a)A circuit to construct a controlled phase flip gate from the CSWAP gates. (b)An
alternative circuit which uses only two CSWAP gates, but with feed-forward of a mea-
surement on the atomic qubit (see the text for explanation).

ther simplified if we use feed-forward from a measurement on the atomic qubit. In

Fig. 5.4(b), we give a simplified circuit which uses only two CSWAP2 gates. After

the operation represented by the left side of this circuit, we perform a measurement

on the atomic qubit in the basis {|0〉, |1〉}, and upon the outcome “1”, we add a

σz = |h〉〈h| − |v〉〈v| (single qubit Z-gate) to each of the photonic qubits. One can

verify that the whole operation also performs the gate UCPF on the two photonic

qubits. These constructions prove that the CSWAP2 gates, combined with single-bit

rotations, realize universal quantum computation on photon pulses.

5.5 Chapter Summary

In summary, we have proposed a scheme to realize multi-qubit controlled-SWAP

gates, which have critical application for implementation of both quantum cryp-

tographic protocols and universal photonic quantum computation. Our scheme is

directly based on state-of-the-art two-sided optical cavity QED technology. A single

trapped four-level atom confined in the two-sided cavity serves as the controlling
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qubit for our proposed CSWAP gate while optical qubits carried by single-photon

pulses and incident from different side of the cavity are the target qubits. The optical

pulses either resonantly tunnel through the cavity or directly refelcted back by the

mirrors, conditional on the atomic state being in |0〉 or |1〉, which effectively realizes

the CSWAP unitary transformation. With appropriate approximations, we manage

to analytically solve the dynamics of the system, thereby being able to quantify the

performance of our scheme under practical noises. Our results indicate that the

scheme is insensitive to random variations of atom-cavity coupling constant induced

by thermal motion of the trapped atom and its realization should be within the reach

of current experimental technology. We also demonstrate explicitly how to construct

controlled phase flip gate on photonic qubits from the proposed hybrid CSWAP gate

and single qubit gates.



CHAPTER VI

Time Evolving Block Decimation Algorithm

In previous chapters, we have been focusing on physical implementation schemes

for QIP with quantum optical means. Although our schemes and many other propos-

als seem to be promising to be realized, there remain tremendous challenges which

need to be addressed before we can get a working prototype quantum computer in

laboratories, which could support the execution of nontrivial quantum algorithms.

While working toward this ultimate goal, we have also been making progress in deep-

ening our understanding on theoretical foundations of quantum information science,

especially the physics of quantum entanglement[24, 25, 26, 27, 28]. Although it has

not been thoroughly understood yet, quantum entanglement is believed to play a

central role in determining the computational power of quantum computers.

For one dimensional stongly interacting quantum many-body systems with local

interactions, although entanglement does present, they can nevertheless be efficiently

simulated with algorithms running on classical computers [88, 89, 155, 156]. For sys-

tems in higher dimension, however, efficient classical algorithms only exist under very

limited situations (certain interaction Hamiltonian, certain geometry, etc). From the

perspective of quantum information science, the classical simulatability of strongly

interacting systems can be related to scaling laws of entanglement, i.e. how fast en-

68
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tanglement grows with the size of the system. Recently there have been many novel

algorithms proposed from this perspective [10, 11, 12, 13, 14, 15, 16, 17].

Implementing efficient classical algorithms to study strongly interacting systems

is certainly of great interests for physicists. While we are not sure when, if ever, a

reliable quantum computer or even a quantum simulator will be invented to solve

interesting but hard physics problems for us, we want to stretch the capability of

classical computers to its limit and hopefully we will still have enough room to

study some interesting new physics with them. As a beginning step toward this

direction, we have implemented a time evolving block decimation (TEBD) algorithm

to study strongly interacting systems in one-dimension [10, 11, 15]. TEBD can

be viewed as an extension to the well known density matrix renormalization group

(DMRG) algorithm [88, 89]. We choose to implement this TEBD algorithm, as it

could also serve as building blocks for further construction of certain two-dimensional

algorithms besides its own merits. For the rest of this chapter, we will focus our

attension on the TEBD algorithm, introducing its basic ideas and formalisms.

6.1 Tensor Product State Ansatz

The complexity in simulating quantum many-body physics arises in the first place

due to the large Hilbert space where the quantum states of the system reside. Naively,

for a system with N particles, each of which has a local dimension of d, in total

one needs dN coefficients to fully describe the quantum state of the system, which

can in general be expressed as |Ψ〉 =
∑d

i1=1 · · ·
∑d

iN=1 ci1...iN |i1 · · · iN〉. In order to

simulate the system with classical computers, one has to devise smart algorithms

to truncate the size of the Hilbert space while preserving as much as possible the

physical properties of the system. To achieve such efficient truncation, one can make
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Figure 6.1: Graph illustration of the tensor product representation of quantum many-body state. A
solid dot locating at site m represents Γ[m] associated with the site, while an open circle
between site m and site m+1 represents λ[m], corresponding to the Schmidt coefficients
for a bipartition of the system between sites m and m + 1. The lines attached to the
solid dots and open circles stand for the indices associated with the tensors Γ’s and
λ’s. Connections of the lines on different tensors correspond to contraction of the
corresponding indices.

various variational state ansatz for the system. For example, the essence of the so-

called mean field approach is to restrict the variational state to be product state

of the form |Ψ〉 =
∑d

i1=1 c
[1]
i1
|i1〉 · · ·

∑d
iN=1 c

[N ]
iN
|iN〉, boldly reducing the number of

coefficients from dN down to Nd. This approach could lead to some qualitatively

correct resutls and is being widely used. Nevertheless it is known to be prone to fail

under many circumstances espeically for one-dimensional (1D) systems.

Instead of choosing product states as ansatz states, TEBD as well as some other

successful 1D algorithms exploits ansatz states of the tensor product form [88, 89,

10, 11, 12, 13, 14, 15, 16, 17]. In particular, the tensor product representation of

quantum states used in TEBD algorithm assumes the form:

|Ψ〉 =
d∑

i1,...iN=1

χ∑
α1,...αN=1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
· · ·Γ[N ]iN

αN−1
|i1, i2, · · · iN〉, (6.1)

in which the description of quantum states of an N -site quantum lattice system

needs about a number of (dχ2 + χ)N coefficients. As demonstrated in the original

work of Vidal, the validity and efficiency of this tensor product representation can

be justified from the perspective of entanglement theory. To see it more clearly, let

us consider an arbitrary bipartition of an N -site lattice system into two subsets A

and B. By applying the Schmidt decomposition, one can always put the quantum
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state of the system in the following form:

|Ψ〉 =

χA∑
α=1

λα|φα〉A ⊗ |ψα〉B, (6.2)

where |φα〉A (|ψα〉B) are eigenvectors of reduced density matrix ρA ≡ trB (|Ψ〉〈Ψ|)

(ρB = trA(|Ψ〉〈Ψ|)) with corresponding eigenvalues |λα|2. As a matter of fact, given

any quantum state of an N -site quantum lattice system, one can carry out series

of concatenated Schmidt decompositions, which finally lead to the decomposition of

state expansion coefficients in the form as shown in equation (6.1). As a first step, we

split the system bipartitely into subset A cosisting of site 1 and subset B consisting

of the remaining N − 1 sites and carry out the Schmidt decomposition:

|Ψ〉 =
∑
α1

λ[1]
α1
|Φ[1]

α1
〉 ⊗ |Φ[2,3,...N ]

α1
〉 ≡

∑
α1,i1

Γ[1]i1
α1

λ[1]
α1
|i1〉 ⊗ |Φ[2,3,...N ]

α1
〉, (6.3)

where we have expanded the Schmidt eigenvectors |Φα1〉 for site-1 with its local

basis vectors {|i1〉, i1 = 1, · · · d}, i.e. |Φα1〉 =
∑

i1
Γ

[1]i1
α1 |i1〉. To further decompose

the Schmidt eigenvectors of the reduced density matrix for the remaining (N − 1)

sites, we follow a 2-step recipe and single out site-2 from the remaining N − 2 sites:

(i) explicitly expand each eigenvector |Φ[2,3,...N ]
α1 〉 with local basis vectors {|i2〉, i2 =

1, · · · d} for site 2 as |Φ[2,3,...N ]
α1 〉 =

∑
i2
|i2〉|ϕ[3,...N ]

α1i2
〉; (ii) express |ϕ[3,...N ]

α1i2
〉 in terms of

the eigenvalues and eigenvectors of the reduced density matrix ρ[3,...N ] as |ϕ[3,...N ]
α1i2

〉 =

∑
α2

Γ
[2]i2
α1α2λα2|Φ[3,...N ]

α2 〉. By iterating the recipe and singling out one site at a time in

sequence through the 1D chain, we will arrive at the expression (6.1).

The maximum number of non-zero λα over all possible bipartitions provides a nat-

ural measure of bipartite entanglement, namely Eχ ≡ − log2(χ) with χ ≡ maxA χA.

If the entanglement of the system is well-bounded such that Eχ scales only as order

of log (N), then the total number of coefficients in the tensor product representa-

tion scales polynomially with N , thereby allowing faithful and efficient description
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Figure 6.2: Cartoon illustration of the tensor product representation update upon action of single-
site unitary gate. The action of unitary operator U [l] only affects the tensor Γ[l] asso-
ciated with site-l.

of many-body quantum states.

6.2 Updating the Tensor Product State Representation upon Unitary
Transformations

As shown in the previous section, the TEBD tensor product state representation of

quantum states is directly connected with Schmidt decomposition, which endows this

representation many elegant properties, allowing us to further complete the whole

algorithm with ease. To simulate the dynamics of a quantum system, we need the

ability to efficiently update our state decomposition after each unitary transforma-

tion. And in general, it would be sufficient for us to consider only those transforma-

tions acting only on one or two sites. We will explain why it is the case in a bit more

detail later in this chapter. For now, we can understand it intuitively based on the

knowledge that from single-qubit and two-qubit entangling gates one can in principle

reproduce any unitary gate with an arbitrarily small error as we have learned from

the quantum computation theory. Consider an arbitrary unitary operator acting on

a single site l. In general the operator is represented by a d× d unitary matrix U [l],

where d is the local Hilbert space dimension of the specific site. If we split the system

into two subsets A = [1, · · · , l] and B = [l + 1, · · · , N ], the Schmidt decomposition

form of the quantum state of the system before the unitary transformation is given by
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Figure 6.3: Cartoon illustration of the tensor product representation update after the action of
unitary transformation targeting on two adjacent sites. The action of unitary opera-
tor V [k,k+1] only affects the three tensors enclosed within the dashed box. However
the Schmidt decomposition (or, equivalently singular value decomposition) calculation
actually involves two extra tensors λ[k−1] and λ[k+1].

|Ψ〉 =
∑

αl
λαl
|Φ[A]

αl 〉|Φ[B]
αl 〉, where |Φ[A]

αl 〉 =
∑

α1,···,αl−1
Γ

[1]i1
α1 λ

[1]
α1 · · ·Γ[l]il

αl−1αl |i1 · · · il〉 and

|Φ[B]
αl 〉 =

∑
αl+1,···,αN

Γ
[l+1]il+1
αlαl+1 λ

[1+1]
αl+1 · · ·Γ[N ]iN

αN |il+1 · · · iN〉 as explained in the previous

section. After applying U [l], the state is given by U [l]|Ψ〉 =
∑

αl
λαl
|Φ′[A]

αl 〉|Φ[B]
αl 〉, with

|Φ′[A]
αl 〉 ≡ I [1,...,l−1] ⊗ U [l]|Φ[A]

αl 〉. Since unitary transformations preserve the form of

Schmidt decomposition, we know that the tensors λ[l], · · · , λ[N−1] and Γ[l+1], · · · , Γ[N ]

which are associated with the sites in subset B, do not change upon the action of

U [l]. On the other hand, if we partition the system into C = [1, · · · , l − 1] and

D = [l, · · · , N ], following similar argument, we get that the tensors associated with

the sites in subset C, i.e. λ[1], · · · , λ[l−1] and Γ[1], · · · , Γ[l−1], do not need to be up-

dated upon the action of U [l] either. Therefore we arrive at a conclusion that unitary

operators acting on single particle l only transform the tensor Γ[l]. And it is straight-

forward to figure out that the new tensor Γ′[l] is given by Γ′[l]i =
∑

j Ui,jΓ
[l]j.

Next we introduce how to update the tensor product decomposition when unitary

operators are applied on two neighboring sites k and k + 1. Following the same

logic as we used above for single-qubit operations, we divide the system in two ways,
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where the two neighboring target sites either locate in the left subset or right subset,

and write down the state in corresponding Schmidt decompositions. Because unitary

operators preserve the Schmidt decomposition forms corresponding to the two ways

of partitioning, we deduce that only three tensors, namely Γ[k], Γ[k+1], and λ[k], need

to be updated. To demonstrate how to update the three tensors associated with sites

k and k + 1, we divide the system into four parts, namely L = [1, · · · , k− 1], sites k,

k + 1, and R = [k + 2, · · · , N ]. The quantum state of the system can be expanded

with Schmidt eigenvectors for subsystems L and R and local basis vectors for sites

k and k + 1 as

|Ψ〉 =
∑

λ[k−1]
αk−1

Γ[k]ik
αk−1αk

λ[k]
αk

Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

|Φ[L]
αk−1

ikik+1Φ
[R]
αk+1

〉, (6.4)

where the summation over recurring indices is understood. Consider a d2×d2 unitary

operator Vikik+1,i′ki′k+1
acting on sites k and k + 1. It is straightforward to write down

|Ψ′〉 = V |Ψ〉 =
∑

λ[k−1]
αk−1

Vikik+1,i′ki′k+1
Γ

[k]i′k
αk−1αkλ

[k]
αk

Γ
[k+1]i′k+1
αkαk+1 λ[k+1]

αk+1
|Φ[L]

αk−1
ikik+1Φ

[R]
αk+1

〉

=
∑

λ[k−1]
αk−1

Θ(ikαk)(ik+1αk+1)λ
[k+1]
αk+1

|Φ[L]
αk−1

ikik+1Φ
[R]
αk+1

〉, (6.5)

where Θ(ikαk)(ik+1αk+1) ≡
∑

Vikik+1,i′ki′k+1
Γ

[k]i′k
αk−1αkλ

[k]
αkΓ

[k+1]i′k+1
αkαk+1 and the summation over

recurring indices are understood. At this stage, if we partition the system by cutting

the link between k and k + 1, we can proceed with the state update by carrying out

Schmidt decomposition corresponding to this partition, so that we can obtain the

new tensors Γ′[k], Γ′[k+1], and λ′[k]. In Fig. 6.3, we illustrate the essential update

procedure for the tensor product representation upon the action of unitary operator

acting on two adjacent sites.
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6.3 Simulating Dynamics of Quantum Systems with TEBD

6.3.1 Trotter Expansion

Now that we have learned how to efficiently describe the quantum state of 1D

strongly interacting quantum lattice system as well as how to update the state de-

scription upon action of unitary operators, we are at the position to utilize the

technique to simulate the dynamics of physical systems. From quantum mechanics,

we know that the dynamics of a (closed) quantum system (in pure state) is deter-

mined by its Hamiltonian through the Schrödinger equation. The unitary evolution

of the system can be formally expressed as

|Ψ(t)〉 = exp (−i

∫
Hdt)|Ψ0〉. (6.6)

To carry out numerical simulation, we can discretize the evolution as |Ψ(t0 + δt)〉 =

exp (−iHδt)|Ψ(t0)〉.

However, In general the unitary gate exp (−iHδt) can be very large (dN×dN) even

though H only contains local interactions. Therefore, in addition to efficient state

representation, one also needs to find a way to efficiently decompose U = exp (−iHδt)

into smaller gates acting on, for example, at most two sites. Fortunately, there have

been extensive studies on this subject under other research context, e.g. in devel-

opment of quantum monte carlo method [157]. In particular, the so-called Trotter

expansion provides such an efficient decomposition, with which the propagation of

numerical errors is well under control.

Consider a quantum lattice Hamiltonian with only local interactions, which has

a generic form of H =
∑

{i,j} Hi,j, where the summation is over all neighboring

sites {i, j}. (Note that summation over single-site terms
∑

k Hk can also be cast

into the form of two-site Hamiltonian as
∑

{k,l}(Hk + Hl)/2, where {k, l} denotes



76

iHtU e−=

mi 1mi + ni

mj 1mj + nj

si 1si +

'si 1'si +

, 1s sih tu e +− ∆=

≈

Figure 6.4: Schematic visualization of efficient decomposition of unitary time-evolution operator.
Full description of the unitary evolution operator e−iHt (~ = 1) in general requires
dN ×dN matrix elements. To enable efficient simulation of quantum dynamics, one can
approximate the large unitary time-evolution operator with series of “small” unitary
gate operators (d2 × d2 unitary matrices) through Totter expansion.

all neighboring pairs of sites.) The unitary gate U now assumes the form U =

exp (
∑

s Os,s+1), with Os,s+1 = −iHs,s+1δt. In general, since operator O’s acting on

different sites may not commute with each other, we can not directly decompose

U into direct product of exp (Os,s+1). To do the decomposition correctly, we first

separate the summation over even and odd s, i.e.
∑

s Os,s+1 = F + G with F ≡
∑

odd s Os,s+1 and G ≡ ∑
even s Os,s+1. Now that the terms within F or G commute

with each other, if we can further manage to separate F and G in the exponential, we

are done with the decomposition. According to general theory of Trotter expansion,

there are different orders of approximation to achieve the goal of efficient exponential

decomposition. The first order expansion takes the simple form:

eδA+δB = lim
δ→0

(
eδAeδB + O(δ2)

)
. (6.7)

By simply symmetrizing the above decomposition, one can obtain the second order

expansion:

eδA+δB = lim
δ→0

(
eδA/2eδBeδA/2 + O(δ3)

)
. (6.8)

Theoretically, there are various ways to construct higher order expansions. A more

detailed introduction to general theory on the systematic perturbative expansion can
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be found in Ref. [157]. For our purpose, a 4th order expansion would be a fairly

good approximation. In particular, we adopt in our calculations an improved version

of the 4th order Trotter expansion:

eδA+δB = lim
δ→0

(
ep2δA/2ep2δBe(1−3p2)δA/2e(1−4p2)δBe(1−3p2)δA/2ep2δBep2δA/2 + O(δ5)

)
,

(6.9)

where the parameter p2 is given by p2 = (4− 41/3)−1. By substituting δA and δB in

the 4th order expansion with F and G which are given in the previous paragraph,

we can readily decompose the unitary evolution operator U .

6.3.2 Efficient Computation of Reduced Density Matrices and Correlation Functions
from the Tensor Product Representation

A quantum state can not be directly monitored or accessed, instead, we extract

information about the quantum state by measuring correlation functions of certain

physical observables. As stated earlier in this chapter, the connection between the

TEBD state representation and Schmidt decomposition leads to many elegant prop-

erties for the representation. These properties enable us to compute reduced density

matrices as well as correlation functions efficiently from the tensors λ’s and Γ’s. In

the following, we introduce how to obtain single-site and two-site reduced density

matrices, ρ[s] and ρ[s,s′], as well as how to obtain correlation functions of the form

〈O[s]O[s′]〉. The reduced density matrix is defined as trenvironment(|Ψ〉〈Ψ|), where the

trace is nothing more than contractions of physical indices i’s of tensor Γ’s associated

with the environment. Due to the Schmidt decomposition construction, the contrac-

tions from either end of the chain to any site s associated with a tensor Γ
[s]
αs−1αs simply

reduce to identity matrices {Iαs−1,α′s−1
} = δαs−1α′s−1

and {Iαs,α′s} = δαsα′s . Single-site

reduced density matrix for site s is then given by

ρi,i′ = tr
(
Γ[s]iΓ[s]i′†

)
. (6.10)
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Figure 6.5: Illustration of efficient calculation for reduced density matrices. (a) Computation of
single-site reduced density matrices; (b) Calculation of two-site reduced density matrices
ρ[s,s′]. Thanks to the nice form of Schmidt decomposition, the contractions of the tensor
network from either ends of the chain to “outer” neighbors of site s and s′ are trivial
and simply reduce to contraction of Schmidt coefficient tensors λ[s−1] and λ[s′] with
their respective conjugates.
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Computation of the two-site reduced density matrix ρ[s,s′], however, is more involved

than the single-site calculation and its computational cost is related to the distance

between the two relevant sites since we have to explicitly contract the tensors as-

sociated with the sites lying between them. To carry out the contraction, we first

construct a χ2 × χ2 matrix for each site m between site s and s′ with Γ[m], λ[m−1]

and λ[m] according to

{T [m]

αm−1α′m−1,αmα′m
} =

∑
im

√
λ

[m−1]
αm−1 λ

[m−1]

α′m−1
Γ[m]im

αm−1αm
Γ

[m]im∗
α′m−1α′m

√
λ

[m]
αmλ

[m]
α′m

. (6.11)

The two-site reduced density matrix can then be obtained through

{ρ[s,s′]
ij,i′j′} =

∑

αs,α′s,αs′−1,α′
s′−1


 ∑

αs−1,α′s−1

Γ[s]i
αs−1αs

Γ
[s]i′∗
α′s−1α′s

√
λ

[s]
αsλ

[s]
α′s


 (6.12)

× {
s′−1∏

m=s+1

T [m]}αsα′s,αs′−1α′
s′−1


 ∑

αs′ ,α′s′

Γ[s′]j
αs′−1αs′

Γ
[s′]j′∗
α′

s′−1
α′

s′

√
λ

[s′−1]
αs′−1

λ
[s′−1]

α′
s′−1


 .

In Fig. 6.5, we show the tensor product representations of state |Ψ〉 and its conjugate

〈Ψ| as well as the contraction of them for calculation of reduced density matrix. Once

obtaining reduced density matrices of the quantum lattice system, one can further

compute its correlation functions according to tr(ρ[s]O[s]) and tr(ρ[s,s′]O[s]O[s′]). Nev-

ertheless, we can also directly compute them in a way similar to the density matrix

calculations.

Before ending the introduction to TEBD, we note that this TEBD algorithm can

be readily adapted to compute ground state properties of the system by evolving,

according to imaginary time, an arbitrary initial state which has nonvanishing overlap

with the true ground state. Although the imaginary time evolution is not unitary,

in practice we can choose small time steps δt so that the imaginary evolution is very

close to a unitary one. It turns out that this method indeed produces very accurate

physical results.
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6.4 Chapter Summary

In this chapter, we have introduced basic concepts of TEBD algorithm, as well as

how to simulate 1D quantum systems with it. This algorithm catches the essence of

entanglement scaling in 1D quantum systems and exploits Schmidt decomposition to

arrive at a very elegant tensor product representation of quantum states. It allows

us to efficiently update the state description upon unitary operations and compute

physical properties of the evolved system, making it possible to simulate dynamics

of a large class of quantum systems. Moreover, it can be readily adapted to study

ground state properties of 1D strongly interacting systems, which will be the subject

for the following chapters of this thesis.



CHAPTER VII

TEBD Study on Ground State Properties of Ultracold
Fermions in 1D Optical Lattices with Repulsive On-site

Interactions

In the previous chapter, we have introduced with some detail the TEBD algorithm,

which can be used to study 1D quantum systems. In this chapter, we are going to

present our study on ground state properties of a strongly interacting 1D fermionic

system with TEBD. The interations in the system can be described by a general

Hubbard model (GHM). Our study reveals that correlated hopping mechanism in

GHM could bring in qualitatively different physics as compared with the conventional

(Fermi-)Hubbard model (CHM).

7.1 Introduction

Physics of strongly interacting ultracold atoms has been attracting tremendous

research interests over the past 10 years or so, during which many interesting phe-

nomena have been predicted theoretically and observed in experiments. As a well

known example, in their seminal theoretical paper, Jaksch et al. predicted the exis-

tence of superfluid-Mott insulator (SF-MI) transition in the system of cold bosonic

atoms in an optical lattice [73], which could be used to initialize atomic qubit registers

in such systems. Later, the predicted SF-MI transition was observed in experiments,

81
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marking an important step in experimental studies on strongly interacting ultra-

cold atoms [74]. Besides bosonic systems, ultracold fermions [158, 159] as well as

mixtures of fermions and bosons have also been extensively studied recently. With

advanced quantum control techniques, especially laser cooling and trapping as well

as Fechbach resonance, people are facing the unprecedented opportunity to mimic

condensed matter physics with ultracold atoms in controllable manners.

Many of these important ultracold atom systems can be described by variations

of the fundamental Hubbard model Hamiltonians [73, 160, 161], with which very rich

physics has been studied. For example, the prediction of the SF-MI transition by

Jaksch et al. was based on a Bose-Hubbard model. More recently, with extended

Bose-Hubbard model, the possible existence of supersolid order in ultracold bosonic

atoms was predicted theoretically [162]. The supersolid order is a very interesting

state of matter, in which at long range superfluid order and charge density wave

(CDW) order are found to be coexisting. For ultracold fermions, with Fermi-Hubbard

model, the Luther-Emery phase [163, 164] and the 1D analog of FFLO state [165]

were predicted to be existent in 1D attractive fermionic systems with equal and

unequal spin population, respectively. The Luther-Emery phase is characterized

by coexistence of quasi-long range (QLR) SF and CDW orders. For spin-polarized

fermions, FFLO is an exotic state of matter, where paired fermions have non-zero

center-of-mass (CM) momentum as opposed to fully paired BCS state where fermion

pairs have zero CM momentum.

While its 2D version remains to be an intractable theoretical problem, the 1D

conventional Fermi-Hubbard model (CHM) has been extensively studied with ex-

act Bethe ansatz method [171, 172], bosonisation approach[173], as well as efficient

numerical methods such as density matrix renormalization group (DMRG) [89] and
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quantum Monte Carlo (QMC) [155, 156]. In particular, it is well known that the sus-

ceptibility for SF and CDW orders are suppressed at low temperature for CHM with

on-site repulsive interaction (positive-U), and the leading QLR order is given by spin

density wave (SDW) at any filling fraction[96]. However, in this chapter, we show

that coexistence of QLR SF and CDW orders can be observed for fermionic atoms

with repulsive on-site interaction in an anisotropic optical lattice near a wide Fesh-

bach resonance. The interactions in this strongly interacting system is described by a

1D general Hubbard model (GHM) with particle assisted tunnelling rates [160, 161].

The GHM is an effective one-band Hamiltonian that takes into account the multi-

band populations and the off-site atom-molecule couplings in an optical lattice near

a wide Feshbach resonance. It is interesting to note that the GHM with similar

particle assisted tunnelling also arises in different physical contexts, as proposed in

Ref. [166, 167, 168]. In contrast with the case of the positive-U CHM, we show

that SF and CDW emerge as dominant quasi-long range orders over spin orders in

the positive-U GHM when the system is significantly hole-doped below half-filling,

although at or very close to half-filling, the dominant correlation in GHM is still

anti-ferromagnetic spin order. This feature indicates that the particle assisted tun-

nelling in GHM brings in qualitatively new physics. It makes the effective interaction

in GHM doping dependent, showing different behaviors with a possible phase tran-

sition in between. We get our results through numerical calculation based on the

time evolving block decimation (TEBD) algorithm [10, 11, 15, 14]. We compare

our numerical results with some known exact results for the positive CHM, and

the remarkably precise agreement indicates that the TEBD calculation can make

quantitatively reliable predictions.
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7.2 Model Hamiltonian and Numerical Method

A generic Hamiltonian to describe strongly interacting two-component fermions in

an optical lattice (or superlattice) is given by the following general Hubbard model:

H =
∑

i

[Uni↑ni↓ − µni] (7.1)

−
∑

〈i,j〉,σ
[t + δg (niσ + njσ) + δtniσnjσ] a†iσajσ + H.c.

where niσ ≡ a†iσaiσ, ni ≡ ni↑ + ni↓, µ is the chemical potential, 〈i, j〉 denotes the

neighboring sites, and a†iσ is the creation operator to generate a fermion on the site

i with the spin index σ. The symbol σ stands for (↓, ↑) for σ = (↑, ↓). The δg

and δt terms in the Hamiltonian represent particle assisted tunnelling, for which the

inter-site tunnelling rate depends on whether there is another atom with opposite

spin on these two sites. The particle assisted tunnelling comes from the multi-

band population and the off-site atom-molecule coupling for this strongly interacting

system [160, 161]. For atoms near a wide Feshbach resonance with the average filling

number 〈ni〉 ≤ 2, each lattice site could have four different states, either empty

(with state |0〉), or a spin ↑ or ↓ atom (a†iσ|0〉), or a dressed molecule (d†i |0〉) which is

composed by two atoms with opposite spins. The two atoms in a dressed molecule

can distribute over a number of lattice bands due to the strong on-site interaction,

with the distribution coefficient fixed by solving the single-site problem. One then

can mathematically map the dressed molecule state d†i |0〉 to a double occupation

state a†i↓a
†
i↑|0〉 by using the atomic operators a†iσ [160, 161] . After this mapping,

the effective Hamiltonian is transformed to the form of Eq. (1). The GHM in Eq.

(1) reduces to the conventional Hubbard model when the particle assisted tunnelling

coefficients δg and δt approaching zero, as one moves far away from the Feshbach

resonance. Near the resonance, δg and δt can be significant compared with the
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atomic tunnelling rate t due to the renormalization from the multi-band populations

and the direct neighboring coupling [160, 161].

We consider in this work an anisotropic optical lattice for which the potential

barriers along the x, y directions are tuned up to completely suppress tunnelling along

those directions. The system becomes a set of independent one-dimensional chains.

We thus solve the GHM in one dimension through numerical analysis. For this

purpose, first we transfer all the fermion operators to the hard core boson operators

through the Jordan-Wigner transformation [170]. In the one-dimensional case, we

can get rid of the non-local sign factor, and after the transformation the hard core

boson operators satisfy the same Hamiltonian as Eq. (1). On each site we then have

two hard core boson modes which are equivalent to a spin-3/2 system with the local

Hilbert space dimension d = 4. We can therefore use the TEBD algorithm to solve

this pseudo-spin system. As we have introduced in the previous chapter, the TEBD

algorithm is based on the assumption that in the one-dimensional case the ground

state |Ψ〉 =
∑d

i1=1 · · ·
∑d

in=1 ci1...in|i1 · · · in〉 of the Hamiltonian with local interactions

can be written into the following matrix product form:

ci1...in =

χ∑
α1,...αn=1

Γ[1]i1
αnα1

Γ[2]i2
α1α2

Γ[3]i2
α2α3

· · ·Γ[n]in
αn−1αn

, (7.2)

where Γ[s]is denotes the matrix associated with site-s with the matrix dimension

χ. When χ = 1, the assumption reduces to the mean-field approximation, and for a

larger χ, the matrix product state well approximates the ground state as it catches the

right entanglement structure for 1D systems [10, 11]. To use the TEBD algorithm, we

just start with an arbitrary matrix product state in the form of Eq. (2) which has non-

zero overlap with the real ground state, and evolve this state with the Hamiltonian (1)

in imaginary time through the propagator e−Ht. The state converges to the ground



86

state of the Hamiltonian pretty quickly. From the final ground state in the matrix

product form, one can efficiently calculate the reduced density operator and various

correlation functions. This calculation has a well controlled precision since at each

time step to update the matrix product state, the Hilbert space truncation error can

be suppressed by choosing an appropriate matrix dimension χ. In this calculation,

we use the infinite lattice algorithm by assuming that the lattice is bipartite and the

ground state has a translational symmetry for each sublattice [15]. This allows us to

directly calculate the system in the thermodynamic limit (particle number goes to

infinity while preserving particle number density).

7.3 Numerical Results and Discussion

To show that our calculation is capable of making reliable predictions, we first

test our results by comparing them with some known exact results of the Hubbard

model in certain cases. For the Hubbard model at half-filling 〈ni↑〉 = 〈ni↓〉 = 0.5,

the ground state energy per site is known to have the analytic expression E =

−4
∫∞
0

J0(ω)J1(ω)dω
ω[1+exp(ωU/2)]

in the thermodynamic limit from the exact Bethe ansatz solution

[171], where J0 and J1 are Bessel functions and we have chosen the tunnelling rate

t as the energy unit. In Fig. 7.1 (a), we show our numerical results for the ground

state energy of the Hamiltonian (1) with δg = δt = 0, and one can see that it agrees

very well with the exact energy of the Hubbard model in particular when U > t.

The error is in general smaller than 10−3 as shown in Fig. 7.1(b). In this and the

following calculations, we choose the matrix dimension χ = 40. We have tried larger

χ which gives better precision, but we choose χ = 40 to have a faster speed and its

precision is enough for our purpose.

We have also tested the final state from our calculation by comparing its cor-
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Figure 7.1: Numerical results for conventional Hubbard model compared with some known exact
result. (a) Ground state energy as a function of U at half-filling (energy in the unit of
t), where data points marked by solid dots are from the exact Bethe ansatz solution
while those marked by pentagram are from our numerical program; (b) The relative
error in the ground state energy; (c) Real-space spin correlation function at the filling
fraction 〈ni〉 = 0.5 and U = 8t, compared with the asymptotic form in Eq. (3) (solid
curve) with Kρ = 0.62 and A = 0.13. (d) Similar to (c), except that 〈ni〉 = 0.75, and
the corresponding Kρ = 0.60, A =0.19.
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relation functions with some known results. It is difficult to get correlations an-

alytically from the Bethe ansatz solution, but from the bosonization approach to

the one-dimensional Hubbard model, we know its correlation functions take certain

asymptotic forms. For instance, one can look at the spin-spin correlation, defined as

Sr ≡ 〈si · si+r〉, where the spin operator for the site i is given by si ≡ a†iασαβaiβ/2

with α and β =↓, ↑ and σ standing for the Pauli matrices. The correlation Sr is in-

dependent of i because of the translational symmetry. The Hubbard spin correlation

function has the following asymptotic form [172]

Sr = − 1

(πr)2
+

A

r1+Kρ
cos(2kF r) ln1/2(r) + ..., (7.3)

where Kρ is the Luttinger parameter whose value has been determined before from

the exact Bethe ansatz solution [171, 172], kF is the fermi momentum related to the

filling number 〈ni〉 through kF = 〈ni〉 π/2, and A is a non-universal model dependent

constant. In Fig.1 (c) and (d), we compare our calculation results for Sr with this

asymptotic form for filling number 〈ni〉 = 0.5 and 0.75, and the agreement is again

remarkable as long as r is not too small (the expression of Sr in Eq. (3) is not

accurate for small r).

With the confidence in numerics built from the above comparison, we now present

our main calculation results for the repulsive GHM in Eq. (1) with U > 0. Apart

from the spin correlation Sr defined before, we also calculate the charge-density-wave

(CDW) correlation, defined as Dr ≡ 〈nini+r〉 − 〈ni〉〈ni+r〉, and the pair (superfluid)

correlation, defined as Pr ≡ 〈ai↑ai↓a
†
i+r↓a

†
i+r↑〉. The results are shown in Fig. 7.2 for

different filling fraction 〈ni〉 and for models with different particle assisted tunnelling

rates δg and δt. First at half filling with 〈ni〉 = 1, the correlation functions Sr, Dr,

and Pr for the GHM with different δg and δt all look qualitatively similar to the

corresponding results for the conventional Hubbard model, although with increase
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Figure 7.2: The numerical results for the spin (Sr), the CDW (Dr), and the pair (Pr) correlation
functions for the GHM with different particle assisted tunnelling rates and at different
filling fractions, where δg = 0 δt = 0 for solid curves, δg = 3t δt = −6t for dashed
curves, δg = 3t δt = −3t for dotted curves, and δg = 7t δt = −14t for dash-dotted
curves.
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of the coefficient δg the spin correlation reduces a bit while the CDW and superfluid

correlations increase slightly. Clearly, the dominant correlation in this case is in spin

which suggests a quasi-long range anti-ferromagnetic order. In this and following

calculations, we take U = 8t for all the cases, which corresponds to a significant

on-site repulsion.

Qualitatively different results show up when the system is doped with holes. At

the filling fraction 〈ni〉 = 0.75, although for the Hubbard model the spin correlation

is still the dominant one (the spin density wave order has been pinned to the cor-

responding 2kF = 3π/4), for the GHM with a noticeable δg, the superfluid and the

CDW emerge as the leading quasi-long-range orders, and their correlations increase

significantly and decay much slower in space compared with the spin correlation

when δg grows. These features become more evident when we further increase the

doping. For instance, at the right column of Fig. 7.(2), we show the correlations for

the filling fraction 〈ni〉 = 0.5. The qualitative behavior is similar to the case with

〈ni〉 = 0.75, but the CDW and superfluid correlations for the GHM get significantly

larger at long distance, and the contrast with the Hubbard model becomes sharper.

One also note that for all these calculations, change of the coefficient δt in the GHM

makes little difference to the result. This is understandable as a significant positive

U suppresses the possibility of double occupation in the lattice, and the δt term

in the GHM has no effect without double occupation. The δg term in the GHM,

however, is critically important, which favors superfluidity in general and brings in

the qualitatively different features mentioned above.

To show the spatial structure of these quasi-long range (QLR) orders, we plot in

Fig. 7.3 the spin, the CDW, and superfluid correlations in the momentum space for

the GHM with δg = 3t at different filling fractions 〈ni〉. The momentum space corre-
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Figure 7.3: The spin, the CDW, and the pair correlation functions in momentum space for the
GHM with δg = 3t δt = −3t. The solid, dashed, and dash-dotted curves correspond
to filling factor 〈ni〉 = 1, 0.75, and 0.5, respectively. For the calculation of the Fourier
transformation, we have used the real space correlation functions for N = 100 sites.

lations are defined by the Fourier transform Xk = 1/
√

N
∑N

r=0 Xr cos(kr), where X

stands for the correlations S, D, or P . From these momentum space curves, one can

clearly see that this GHM at half filling has a QLR anti-ferromagnetic order (char-

acterized by the peak at k = π), and away from half filling a QLR superfluid order

(peak at k = 0) and CDW order (peaks at k = 2kF and 2π−2kF , where 2kF = 3π/4

(π/2) for the filling fractions 〈ni〉 = 0.75 (0.5), respectively). The peaks in Fig. 7.3

have finite widths because these orders in 1D are only quasi-long-range with alge-

braic decay. Note that if we turn on small tunnelling interaction between different 1D

chains, a leading QLR order, such as superfluid order, could be stabilized to a true

long range order [96]. The GHM thus provides an example of a microscopic Hamil-

tonian that with hole doping from half filling, an anti-ferromagnetic phase could be

transferred to a superfluid phase (or a CDW phase in some case depending on which

order becomes more dominant with the inter-chain coupling). The correlations that

characterize these QLR orders can be detected for the cold atomic gas, for instance,
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through the method described in Ref. [174].

7.4 Chapter Summary

In summary, we have investigated the ground state properties of the general Hub-

bard model with repulsive on-site interaction in one dimension through well con-

trolled numerical analysis. For the system with significant particle assisted tunneling

rates δg and δt, we have found coexistence of quasi-long range superfluid and charge-

density-wave orders when the system is hole-doped from half filling. This feature is

in sharp contrast with convention Hubbard model, in which case for positive-U the

charge and superfluid orders are always suppressed regardless of the filling fraction.

With a combination of the Bosonlization approach and the numerical method here,

it may be possible to determine the compete phase diagram for the GHM. The model

here describes strongly interacting fermionic atoms in an anisotropic optical lattice.

The possibility of a transition from an anti-ferromagnetic phase to a superfluid phase

for the GHM with hole doping may also have interesting indications for other areas.



CHAPTER VIII

TEBD Study on Spin-polarized 1D General Hubbard Model
with Attractive On-site interactions

In the previous chapter, we have presented our work on a TEBD numerical simu-

lation of a general Hubbard model (GHM) without spin polarization, meaning that

the system has equal numbers of spin-up and spin-down fermions. It has been shown

that the particle assisted tunneling in the system could introduce qualitatively dif-

ferent physics from that described by the conventional Hubbard model (CHM). In

this chapter, we further explore the spin-polarized GHM model with attractive on-

site interactions (negative-U) to reveal the effects of the particle assisted tunneling.

With the 1D attractive spin-polarized CHM the existence of the Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) state, which is an exotic fermion pairing mechanism, has been

predicted. Our TEBD calculation to be presented in this chapter shows that with

the particle assisted tunneling, the FFLO order could get suppressed in GHM. We

also discuss the possible effect of particle number density inhomogeneity due to the

presence of an overall harmonic trap as is the case in optical lattice experiments.

8.1 Introduction

Physics of strongly interacting Fermi systems has been at the frontier of vari-

ous research fields in modern physics. One outstanding example is given by the
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physics of superconductivity, or more generally, fermionic superfluidity. The usual

fermion pairing mechanism, namely the Cooper-pairing of fermions, is known to be

responsible for the fermionic condensate and superfluidity in Fermi systems with

equal spin populations. In spin-polarized systems, however, the population imbal-

ance between the spin-up and spin-down species leads to partial pairing of fermions

inevitably. The mismatching of Fermi surfaces for different spin species induces a

competition between Cooper pairing and population imbalance, which could allow

the observation of many interesting new phenomena. In condensed matter physics,

many interesting and seemingly exotic pairing mechanisms for spin-polarized Fermi

systems have been proposed theoretically [175, 176, 177]. Nonetheless most of them

remain elusive from direct experimental observation in solid state systems. Very

recently, the observation of fermionic superfluidity in spin-polarized ultra-cold Fermi

gas experiments has opened up the possibilities of systematic study on these new

phenomena under well controlled conditions and it has triggered enormous research

interests [178, 179, 180, 181, 182].

The FFLO state is one specific example of the proposed exotic pairing mechanisms

and has been extensively studied in condensed matter physics. Under the original

research context, it was suggested that the ground state for a BCS superconductor

under a constant magnetic field should become a magnetized superconductor, in

which the fermion pairs have non-zero center-of-mass momentum [175, 176]. In

principle, the FFLO state could be found existent in spin-polarized Fermi gas with

attractive interactions. It has been suggested that spin-polarized Fermi gas in a one-

dimensional (1D) optical lattice is a promising system for direct observation of the

FFLO state, as the inter-chain coupling of the quasi-1D systems may help stabilize

the order [96]. For a homogeneous 1D attractive Fermi gas system with unequal



95

spin populations, theoretical evidence of the FFLO state has been found by means

of bosonization and other renormalization group techniques [183]. More recently,

based on the Gaudin-Yang model under the local density approximation (LDA), the

zero-temperature phase diagram of a trapped 1D spin-polarized Fermi gas system

has been obtained [184, 185]. According to these mean-field studies, the ground

state of the system should exhibit a two-shell structure. In the core, it is a superfluid

of FFLO-type characters, while in the wings it could be either a fully paired BCS

superfluid or a fully polarized normal state, depending on the magnitude of the spin

polarization. There have also been many important numerical results obtained by

applying the density matrix renormalization group (DMRG) [165, 186, 187] and the

quantum Monte-Carlo (QMC) [188] algorithms to the 1D attractive Hubbard model

in harmonic traps with spin population imbalance, indicating the possible existence

of the FFLO state.

In this chapter, we present a time evolving block decimation (TEBD) numerical

study on a 1D general Hubbard model (GHM) with on-site attractive interaction. We

show that the FFLO superfluidity in the conventional 1D attractive Hubbard model

could be affected due to the presence of the particle assisted tunneling in GHM. For

fermionic atoms in an anisotropic optical lattice near a wide Feshbach resonance, the

particle assisted tunneling terms arise in an effective single-band Hamiltonian, when

multi-band populations and off-site atom-molecule couplings are taken into account

[160, 161]. Our calculation reveals that for the spin-polarized 1D attractive GHM,

the FFLO order could be enhanced at low particle assisted tunneling rates. However,

at relatively high correlated tunneling rates, the FFLO order could get suppressed,

while the spin density wave (SDW) orders become more dominant, especially in

the case with relatively weak on-site attractive interactions. We also analyze the
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density inhomogeneity effect based on LDA. For the conventional Hubbard model,

we find that in the low density case (half-filling at the trap center and decreasing all

the way to zero toward the edge), one will get a two-shell structure with a FFLO

superfluid core, as predicted by previous theoretical studies. While all previous

studies agree that at the center the system should be found in an FFLO state,

the results obtained with different methods are somehow different on the state of

matter in the wings. According to mean-field calculations, it could be either a

fully paired superfluid (Luther-Emery liquid) or a fully polarized normal state in

the wings depending on the overall degree of polarization, while with the DMRG

simulation, only a fully polarized state has been found. Although our calculation

does not exclude the possibility of finding fully paired superfluidity in the wings, it

is indicated that the critical polarization below which one can find a fully paired

superfluid in the wings could be much smaller than what the mean-field studies have

predicted. Furthermore, we investigate the effects of correlated tunneling on the shell

structure of the inhomogeneous system. We find that in the case with strong on-site

attraction the shell structure is very similar to that for the conventional Hubbard

model. In the case with weak on-site interaction, however, the shell structure could

be completely different. More specifically, the new structure is found to have a SDW

core, and depending on the magnitude of the polarization, in the wings one could

get either a Luther-Emery liquid (with fully paired superfluidity) or a fully polarized

normal state, while in between, the state of the system shows some remanence of the

FFLO-type order.
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8.2 Model Hamiltonian and Numerical Method

The model Hamiltonian for the system of Fermi atoms in an optical lattice near

a wide Feshbach resonance assumes basically the same form as is given by equation

(7.1) in the previous chapter, except that now we explicitly distinguish the chemical

potential term for spin-up and spin-down species so that population imbalance can

be introduced into the system. The general Hubbard Hamiltonian for our numerical

study can be written as [160, 161]:

H =
∑

i

[Uni↑ni↓ − µ↑ni↑ − µ↓ni↓] (8.1)

−
∑

〈i,j〉,σ
[t + δg (niσ + njσ) + δtniσnjσ] a†iσajσ + H.c.

where niσ ≡ a†iσaiσ, ni ≡ ni↑ + ni↓, µσ is the chemical potential for spin-σ compo-

nent, 〈i, j〉 denotes the neighboring sites, and a†iσ is the creation operator to generate

a fermion on the site i with the spin index σ. The symbol σ stands for (↓, ↑) for

σ = (↑, ↓). To calculate the ground state properties of the general Hubbard model

Hamiltonian, we use an infinite lattice version of the TEBD algorithm, which has

been introduced in previous chapters. The magnitude of spin polarization is con-

trolled through the adjustments of the chemical potentials for the two spin compo-

nents.

8.3 Numerical Results and Discussions

We first present our results for the half-filling case in Fig. 8.1. In our calculation,

we choose a fixed polarization p =
N↑−N↓
N↑+N↓

at 0.4 and examine the effect of particle

assisted tunneling at a relatively strong on-site (attractive) interaction U = −8t. It

is known that in the 1D conventional Hubbard model with attractive interaction, the

ground state of the system without spin-polarization is described by a Luther-Emery
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Figure 8.1: Momentum space correlation functions for the general Hubbard model at half-filling.
For all plots, U = −8t and the spin polarization is chosen to be the same at p = 0.4. The
solid, dashed, and dash-dotted curves correspond to δg = 0, 0.5t, and −t, respectively.



99

0 0.5 1 1.5 2
0.08

0.15

0.22

S x
k

0 0.5 1 1.5 2
0.02

0.09

0.16

Dk

0 0.5 1 1.5 2
0.02

0.09

0.16

S z
k

−1 −0.5 0 0.5 1
0

0.03

0.06

k a / π

P k

(a)

(b)

(c)

(d)

Figure 8.2: Momentum space correlation functions for the general Hubbard model at half-filling.
For all plots, U = −2t and the spin polarization is chosen to be the same at p = 0.4. The
solid, dashed, and dash-dotted curves correspond to δg = 0, 0.5t, and −t, respectively.
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liquid while in the case with spin-polarization (even arbitrarily small) the ground

state of the system becomes an FFLO-type state. The pairing (or superfluid) cor-

relation is crucial for the characterization of the FFLO state, with the peaks of Pk

locating at non-zero momentum k being its signature. Our plots agree very well

with this well-known result, with the solid curves peaking at k = ±0.4π. Moreover,

according to our results, in GHM the FFLO order is enhanced at δg = 0.5t (sharper

peaks in the Pk v.s. k plot) while it is suppressed at δg = −t. At δg = −t (reasonably

high correlated-tunneling rate), the spin correlations show tiny peaks, indicating the

emergence of the SDW order. The interesting effects of the correlated hopping, how-

ever, can be understood by mapping to the unpolarized positive-U general Hubbard

model below half-filling, which has been studied in our earlier work and shown to

exhibit Luther-Emery like phase [94]. Fig. 8.2 is also devoted to the demonstration

of the effects due to the particle assisted tunneling, but at a relatively weak on-site

interaction U = −2. Although the effects of the correlated tunneling shown in Fig.

8.2 are quite similar to those in Fig. 8.1, nonetheless, one should be able to observe

that the effects of particle assisted tunneling are more prominent at weaker on-site

interaction strength.

In Fig. 8.3, we show the momentum space superfluid correlations at different

polarizations and particle densities for the conventional Hubbard model (U = −8t).

From the results shown in Fig. 8.3, we can discuss the density inhomogeneity effects

due to the presence of an overall trap potential based on LDA. In each sub-plot

we fix the difference in the chemical potentials δµ for different spin species, while

varying the particle density by adjusting µ ≡ (µ↑+µ↓)/2. We assume that the lattice

sites in the trap center are half-filled. Then, according to our simulation, in the trap

center, we get the FFLO state even though the polarization is very small. When the
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Figure 8.3: Pairing correlation functions for the conventional Hubbard model at U = −8t. The
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corresponding to each curve.
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polarization in the trap center is small (e.g. in Fig. 8.3(a) when δµ = 2.4t, p = 0.054

at half-filling), we can see that the spin polarization decreases all the way down to

zero when moving toward the trap edge (with µ decreasing). In this case, a fully

paired superfluid is found in the wings. However, if we have a higher polarization

in the center (by increasing δµ), the spin polarization is found to be increasing from

the center to unity toward the edge. Therefore, in this case a fully polarized normal

state will be found in the wings (although in Fig. 8.3(b) and (c) only the partially

paired FFLO state is shown). We note that in previous studies with mean field

calculation, it was predicted that for strong on-site interactions, there is a critical

polarization as large as p = 0.2 below which one could get fully paired superfluid

in the wings, however as reported in Ref. [165], at U = −8t one does not see

any fully paired superfluid toward the edge of the trap at any polarization through

DMRG calculations. According to our result, when δµ = 2.5t (fully polarized state

in the wings), the spin polarization is about 0.093 in the trap center. In this case,

when moving toward the edge, we find that the particle density difference decreases

although the polarization increases. This implies that the critical polarization for

the observation of fully paired superfluid in the wings should be smaller than 0.093

(not tight). For the conventional Hubbard model at U = −10, we also carried out

similar calculations and analysis. And the critical polarization is found to be smaller

than 0.088.

Similar to the analysis for the trap effects on the conventional Hubbard model,

we also investigate the general Hubbard model at different spin polarizations and

particle number densities. In Fig. 8.4, we show our results for pairing correlation

functions of GHM at U = −10t and δg = −t. From the figure, one can observe that

the physics here is quite similar to that of the conventional Hubbard model. In the
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trap center (at half-filling), we have the FFLO state characterized by the peaks of Pk

locating at non-zero momentum k. In the small polarization case (see Fig. 8.4(a)),

one could get a fully paired superfluid in the wings, while in the large polarization

case (see Fig. 8.4(b)) a fully polarized normal state is found near the trap edge.

Therefore, in this case we have a similar two-shell structure as is obtained with the

conventional Hubbard model. However, from the insets of Fig. 8.4(a) (at small

polarization), we can see that the polarization is not monotone with the variation

of particle density, which is different from the case in the conventional Hubbard

model. Furthermore, in the case as shown in Fig. 8.4(a), in the trap center the spin

polarization p is found to be about 0.118, which is noticeably higher than the critical

polarization for the observation of a fully paired superfluid state in the wings in the

conventional Hubbard model. More interestingly, the correlated tunneling in GHM

could lead to a completely different shell structure, when the on-site interaction is

not very strong (Fig. 8.5). In the trap center where the sites are half-filled by setting,

the system shows a SDW order. By comparing the left and right column, we can

observe that the SDW order in the core is more prominent for a higher magnitude of

spin polarization. When moving toward the edge, we can see some remanence of the

FFLO order characterized by tiny peaks at non-zero momentum in the momentum

space pairing correlation. Further away from the center, in the low polarization case

(left column in Fig. 8.5), the system is found to be a Luther-Emery liquid with fully

paired superfluidity, while in the high polarization case (right column), in the wings

one has a fully polarized normal state instead.



106

8.4 Chapter Summary

In summary, we numerically study the ground state properties of a spin-polarized

general Hubbard model with particle assisted tunneling by using a TEBD algorithm.

We have found that the correlated hopping could affect the FFLO order in different

ways depending on the magnitude of the correlated hopping rates. We have also

analyzed how the system would behave under an overall trap potential in optical

lattice experiments based on the LDA assumption. Our results indicate that for the

conventional Hubbard model the critical spin-polarization below which one could

find fully paired superfluid toward the edge of the trap could be very small even with

strong on-site attractive interaction, as opposed to the prediction from mean field

calculation based on Gaudin model. Furthermore our calculations reveal that when

the particle assisted tunneling rates are significant compared with the strength of

the on-site interaction they could lead to a completely different shell structure with

SDW in the core and either a Luther-Emery liquid or a fully polarized normal Fermi

gas in the wings.



CHAPTER IX

Summary and Future Directions

9.1 Summary of Thesis

In the first part of this thesis, I presented our theoretical studies on quantum

optical implementation of quantum information processing with optical cavity QED

systems. With state-of-the-art control techniques, atoms can be confined in a tiny

optical resonantor for seconds, during which strong coupling between atomic transi-

tions of the trapped atoms and cavity field can be achieved. The atom-cavity system

working in the strong coupling regime provides us a unique platform where coherent

control at the single-particle (either atom or photon) level is possible.

We proposed to utilize a high finesse one-sided optial cavity with a single trapped

atom as our resource to generate Schrödinger cat states in weak coherent optical

pulses. According to our implementation scheme, the cat states can be obtained by

simply scattering weak optical pulses prepared in coherent states at the single-atom

cavity followed by projective measurement on the atomic state. To quantitively

characterize the performance of our scheme, we developed a numerical method to

solve the dynamics of the system. The effects of experimental imperfections, such as

the output pulse shape distortion from the scattering process, the atomic spontaneous

emission, the randomness of atom-cavity coupling strength due to thermal motion of
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the atom, as well as the mode mismatching for the coupling between cavity and free

space fields, were studied with our numerical solution. Our calculations reveal that

our scheme is relatively insensitive to the noise due to atomic thermal motion. We

also find that the pulse shape distortion can be suppressed by choosing optial pulses

with smaller bandwidth, while the photon loss error due to the atomic spontaneous

emission can be reduced by increasing the atom-cavity coupling rate. And according

to our calculation, the scheme is relatively more sensitive to the mode matching

inefficiency as compared with other sources of errors.

We presented a fault-tolerant scheme for the implementation of neutral atom

gates, where the effective interaction between neutral atoms is mediated by cavity

assisted scattering of single-photon pulse. With our basic scheme, by reflecting a

single photon pulse from the cavity with two trapped atoms, a controlled phase flip

gate on the atoms can be realized. The photon pulse remains unentangled with the

atoms after the scattering and can be detected at a single-photon detector. By intro-

ducing the single photon detector, the photon loss errors, which can be significant in

cavity QED experiments, will be automatically detected once happening. If the pho-

ton does register a click at the detector, we know that the gate operation is realized

with high fidelity. These specific features make the scheme robust against photon

loss errors as they only affect the success probability of the gate operation. Even

though the failure probability can be very close to unity, nonetheless, efficient fault

tolerant quantum computation is still possible. The basic scheme can also be readily

extended to realize robust multi-qubit atomic Toffoli gates on atoms localized in a

single cavity, as well as a nonlocal controlled phase flip gate on two atoms trapped

in remote cavities. With a mode discretization method, we numerically solved the

dynamics of the system and quantitatively evaluated the success probability and gate
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fidelity of our gate scheme. Our calculations reveal that the scheme could allow high

fidelity gate operations under typical experimental conditions.

We proposed a scheme to swap the quantum (polarization) states of optical pulse

sequences conditional on the atomic state of a single atom trapped in a two-sided

optical cavity. According to our scheme, when two sequences of single-photon pulses

are incident toward cavity mirrors on two opposite sides, conditioned on the atom

being in state |0〉 or |1〉 the pulses will be either directly reflected back or resonantly

tunnel through the cavity, thereby effectively realizing a controlled SWAP unitary

gate. We presented a theoretical model for the proposed system and analytically

solved it to evaluate the performance of our scheme. The effects of the pulse shape

distortion, the spontaneous emission of the trapped atom, and the random variation

of the atom-cavity coupling rate were studied with our analytical solution to the

dynamics of the system. We also presented two quantum circuits for the construction

of optical controlled phase flip gate from the CSWAP gate and certain single qubit

gate.

In the second part of this thesis, I presented our work on time evolving block

decimation (TEBD) numercial studies of a general Hubbard model (GHM) in one-

dimension. The ultracold atom experimental techniques have opened up possiblities

of mimicing condensed matter physics with AMO systems under well-controlled con-

figurations. Realization of various important model Hamiltonians, such as variations

of the Hubbard model, in condensed matter physics and exploration of new physics

with them are being actively pursued. Recently a general Hubbard model was pro-

posed to describe the physics of strongly interacting fermions in an anisotropic optical

lattice near a wide Feshbach resonance. To find out if anything new will be present

in this GHM, we have implemented an infinite lattice version of the TEBD algo-
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rithm and have tested its reliability extensively before applying it to the studies on

GHM. The TEBD algorithm is an extension to DMRG and can be used to efficiently

simulate dynamics as well as ground state properties of quantum lattice systems.

We studied ground state properties of the general Fermi-Hubbard model with

repulsive on-site interaction and equal population for spin-up and spin-down species

with our TEBD code. We have found that when hole-doped below half-filling the

GHM system with significant particle assisted tunneling rates exhibits coexistence of

quasi-long range superfluid and charge density wave orders, while close to half-filling

spin orders are dominant at quasi-long range. This feature is qualitatively different

from that of conventional Hubbard model, in which with repulsive on site interaction

the dominant quasi-long range orders are always given by spin orders regardless of

the filling fraction.

The general Hubbard model with attractive on-site interaction and unequal spin

population was also studied with the TEBD algorithm. We have found that the

particle assisted tunneling mechanisms in GHM could suppress the FFLO-type order

which is supported by the conventional Hubbard model. At the same time, the

particle assisted tunneling rates in GHM enhances the spin orders. Based on the

local density approximation, we have also estimated the effect of particle density

inhomogeneity on the system, which, for example, can be induced by the presence of

an overall harmonic trapping potential in experiments. Our results indicate that the

critical spin-polarization, below which one could find fully paired superfluid in the

wings toward the edge of the trap, could be very small even with pretty strong on-site

attractive interaction, as opposed to the prediction from the mean field calculation

based on the Gaudin model.

The level of physical implementation of quantum information processing at current
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stage is still far below the standard of large-scale fault-tolerant quantum comput-

ing, which is necessary for the execution of nontrivial tasks intractable with classical

computers. There is no doubt that theoretical and experimental pursuance of suit-

able QIP systems and schemes will go on for many years to come. As for classical

simulation of quantum many-body system, there are many interesting physics in one-

dimensional systems for one to study with the TEBD algorithm. Moreover, to access

more interesting and more abundant physics in two-dimensional systems, implemen-

tation and test of existing ideas for 2D simulation as well as design of new algorithms

are all good ways to go. In the following section, I will discuss some specific possible

future directions, which are derived from our work presented in this thesis.

9.2 Future Directions

9.2.1 Quantum Optical Implementation of Quantum Information Processing with
Cavity QED

Many theoretical proposals have been made along this direction. Nonetheless, for

most of them the experimental realizations have not been achieved yet. For example,

a controlled phase gate on two photonic qubits is of great importance, but until now

there is only one proof-of-principle demonstration with weak coherent optical pulses

achieved more than 10 years ago. Recently, a promising novel scheme for a photonic

controlled phase flip gate based on conditional photon scattering from an atom-

cavity system was proposed [56]. In this thesis, we have also presented a CSWAP

gate scheme with similar basic idea, from which in principle one can also construct

a photonic CPF gate. However, both schemes require multiple scattering of photon

pulses with cavity systems and coherent single-qubit operations on either trapped

atom or photon pulses in between, which could impose a lot of extra complexities for

experimental realization. Therefore a more direct design of photon-photon interac-
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tion in optical cavity QED system is still in order to relax the stringent requirements

on experimental techniques. Another possible direction would be theoretical propos-

als for simulating strongly correlated quantum many-body physics by engineering

effective interactions between atoms or photons with arrays of cavities. If model

Hamiltonians which can exhibit topological orders could be devised, one could even

further pursue possibilities of topological quantum computation with cavity QED

systems.

9.2.2 Efficient Classical Simulation of Quantum Many-body Physics

We have implemented a TEBD algorithm, which works efficiently in a reliable

manner. However in this thesis we have only explored the ground state physics of

the general Hubbard model in very limited parameter regimes. Therefore, the most

direct further study along this direction would be applying the TEBD code (possi-

bly together with other methods) to obtain the complete phase diagram for the 1D

general Hubbard model as given by Eqs (7.1) and (8.1) [160, 161]. Furthermore, the

TEBD algorithm is a powerful tool for simulation of quantum dynamics of lattice

systems. For example, one could directly apply the algorithm to simulate the time

evolution of interesting states of matter such as the FFLO state, etc in optical lat-

tice systems. Finally, people are also very interested in strongly interacting quantum

many-body systems with disorders. For example, in bosonic systems, disorders could

lead to interesting glassy states of matter, while for fermionic systems, the Anderson

localization due to disorder is of great interests. Fortunately, with some straightfor-

ward extension, the TEBD algorithm can be applied to study the effect of disorders

on such systems in one-dimension.

With experiences in TEBD numerical simulations, one may further pursue imple-

mentations of more complicated two-dimensional algorithms proposed recently from
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the perspectives of quantum information theory. The implementation of these al-

gorithms could test the validity of their basic ideas and deepen our understanding

on classifications of quantum entanglement, as well as allow important studies on

certain interesting 2D physical systems. A long term goal along this direction would

be to develop efficient classical algorithms which enable us to fully understand the

physics of the 2D Hubbard model as well as the physics of fractional quantum Hall

systems.
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