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ABSTRACT: We present a randomized approximation algorithm for counting contingency tables,
m × n non-negative integer matrices with given row sums R = (r1, . . . , rm) and column sums C =
(c1, . . . , cn). We define smooth margins (R, C) in terms of the typical table and prove that for such
margins the algorithm has quasi-polynomial NO(ln N) complexity, where N = r1 + · · · + rm = c1 +
· · · + cn. Various classes of margins are smooth, e.g., when m = O(n), n = O(m) and the ratios
between the largest and the smallest row sums as well as between the largest and the smallest column
sums are strictly smaller than the golden ratio (1 + √

5)/2 ≈ 1.618. The algorithm builds on Monte
Carlo integration and sampling algorithms for log-concave densities, the matrix scaling algorithm,
the permanent approximation algorithm, and an integral representation for the number of contingency
tables. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 37, 25–66, 2010
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1. INTRODUCTION

Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer vectors such that

m∑
i=1

ri =
n∑

j=1

cj = N .
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A contingency table with margins (R, C) is an m × n non-negative integer matrix D = (dij)

with row sums R and column sums C:

n∑
j=1

dij = ri for i = 1, . . . , m

m∑
i=1

dij = cj for j = 1, . . . , n.

Let #(R, C) denote the number of these contingency tables.
There is interest in the study of #(R, C), due to connections to statistics, combinatorics and

representation theory, see, e.g., [3,13,14,16–19,25,36] and the references therein. However,
since enumerating #(R, C) is a #P-complete problem even for m = 2 [19], one does not
expect to find polynomial-time algorithms (nor formulas) computing #(R, C) exactly. As a
result, attention has turned to the open problem of efficiently estimating #(R, C).

We present a randomized algorithm for approximating #(R, C) within a prescribed
relative error. Based on earlier numerical studies [8, 41], we conjecture that its complex-
ity is polynomial in N . We provide further evidence for this hypothesis: we introduce
“smooth margins” (R, C) where the entries of the typical table are not too large, and among
{r1, . . . , rm, c1, . . . , cn} there are no “outliers.” Our main result is that smoothness implies a
quasi-polynomial NO(log N) complexity bound on the algorithm. More precisely, we approx-
imate #(R, C) within relative error ε > 0 using (1/ε)O(1)NO(ln N) time in the unit cost model,
provided ε � 2−m + 2−n.1

The class of smooth margins captures a number of interesting subclasses. In particular,
this work applies to the case of magic squares (where m = n and ri = cj = t for all i, j),
extending [8]. More generally, smoothness includes the case when the ratios m/n and n/m
are bounded by a constant fixed in advance while the ratios between the largest and the
smallest row sums as well as between the largest and the smallest column sums are smaller
than the golden ratio (1 + √

5)/2 ≈ 1.618. These and others examples are explicated in
Section 3. See Section 1.3 for comparisons to the literature.

1.1. An Outline of the Algorithm

Our algorithm builds on the technique of rapidly mixing Markov chains and, in particular, on
efficient integration and sampling from log-concave densities, as developed in [2,23,24,33]
(see also [40] for a survey), the permanent approximation algorithm [29], the strongly
polynomial time algorithm for matrix scaling [32], and the integral representation of #(R, C)

from [6].
Let � = �m×n ⊂ R

mn be the open (mn − 1)-dimensional simplex of all m × n positive
matrices X = (xij) such that

∑
ij

xij = 1.

1If an exponentially small relative error ε = O(2−m + 2−n) is desired, one has an exact dynamic programming
algorithm with NO(m+n) = (1/ε)O(ln N) quasi-polynomial complexity.
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Let dX be Lebesgue measure on � normalized to the probability measure. An integral
representation for #(R, C) was found in [6]:

#(R, C) =
∫

�

f (X)dX, (1)

where f : � −→ R+ is a certain continuous function that factors as

f = pφ, (2)

where

p(X) ≥ 1 for all X ∈ �

is a function that “does not vary much”, and φ : � −→ R+ is continuous and log-concave,
that is,

φ(αX + βY) ≥ φα(X)φβ(Y) for all X, Y ∈ � and

for all α, β ≥ 0 such that α + β = 1.

Full details about f and its factorization are reviewed in Section 2.
For any X ∈ �, the values of p(X) and φ(X) are computable in time polynomial in N .

Given ε > 0, the value of p(X) can be computed, within relative error ε in time polynomial
in 1/ε and N , by a randomized algorithm of [29] (function p(X) is the permanent of a
certain non-negative N × N matrix B(X) parameterized by X ∈ �). The value of φ(X) can
be computed, within relative error ε in time polynomial in ln(1/ε) and N , by a deterministic
algorithm of [32].

The central idea of this article is to define smooth margins (R, C) so that matrices X ∈ �

with large values of p(X) do not contribute much to the integral (1). Our main results,
precisely stated in Section 3, are that for smooth margins, there is a threshold τ = N δ ln N

for some constant δ > 0 (depending on the class of margins considered) such that if we
define the truncation p̄ : � −→ R+ by

p̄(X) =
{

p(X) if p(X) ≤ τ

τ if p(X) > τ

then

#(R, C) =
∫

�

p(X)φ(X) dX ≈
∫

�

p̄(X)φ(X) dX (3)

where “≈” means “approximates to within an O(2−n + 2−m) relative error” (in fact, rather
than base 2, any constant M > 1, fixed in advance, can be used). We conjecture that one
can choose the threshold τ = NO(1), which would make the complexity of our algorithm
polynomial in N .

The first step (and a simplified version) of our algorithm computes the integral∫
�

φ(X) dX (4)

using any of the aformentioned randomized polynomial time algorithms for integrating
log-concave densities; these results imply that this step has polynomial in N complexity. By
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(3) it follows that for smooth (R, C) the integral (4) approximates #(R, C) within a factor
of NO(ln N). This simplified algorithm is suggested in [6]; an implementation that utilizes a
version of the hit-and-run algorithm of [33], together with numerical results is described in
[41] and [8].

Next, our algorithm estimates (3) within relative error ε using the aformentioned random-
ized polynomial time algorithm for approximating the permanent of a matrix, and any of
those for sampling from log-concave densities. Specifically, let ν be the probability measure
on � with the density proportional to φ. Thus,∫

�

p̄(X)φ(X) dX =
(∫

�

p̄ dν

) (∫
�

φ(X) dX

)
.

The second factor is computed by the above first step, while the first factor is approximated
by the sample mean

∫
�

p̄ dν ≈ 1

k

k∑
i=1

p̄(Xi), (5)

where X1, . . . , Xk ∈ � are independent points sampled at random from measure ν. Since
1 ≤ p̄(X) ≤ τ , the Chebyshev inequality implies that to achieve relative error ε with
probability 2/3 it suffices to sample k = O(ε−2τ 2) = ε−2NO(ln N) points in (5).

The results of [2,23,24,33] imply that for any given ε > 0 one can sample independent
points X1, . . . , Xk from a distribution ν̃ on � such that

|ν̃(S) − ν(S)| ≤ ε for any Borel set S ⊂ �

in time linear in k and polynomial in ε−1 and N . Replacing ν by ν̃ in (5) introduces an
additional relative error of ετ = εN δ ln N , handled by choosing a smaller ε = O(N−δ ln N).

1.2. An Optimization Problem, Typical Tables, and Smooth Margins

We will define smoothness of margins in terms of a certain convex optimization problem.
Let P = P(R, C) be the transportation polytope of m×n non-negative matrices X = (xij)

with row sums R and column sums C. On the space R
mn
+ of m × n non-negative matrices

define

g(X) =
∑

ij

((xij + 1) ln(xij + 1) − xij ln xij) for X = (xij).

The following optimization problem plays an important role in this paper:

Maximize g(X) subject to X ∈ P . (6)

It is easy to check that g is strictly concave and hence attains its maximum on P at a
unique matrix X∗ = (x∗

ij), X∗ ∈ P that we call the typical table.
An intuitive explanation for the appearance of this optimization problem, and justifica-

tion for the nomenclature “typical” derives from work of [7] (relevant parts are replicated
for convenience, in Section 4, see specifically Theorem 4.1). In short, X∗ determines the
asymptotic behavior of #(R, C).

Random Structures and Algorithms DOI 10.1002/rsa
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The main requirement that we demand of smooth margins (R, C) to satisfy (see Section
3 for unsuppressed technicalities) is that the entries of the typical table are not too large,
that is, entries x∗

ij of the optimal solution X∗ = (x∗
ij) satisfy

max
ij

x∗
ij = O(s) where s = N

mn

is the average entry of the table.
As viewing the typical table is interesting in its own right, one would like to understand

how the typical table changes as the margins vary. The optimization problem being con-
vex, X∗ can be computed efficiently by many existing algorithms, see, for example, [37].
However, in many instances of interest, the smoothness condition can be checked without
actually needing to solve this problem. For example, if all the row sums ri are equal, the
symmetry of the functional g under permutations of rows implies that

x∗
ij = cj

m
for all i, j.

In general, the entries x∗
ij stay small if the row sums ri and column sums cj do not vary much.

On the other hand, it is not hard to construct examples of margins (R, C) for n-vectors R and
C such that n ≤ ri, cj ≤ 3n and some of the entries x∗

ij are large, in fact linear in n. Another
one of our results (Theorem 3.3) gives upper and lower bounds for x∗

ij in terms of (R, C).

1.3. Comparisons with the Literature

Using the Markov Chain Monte Carlo approach, Dyer, Kannan, and Mount [19] count
contingency tables when R and C are sufficiently large, that is, if ri = 	(n2m) and cj =
	(m2n) for all i, j. Their randomized (sampling) algorithm approximates #(R, C) within
any given relative error ε > 0 in time polynomial in ε−1, n, m, and

∑
i log ri + ∑

j log cj

(the bit size of the margins). Subsequently, Morris [36] obtained a similar result for the
bounds ri = 	(n3/2m ln m) and cj = 	(m3/2n ln n). These results are based on fact that
for large margins, the number of contingency tables is well-approximated by the volume
of the transportation polytope P(R, C) (contingency tables being the integer points in this
polytope). More generally, Kannan and Vempala [31] show that estimating the number
integer points in a d-dimensional polytope with m facets reduces to computing the volume
of the polytope (a problem, for which efficient randomized algorithms exist, see [40] for a
survey) provided the polytope contains a ball of radius d

√
log m.

When the margins ri, cj are very small, that is, bounded by a constant fixed in advance)
relative to the sizes m and n of the matrix, Békéssy, Békéssy, and Komlós [9] obtain an
efficient and precise asymptotic formula for #(R, C). Their formula exploits the fact in
this case, the majority of contingency tables have only entries 0, 1, and 2. Alternatively,
in this case one can exactly compute #(R, C) in time polynomial in m + n via a dynamic
programming algorithm. More recently, Greenhill and McKay [26] gave a computationally
efficient asymptotic formula for a wider class of sparse margins (when ricj = o(N2/3)).

Also using the dynamic programming approach, Cryan and Dyer [14] construct a
randomized polynomial time approximation algorithm to compute #(R, C), provided the
number of rows is fixed; see [15] for sharpening of the results.

It seems that the most resilient case of computing #(R, C) is where both m and n grow,
and the margins are of moderate size, e.g., linear in the dimension. Recently, Canfield and
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McKay [12] found a precise asymptotic formula for #(R, C) assuming that all row sums
are equal and all column sums are equal. However, for general margins no such formula
is known, even conjecturally. Added in proofs: an asymptotic formula for certain smooth
classes of margins is found in A. Barvinok and J.A. Hartigan, An asymptotic formula for
the number of non-negative integer matrices with prescribed row and column sums, preprint
arXiv:0910.2477 (2009).

We remark that our notion of smooth margins includes all of the above regimes, except
for that of large margins.

Summarizing, although our complexity bounds do not improve on the algorithms in the
above cases, our algorithm is provably computationally efficient (quasi-polynomial in N)
for several new classes of margins, which include cases of growing dimensions m and n
and moderate size margins R and C.

2. THE INTEGRAL REPRESENTATION FOR THE NUMBER OF
CONTINGENCY TABLES

We now give details of the integral representation (1). To do this, we express #(R, C) as the
expectation of the permanent of a random N × N matrix. Recall that the permanent of an
N × N matrix A is defined by

per A =
∑
σ∈SN

N∏
i=1

aiσ(i),

where SN is the symmetric group of the permutations of the set {1, . . . , N}.
It turns out that the permanent of a particularly structured matrix is closely related to the

enumeration of contingency tables. The following result was proved in [6], see Theorem
1.1 there.

Theorem 2.1. For an m × n matrix X = (xij), let A(X) be the N × N block matrix A(X)

whose (i, j)-th block is the ri ×cj submatrix filled with xij, for i = 1, . . . , m and j = 1, . . . , n.
Then

per A(X)

r1! · · · rm!c1! · · · cn! =
∑

D=(dij)

∏
ij

x
dij
ij

dij! , (7)

where the sum is over all non-negative integer matrices D = (dij) with row sums R and
column sums C.

Let R
mn
+ be the open orthant of positive m × n matrices X. Then

#(R, C) = 1

r1! · · · rm!c1! · · · cn!
∫

R
mn+

per A(X) exp

{
−

∑
ij

xij

}
dX, (8)

where dX is the Lebesgue measure on R
mn
+ .

In the case that ri = a and cj = b for all i, j, the expansion (7) was first observed by
Bang and then used by Friedland [22] in his proof of a weaker form of the van der Waerden
conjecture; see Section 7.1 and references there. As an anonymous referee pointed out to
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us, a similar in spirit to (7) formula was observed by Bender (formula (3) in [10]) and other
similar combinatorial identities have been used since then. The gist of Theorem 2.1 is the
integral representation (8) which allows us to represent a discrete quantity (the number of
integer matrices) as an integral of a positive continuous function which turns out to possess
certain desirable analytical and computational properties.

Since the function X 
−→ per A(X) is a homogeneous polynomial of degree N , one can
express #(R, C) as an integral over the simplex. The following corollary was also obtained
in [6].

Corollary 2.2. Let � = �m×n ⊂ R
mn be the open simplex of positive m × n matrices

X = (xij) such that
∑

ij xij = 1. Then

#(R, C) = (N + mn − 1)!
(mn − 1)!

1

r1! . . . rm!c1! · · · cn!
∫

�m×n

per A(X) dX,

where dX is the Lebesgue measure on �m×n normalized to the probability measure.

Hence in the integral representation (1), we define the function f by

f (X) = (N + mn − 1)!
(mn − 1)!

1

r1! . . . rm!c1! · · · cn!per A(X)

= (N + mn − 1)!
(mn − 1)!

∑
D=(dij)

∏
ij

x
dij
ij

dij! ,

where A(X) is the block matrix of Theorem 2.1 and the sum is over all contingency tables
D with margins (R, C).

2.1. Matrix Scaling and the Factorization of f

To obtain the factorization (2), where φ : � −→ R+ is a log-concave function and p :
� −→ R+ is a function which “does not vary much”, we employ the idea of matrix
scaling, see [30,35,38], Chapter 6 of [4], and [32]: Let X = (xij) be a positive m×n matrix.
Then there exists a unique m × n matrix Y with the row sums R = (r1, . . . , rm), column
sums C = (c1, . . . , cn), and such that

xij = yijλiµj for all i, j

and some positive λ1, . . . , λm, µ1, . . . , µn. The numbers λi and µj are unique up to a rescaling
λi 
−→ λiτ , µj 
−→ µjτ

−1. Note that if we divide the entries in the (i, j)-th block of the
matrix A(X) of Theorem 2.1 by ricjλiµj, we obtain a positive doubly stochastic matrix B(X),
that is, a positive matrix with all row and column sums equal to 1. Thus we have

per A(X) =
(

m∏
i=1

(λiri)
ri

) (
n∏

j=1

(µjcj)
cj

)
per B(X).

It is proved in [6] that

N !
NN

≤ per B(X) ≤ min

{
m∏

i=1

ri!
rri

i

,
n∏

j=1

cj!
c

cj
j

}
.

Random Structures and Algorithms DOI 10.1002/rsa
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The lower bound is the van der Waerden bound for permanents of doubly stochastic matrices,
see [21], [20] and also Chapter 12 of [34] and recent [28], while the upper bound is a corollary
of the Minc conjecture proved by Bregman, see [11], Chapter 11 of [34], and also [39].

Now we define

p(X) = NN

N ! per B(X) (9)

and

φ(X) = (N + mn − 1)!N !
(mn − 1)!NN

(
m∏

i=1

rri
i

ri!

) (
n∏

j=1

c
cj
j

cj!

) (
m∏

i=1

λ
ri
i

) (
n∏

j=1

µ
cj
j

)
.

We summarize results of [6] regarding p and φ.

Theorem 2.3. The following hold:

1. φ is log-concave, that is,

φ(αX + βY) ≥ φα(X)φβ(Y)

for all X , Y ∈ � and α, β ≥ 0 such that α + β = 1;
2. Let X, Y ∈ � be positive m×n matrices, X = (xij) and Y = (yij), such that xij, yij ≥ δ

for all i, j and some δ > 0. Then

| ln φ(X) − ln φ(Y)| ≤ N

δ
max

ij
|xij − yij|;

3. For δ < 1/mn let us define the δ-interior �δ of the simplex � as the set of matrices
X ∈ �, X = (xij), such that xij ≥ δ for all i, j. Then for f = pφ we have

(1 − mnδ)N+mn−1

∫
�

f dX ≤
∫

�δ

f dX ≤
∫

�

f dX;

4. We have

1 ≤ p(X) ≤ NN

N ! min

{
m∏

i=1

ri!
rri

i

,
n∏

j=1

cj!
c

cj
j

}
.

The log-concavity of function φ was first observed in [27]. In terms of [27], up to a
normalization factor, φ(X) is the capacity of the matrix A(X) of Theorem 2.1, see also
[5] for a more general family of inequalities satisfied by φ. As is discussed in [6], the
matrix scaling algorithm of [32] leads to a polynomial time algorithm for computing φ(X).
Namely, for any given ε > 0 the value of φ(X) can be computed within relative error of ε

in time polynomial in N and ln(1/ε) in the unit cost model; our own experience is that this
algorithm for computing φ(X) is practical, and works well for m, n ≤ 100.

Theorems 2.3 and 2.1 allow us to apply algorithms of [2,23,24,33] on efficient integration
and sampling of log-concave functions. First, for any given ε > 1, one can compute the
integral ∫

�

φ dX
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within relative error ε in time polynomial in ε−1 and N by a randomized algorithm. Second,
one can sample points X1, . . . , Xk ∈ � independently from a measure ν̃ such that

|ν(S) − ν̃(S)| ≤ ε for any Borel set S ⊂ �,

where ν is the measure with the density proportional to φ, in time polynomial in k, ε−1

and N .
The integration of p(X) raises a greater challenge. For any given ε > 0 one can compute

p(X) itself within relative error ε in time polynomial in ε−1 and N , using the permanent
approximation algorithm of [29]. However, the upper bound of Part (4) of Theorem 2.3 is,
in the worst case, of order Nγ (m+n) for some absolute constant γ > 0. Therefore, a priori, to
integrate p over � using a sample mean, one needs too many such computations to guarantee
the desired accuracy of ε. Our main observation to overcome this problem is that in many
interesting cases the matrices X ∈ � with large values of p(X) do not contribute much to
the integral (1), so we have p(X) = NO(ln N) with high probability with respect to the density
on � proportional to f .

2.2. Bounding p with High Probability

To bound probabilities of various events in the simplex � with respect to the density
proportional to f , it is convenient to extend p from simplex � to the non-negative orthant
R

mn
+ and estimate probabilities of events in the orthant. Our main idea is to show that with

respect to the probability density ψ = ψR,C on R
mn
+ that is proportional to the integrand

per A(X) exp
{
− ∑

ij xij

}
in (8), the overwhelming majority of matrices X ∈ R

mn
+ are such

that the permanent of the doubly stochastic scaling B(X) of A(X) is close to its lower bound
N !/NN .

More formally, we consider the projection which scales every positive matrix to the total
sum 1 of all entries:

pr : R
mn
+ −→ �m×n, pr(X) = X̃, where

X̃ = αX for α =
(∑

ij

xij

)−1

.

Since projection pr just multiplies a matrix by a number, the scalings of X and X̃ to the
matrix with the row sums R and column sums C coincide. Also, the doubly stochastic
scalings B(X) and B(X̃), of matrices A(X) and A(X̃), respectively, coincide. We define p(X)

for an arbitrary positive m × n matrix X by p(X) := p(X̃), or, equivalently, by (9).
Theorem 2.1 gives us the following formula for the probability density ψ = ψR,C on R

mn
+

proportional to the integrand in (8):

ψ(X) = 1

#(R, C)

∑
D=(dij)

∏
ij

x
dij
ij

dij! e−xij , where

X = (xij) and xij > 0 for all i, j,

and the sum is over all m × n non-negative integer matrices D with the row sums R and
column sums C. We define ψ(X) = 0 if X is not a positive matrix.
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Our goal is to show that for smooth margins (R, C), the value of p(X) is “reasonably
small” for most X , that is,

P
{
X ∈ R

mn
+ : p(X) > N δ ln N

}
< κ(2−m + 2−n) (10)

for some constants δ > 0 and κ > 0, where the probability is measured with respect to the
density ψ . Then the projection pr makes sure that the value of p(X) is “reasonably small”
for most X ∈ � with respect to the density on the simplex � proportional to f .

Our construction of function f in (1) implies that the push-forward of ψ under the
projection pr : R

mn
+ −→ � is the density

1

#(R, C)
f (X) for X ∈ �

on the simplex. Hence inequality (10) implies that for τ = N δ ln N we have

1

#(R, C)

∫
X∈�

p(X)>τ

f (X) dX < κ(2−m + 2−n).

Therefore, as discussed in Section 1.1, replacing p by its truncation p̄ introduces an O(2−n +
2−m) relative error in (3) and hence our algorithm achieves quasi-polynomial complexity.

The key idea behind inequality (10) is that the permanent of an appropriately defined
“random” doubly stochastic matrix is very close with high probability to the van der Waerden
lower bound N !/NN ; see Lemma 5.1.

3. MAIN RESULTS

Now we are ready to precisely define the classes of smooth margins for which our algorithm
achieves NO(ln N) complexity.

3.1. Smoothness Definitions

Fix margins R = (r1, . . . , rm), C = (c1, . . . , cn), where

m∑
i=1

ri =
n∑

j=1

cj = N .

Let

s = N

mn

be the average value of the entries of the table. We define

r+ = max
i=1,...,m

ri, r− = min
i=1,...,m

ri

c+ = max
j=1,...,n

cj, c− = min
j=1,...,n

cj.

Random Structures and Algorithms DOI 10.1002/rsa



APPROXIMATION ALGORITHM FOR CONTINGENCY TABLES 35

Hence r+ and c+ are the largest row and column sums, respectively, and r− and c− are
the smallest row and column sums, respectively.

For s0 > 0, call the margins (R, C) s0-moderate if s ≤ s0. In other words, margins are
moderate if the average entry of the table is bounded from above.

For α ≥ 1, the margins (R, C) are upper α-smooth if

r+ ≤ αsn = α
N

m
and c+ ≤ αsm = α

N

n
.

Thus, margins are upper smooth if the row and column sums are at most proportional to the
average row and column sums, respectively.

For 0 < β ≤ 1, the margins (R, C) are lower β-smooth if

r− ≥ βsn = β
N

m
and c− ≥ βsm = β

N

n
.

Therefore, margins are lower smooth if the row and column sums are at least proportional
to the average row and column sums, respectively.

The key smoothness condition is as follows: for α ≥ 1 we define margins (R, C) to be
strongly upper α-smooth if for the typical table X∗ = (x∗

ij) we have

x∗
ij ≤ αs = α

N

mn
for all i, j.

Note that this latter condition implies that the margins are upper α-smooth. (Also, we do
not need a notion of strongly lower β smooth.)

Our main results are randomized approximation algorithms of quasi-
polynomial NO(ln N) complexity when the margins (R, C) are smooth for either:

• s0-moderate strongly upper α-smooth, for some fixed s0 and α; or
• lower β and strongly upper α-smooth, for some fixed α and β.

By the discussion of Section 2.2, the quasi-polynomial complexity claim about our
algorithm follows from bounding on p(X) with high probability. Specifically, we have the
following two results. Their proofs are argued similarly, but the second is more technically
involved.

Theorem 3.1. Fix s0 > 0 and α ≥ 1. Suppose that m ≤ 2n, n ≤ 2m and let (R, C) be
s0-moderate strongly upper α-smooth margins. Let X = (xij) be a random m × n matrix
with density ψ of Section 2.2 , and let p : R

mn
+ −→ R+ be the function defined in Section

2.1. Then for some constant δ = δ(α, s0) > 0 and some absolute constant κ > 0, we have

P {X : p(X) > N δ ln N} ≤ κ(2−m + 2−n).

Therefore, the algorithm of Section 1.1 achieves NO(ln N) complexity on these classes of
margins. More precisely, for any ε > 2κ(2−m + 2−n) the algorithm computes the number
#(R, C) of tables within relative error ε in (1/ε)O(1)NO(ln N) time.

Theorem 3.2. Fix α ≥ 1, 0 < β ≤ 1, and ρ ≥ 1. Suppose that m ≤ ρn, n ≤ ρm and let
(R, C) be lower β and strongly upper α-smooth margins. Let X = (xij) be a random m × n
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matrix with density ψ of Section 2.2 and let p : R
mn
+ −→ R+ be the function defined in

Section 2.1. Then for some constant δ = δ(ρ, α, β) > 0 and some absolute constant κ > 0,
we have

P {X : p(X) > N δ ln N} ≤ κ(2−m + 2−n).

Therefore, the algorithm of Section 1.1 achieves NO(ln N) complexity on these classes of
margins. More precisely, for any ε > 2κ(2−m + 2−n) the algorithm computes the number
#(R, C) of tables within relative error ε in (1/ε)O(1)NO(ln N) time.

We remark that in Theorem 3.1 and Theorem 3.2 above, we can replace base 2 by any
base M > 1, fixed in advance.

3.2. Example: Symmetric Margins

While conditions for r+, c+, r−, and c− are straightforward to verify, to check the upper
bounds for x∗

ij one may have to solve the optimization problem (6) first. There are, how-
ever, some interesting cases where an upper bound on x∗

ij can be inferred from symmetry
considerations.

Note that if two row sums ri1 and ri2 are equal then the transportation polytope P(R, C)

is invariant under the transformation which swaps the i1-st and i2-nd rows of a matrix
X ∈ P(R, C). Since the function g in the optimization problem (6) also remains invariant if
the rows are swapped and is strictly concave, we must have x∗

i1j = x∗
i2j for all j. Similarly, if

cj1 = cj2 we must have x∗
ij1

= x∗
ij2

for all i. In particular, if all row sums are equal, we must
have x∗

ij = cj/m. Similarly, if all column sums are equal, we must have x∗
ij = ri/n.

More generally, one can show (see the proof of Theorem 3.3 in Section 6) that the largest
entry x∗

ij of X∗ necessarily lies at the intersection of the row with the largest row sum r+ and
the column with the largest column sum c+. Therefore, if k of the row sums ri are equal to
r+ we must have x∗

ij ≤ c+/k. Similarly, if k of the column sums are equal to c+, we must
have x∗

ij ≤ r+/k.
Here are some examples of classes margins where our algorithm probably achieves an

NO(ln N) complexity.

• The class of margins for which at least a constant fraction of the row sums ri are equal
to r+:

#{i : ri = r+} = 	(m)

while m, n, the row, and the column sums differ by a factor, fixed in advance: m/n =
O(1), n/m = O(1), r+/r− = O(1), c+/c− = O(1). Indeed, in this case we have

max
ij

x∗
ij = O(c+/m) = O(N/mn)

and quasi-polynomiality follows by Theorem 3.2.
• The class of margins for which at least a constant fraction of the row sums ri are equal

to r+, while the column sums exceed the number of rows by at most a factor, fixed in
advance, c+ = O(m), and m and n are not too disparate: m ≤ 2n and n ≤ 2m. Indeed,
in this case

max
ij

x∗
ij = O(c+/m) = O(1)
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and quasi-polynomiality follows by Theorem 3.1.
• The classes of margins defined as above, but with rows and columns swapped.

For a different source of examples, we prove that if both ratios r+/r− and c+/c− are not
too large, the margins are strongly upper smooth. To do this, we use the following general
result about the typical table X∗, to be proved in Section 6:

Theorem 3.3. Let X∗ = (x∗
ij) be the typical table.

1. We have

x∗
ij ≥ r−c−

r+m
and x∗

ij ≥ c−r−
c+n

for all i, j.

2. If r−c+ + r−c− + mr− > r+c+ then

x∗
ij ≤ c+(r−c− + mr+)

m(r−c+ + r−c− + mr− − r+c+)
for all i, j.

Similarly, if c−r+ + c−r− + nc− > r+c+ then

x∗
ij ≤ r+(c−r− + nc+)

n(c−r+ + c−r− + nc− − c+r+)
for all i, j.

3.3. Example: Golden Ratio Margins

Fix

1 ≤ β <
1 + √

5

2
≈ 1.618

and a number ρ ≥ 1. Consider the class of margins (R, C) such that m ≤ ρn, n ≤ ρm, and

r+/r−, c+/c− ≤ β.

We claim that our algorithm has an NO(ln N) complexity on this class of margins.
To see this, let

β1 = r+/r− and β2 = c+/c−.

If β1 ≤ β2 then

r−c+ + r−c− − r+c+ = (1 + β2 − β1β2)r−c− ≥ (1 + β2 − β2
2 )r−c− ≥ εr−c−

for some ε = ε(β) > 0 and hence by Part (2) of Theorem 3.3 we have

x∗
ij ≤ c+

m

(
1

ε
+ β

)
.

Similarly, if β2 ≤ β1 then

c−r+ + c−r−c+r+ = (1 + β1 − β1β2)r−c− ≥ (1 + β1 − β2
1 )r−c− ≥ εr−c−
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for some ε = ε(β) > 0 and hence

x∗
ij ≤ r+

n

(
1

ε
+ β

)
.

In either case, (R, C) are strongly upper α-smooth for some α = α(β) and Theo-
rem 3.2 implies that our algorithm has a quasi-polynomial complexity on such margins.
More generally, the algorithm is quasi-polynomial on the class of margins for which
β1 = r+/r− and β2 = c+/c− are bounded above by a constant fixed in advance and
β1β2 ≤ max{β1, β2} + 1 − ε where ε > 0 is fixed in advance.

3.4. Example: Linear Margins

Fix β ≥ 1 and ε > 0 such that εβ < 1 and consider the class of margins (R, C) for which

r+/r− ≤ β and c+ ≤ εm.

Part (2) of Theorem 3.3 implies that the margins (R, C) are strongly upper α-smooth for
some α = α(β, ε) and therefore quasi-polynomiality of the algorithm is guaranteed by
Theorem 3.1.

The remainder of this paper is devoted to the proofs of Theorems 3.1, 3.2, and 3.3. While
the proof of Theorem 3.3 is relatively straightforward, our proofs of Theorem 3.1 and
especially Theorem 3.2 require some preparation. A general plan of the proofs of Theorems
3.1 and 3.2 is given in Section 5.

4. ASYMPTOTIC ESTIMATES

The following result is proved in [7] (see Theorem 1.1 and Lemma 1.4 there) and provides an
asymptotic estimate for the number #(R, C) of contingency tables. It explains the role played
by the optimization problem (6). It also introduces ingredients needed in the statement and
proof of Theorem 5.3 given below.

Theorem 4.1. Let P(R, C) be the transportation polytope of non-negative matrices with
row sums R and column sums C and let X∗ = (x∗

ij) be the typical table, that is, the matrix
X∗ ∈ P(R, C) maximizing

g(X) =
∑

ij

((xij + 1) ln(xij + 1) − xij ln xij)

on P(R, C). Let

ρ(R, C) = exp{g(X∗)} = max
X=(xij)

X∈P(R,C)

∏
ij

(xij + 1)xij+1

x
xij
ij

.

Then

ρ(R, C) ≥ #(R, C) ≥ N−γ (m+n)ρ(R, C),

where γ > 0 is an absolute constant.
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Another representation of ρ(R, C) is

ρ(R, C) = min
0<x1,...,xm<1
0<y1,...,yn<1

(
m∏

i=1

x−ri
i

) (
n∏

j=1

y
−cj
j

) (∏
ij

1

1 − xiyj

)
.

A point x1, . . . , xm; y1, . . . , yn minimizing the above product exists and is unique up to scaling
xi 
−→ xiτ , yj 
−→ yjτ

−1. It is related to X∗ by

x∗
ij = xiyj

1 − xiyj
for all i, j.

We need the notion of the weighted enumeration of tables, as introduced in [6] and [5].

4.1. Weighted Enumeration of Tables

Fix margins R and C and a non-negative m × n matrix W . Define

T(R, C; W) =
∑

D=(dij)

∏
ij

w
dij
ij ,

where the sum is taken over all m × n non-negative integer matrices D with the row sums
R and column sums C and we agree that w0

ij = 1. Therefore,

#(R, C) = T(R, C; 1),

where 1 is the matrix of all 1’s.
The estimates of Theorem 4.1 extend to weighted enumeration. We state only the part

we are going to use. The following result is proved in [7] (see Theorem 1.3 there).

Theorem 4.2. Let

ρ(R, C; W) = inf

(
m∏

i=1

x−ri
i

) (
n∏

j=1

y
−cj
j

) (∏
ij

1

1 − wijxiyj

)
,

where the infimum is taken over all x1, . . . , xm > 0 and y1, . . . , yn > 0 such that wijxiyj < 1
for all i and j. Then

ρ(R, C; W) ≥ T(R, C; W) ≥ N−γ (m+n)ρ(R, C; W),

where γ > 0 is an absolute constant.

In fact, we will only use the upper bound of Theorem 4.2, which is actually straight-
forward to prove since

∏
ij(1 − wijxiyj)

−1 is the generating function for the family
T(R, C; W).
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5. THE PLAN OF THE PROOFS OF THEOREMS 3.1 AND 3.2

To prove Theorems 3.1 and 3.2 we need to understand the behavior of the function

p(X) = NN

N ! per B(X),

that is, to estimate values of permanents of doubly stochastic matrices. The following
straightforward corollary of results of [11,20,21,39] shows that the permanent of an N ×N
doubly stochastic matrix lies close to N !/NN provided the entries of the matrix are not too
large. We recall the definition of the Gamma function

�(t) =
∫ +∞

0
xt−1e−x dx for t > 0.

Lemma 5.1. Let B = (bij) be an N × N doubly stochastic matrix and let

zi = max
j=1,...,N

bij for i = 1, . . . , N .

Suppose that

N∑
i=1

zi ≤ τ for some τ ≥ 1.

Then

N !
NN

≤ per B ≤
( τ

N

)N

(�(1 + τ−1N))τ

≤ N !
NN

(2πN)τ/2eτ2/12N .

We delay the proof of Lemma 5.1 until Section 7.
We will apply Lemma 5.1 when τ = O(ln N), in which case the ratio between the upper

and lower bounds becomes NO(ln N). In addition, we apply the lemma to the matrix B(X),
the doubly stochastic scaling of the random matrix A(X) constructed in Theorem 2.1, see
also Section 2.1. However, to use this lemma, we need to bound the entries of B(X). To do
that, we will need to be able to bound the entries of the matrix Y obtained from scaling X to
have row sums R and column sums C. To this end, we prove the following result in Section
8, which might be of independent interest.

Theorem 5.2. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive vectors such that

m∑
i=1

ri =
n∑

j=1

cj = N .

Let X = (xij) be an m × n positive matrix and let Y = (yij) be the scaling of X to have row
sums R and column sums C, where

yij = λiµjxij for all i, j

and some positive λ1, . . . , λm; µ1, . . . , µn.
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Then, for every 1 ≤ p ≤ m and 1 ≤ q ≤ n we have

ln ypq ≤ ln
rpcq

N
+ ln xpq + ln

(
1

N2

∑
ij

ricjxij

)
− 1

N

n∑
j=1

cj ln xpj − 1

N

m∑
i=1

ri ln xiq.

Now suppose that (R, C) are upper α-smooth margins, that is, ri/N ≤ α/m and cj/N ≤
α/n for some α ≥ 1, fixed in advance. To give an idea of the proofs of Theorems 3.1 and
3.2, suppose of the argument and the role of the hypotheses, suppose further that xij are
sampled independently at random from the uniform distribution on [0, 1]. Then Theorem
5.2 and the law of large numbers clearly imply that as m and n grow, with overwhelming
probability we have

yij ≤ κ
ricj

N
xij for all i, j

and some absolute constant κ > 1. If we construct the doubly stochastic matrix B(X) as in
Section 2.1, then with overwhelming probability for the entries bij we will have

bij ≤ κ

N
for all i, j.

However, in the situation of our proof, the matrix X = (xij) is actually sampled from the
distribution with density ψ of Section 2.2. Thus to perform a similar analysis, we need to
show that the entries of a random matrix X are uniformly small. For that, we have to assume
that the margins (R, C) are strongly upper α-smooth (in fact, one can show that merely
the condition of upper smoothness is not enough). Specifically, in Section 9, we prove the
following result:

Theorem 5.3. Let

S ⊂ {(i, j) : i = 1, . . . , m; j = 1, . . . , n}
be a set of indices, and let X = (xij) be a random m × n matrix with density ψ = ψR,C of
Section 2.2. Suppose that the typical table X∗ = (x∗

ij) satisfies

x∗
ij ≤ λ for all i, j

and some λ > 0.
Then for all t > 0 we have

P




∑
(i,j)∈S

xij ≥ t


 ≤ exp

{
− t

2λ + 2

}
4#SNγ (m+n),

where γ > 0 is the absolute constant of Theorem 4.1.

We will use Theorem 5.3 to establish that a random matrix X is very unlikely to have
many rows with large entries (Corollary 9.2). For that, we apply Theorem 5.3 to sets S
having exactly one entry in each row of X .

In Section 10 we complete the proof of Theorem 3.1. Theorem 3.2 requires some more
work and its proof is given in Section 12, after some technical estimates in Section 11.
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6. PROOF OF THEOREM 3.3

First, we observe that the typical table X∗ = (x∗
ij) is strictly positive, that is, it lies in the

interior of the transportation polytope P(R, C). Indeed, suppose that x∗
11 = 0, for example.

Choose indices p and q such that x∗
1q > 0 and x∗

p1 > 0. Then necessarily x∗
pq < rp, cq and we

can consider a perturbation X(ε) ∈ P(R, C) of X∗ defined for sufficiently small ε > 0 by

xij =




x∗
ij + ε if i = 1 and j = 1

x∗
ij − ε if i = p, j = 1 or i = 1, j = q

x∗
ij + ε if i = p and j = q

x∗
ij if i �= p and j �= q.

Since the value of

∂

∂xij
g(X) = ln

(
xij + 1

xij

)

is equal to +∞ at xij = 0 (we consider the right derivative in this case) and finite if xij > 0,
we conclude that for a sufficiently small ε > 0, the matrix X(ε) attains a larger value of
g(X), which is a contradiction. We conclude that all the entries of the typical table X∗ are
strictly positive.

Since X∗ lies in the interior of the transportation polytope P(R, C), the Lagrange
multiplier condition implies that

ln

(
x∗

ij + 1

x∗
ij

)
= λi + µj for all i, j (11)

and some λ1, . . . , λm and µ1, . . . , µn. It follows that if x∗
i1j ≥ x∗

i2j for some row indices i1, i2

and some column index j then λi1 ≤ λi2 and hence x∗
i1j ≥ x∗

i2j for the same row indices i1

and i2 and all column indices j.
We prove Part (1) first. Let us choose a row i0 with the largest row sum r+. Without loss

of generality, we assume that i0 = 1. Hence

x∗
1j ≥ x∗

ij for j = 1, . . . , n.

Therefore,

x∗
1j ≥ cj

m
≥ c−

m
for j = 1, . . . , n.

Let us compare the entries in the first row and in the i-th row. From (11) we have

ln

(
x∗

1j + 1

x∗
1j

)
− ln

(
x∗

ij + 1

x∗
ij

)
= λ1 − λi for j = 1, . . . , n. (12)

Since

n∑
j=1

x∗
1j = r+ and

n∑
j=1

x∗
ij ≥ r−,
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there exists j such that

x∗
ij

x∗
1j

≥ r−
r+

.

We apply (12) with that index j. We have

λ1 − λi = ln

(
x∗

1j + 1
)
x∗

ij(
x∗

ij + 1
)
x∗

1j

. (13)

Now, the minimum value of

(a + 1)b

(b + 1)a
where a ≥ b ≥ τa and a ≥ σ

is attained at a = σ and b = τσ and equal to

τσ + τ

τσ + 1
.

In our case (13),

a = x∗
1j, b = x∗

ij, σ = c−
m

, τ = r−
r+

, and
τσ + τ

τσ + 1
= r−c− + mr−

r−c− + mr+
.

Hence

λ1 − λi ≥ ln
r−c− + mr−
r−c− + mr+

.

Therefore, for every j,

ln

(
x∗

ij + 1

x∗
ij

)
= ln

(
x∗

1j + 1

x∗
1j

)
− (λ1 − λi)

≤ ln

(
x∗

1j + 1

x∗
1j

)
− ln

r−c− + mr−
r−c− + mr+

≤ ln
c− + m

c−
− ln

r−c− + mr−
r−c− + mr+

.

Hence

x∗
ij + 1

x∗
ij

≤ r−c− + r+m

r−c−
for j = 1, . . . , n

and

x∗
ij ≥ r−c−

r+m

as desired. The second inequality in Part (1) is proved similarly.

Random Structures and Algorithms DOI 10.1002/rsa



44 BARVINOK ET AL.

To prove Part (2), we use an approach similar to that for Part (1), as well as its inequality.
Let i0 be the row such that ri0 = r−. Without loss of generality, we assume that i0 = 1 and
hence

x∗
ij ≥ x∗

1j for j = 1, . . . , n.

Thus we have

x∗
1j ≤ cj

m
≤ c+

m
for j = 1, . . . , n.

Next, we compare the entries of the i-th row of X∗ and the entries of the first row using (12).
Since

n∑
j=1

x∗
ij ≤ r+ and

n∑
j=1

x∗
1j = r−

there is j such that

x∗
ij

x∗
1j

≤ r+
r−

.

We apply (13) with that index j. The maximum value of

(a + 1)b

(b + 1)a
where a ≤ b ≤ τa and a ≥ σ

is attained at a = σ , b = τσ and is equal to

τσ + τ

τσ + 1
.

In our case of (13),

a = x∗
1j, b = x∗

ij, τ = r+
r−

, σ = r−c−
r+m

, and
τσ + τ

τσ + 1
= r−c− + mr+

r−c− + mr−

where the expression for σ follows by Part (1). Hence

λ1 − λi ≤ ln
r−c− + mr+
r−c− + mr−

and for all j we have

ln

(
x∗

ij + 1

x∗
ij

)
= ln

(
x∗

1j + 1

x∗
1j

)
− (λ1 − λi)

≥ ln

(
x∗

1j + 1

x∗
1j

)
− ln

r−c− + mr+
r−c− + mr−

≥ ln
c+ + m

c+
− ln

r−c− + mr+
r−c− + mr−

.

Hence

x∗
ij + 1

x∗
ij

≥ (c+ + m)(r−c− + mr−)

c+(r−c− + mr+)
for j = 1, . . . , n

and the proof follows.
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7. PROOF OF LEMMA 5.1

We will use the following bounds for the permanent.

7.1. The van der Waerden Bound

Let B = (bij) be an N × N doubly stochastic matrix, that is,

N∑
j=1

bij = 1 for i = 1, . . . , N and
N∑

i=1

bij = 1 for j = 1, . . . , N

and

bij ≥ 0 for i, j = 1, . . . , N .

Then

per B ≥ N !
NN

.

This is the famous van der Waerden bound proved by Falikman [21] and Egorychev [20],
see also Chapter 12 of [34] and [28].

7.2. The Continuous Version of the Bregman-Minc Bound

Let B = (bij) be an N × N matrix such that

N∑
j=1

bij ≤ 1 for i = 1, . . . , N

and

bij ≥ 0 i, j = 1, . . . , N .

Furthermore, let

zi = max
j=1,...,N

bij > 0 for i = 1, . . . , N .

Then

per B ≤
N∏

i=1

zi�
zi

(
1 + zi

zi

)
.

This bound was obtained by Soules [39].
If zi = 1/ri for integers ri, the bound transforms into

per B ≤
N∏

i=1

(ri!)1/ri

ri
,

which can be easily deduced from the Minc conjecture proved by Bregman, see [11].
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Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. The lower bound is the van der Waerden bound.
To prove the upper bound, define

f (ξ) = ξ ln �

(
1 + ξ

ξ

)
+ ln ξ for 0 < ξ ≤ 1.

Then f is a concave function and by the Bregman-Minc bound, we have

ln per B ≤
N∑

i=1

f (zi).

The function

F(x) =
N∑

i=1

f (ξi) for x = (ξ1, . . . , ξN)

is concave on the simplex defined by the equation ξ1 +· · ·+ ξN = τ and inequalities ξi ≥ 0
for i = 1, . . . , N . It is also symmetric under permutations of ξ1, . . . , ξN . Hence the maximum
of F is attained at

ξ1 = · · · = ξN = τ/N ,

and so

ln per B ≤ Nf
( τ

N

)
.

Thus

per B ≤
( τ

N

)N

(�(1 + τ−1N))τ

and the rest follows by Stirling’s formula.

8. PROOF OF THEOREM 5.2

We begin our proof by restating a theorem of Bregman [11] in a slightly more general form.

Theorem 8.1. Let Y = (yij) be the positive m × n matrix that is the scaling of a positive
m × n matrix X = (xij) to have margins (R, C). Then

∑
ij

yij(ln yij − ln xij) ≤
∑

ij

zij(ln zij − ln xij)

for every matrix Z ∈ P(R, C), where P(R, C) is the transportation polytope of m × n
non-negative matrices with row sums R and column sums C.
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Proof. The function

f (Z) =
∑

ij

zij(ln zij − ln xij)

is strictly convex on P(R, C) and hence attains its unique minimum Y ′ = (y′
ij) on P(R, C).

As in the proof of Theorem 3.3 (see Section 6), we can show that Y ′ is strictly positive, that
is, Y ′ lies in the relative interior of P(R, C). Writing the Lagrange multiplier conditions, we
obtain

ln y′
ij − ln xij = ξi + ηj

for some ξ1, . . . , ξm and η1, . . . , ηn. Letting λi = eξi and µj = eηj we obtain

y′
ij = λiµjxij for all i, j,

so in fact Y ′ = Y as desired.

Next, we prove a lemma that extends a result of Linial, Samorodnitsky, and Wigderson
[32].

Lemma 8.2. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive vectors such that

m∑
i=1

ri =
n∑

j=1

cj = N .

Let X = (xij) be an m × n positive matrix such that∑
ij

xij = N

and let Y = (yij) be the scaling of X to have row sums R and column sums C. Then∑
ij

ricj ln yij ≥
∑

ij

ricj ln xij.

Proof. Since Y is the limit of the sequence of matrices obtained from X by repeated
alternate scaling of the rows to have row sums r1, . . . , rm and of the columns to have column
sums c1, . . . , cn, cf., for example, Chapter 6 of [4], it suffices to show that when the rows
(columns) are scaled, the corresponding weighted sums of the logarithms of the entries of
the matrix can only increase.

To this end, let X = (xij) be a positive m × n matrix with the row sums σ1, . . . , σm such
that

m∑
i=1

σi = N

and let Y = (yij) be the matrix obtained from Y by scaling the rows to have sums r1, . . . , rm.
Hence,

yij = rixij/σi for all i, j.
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Thus

∑
ij

ricj(ln yij − ln xij) =
n∑

j=1

cj

(
m∑

i=1

(ri ln ri − ri ln σi)

)
≥ 0,

since the maximum of the function

m∑
i=1

ri ln ξi

on the simplex {
m∑

i=1

ξi = N and ξi ≥ 0 for i = 1, . . . , m

}

is attained at ξi = ri.
The scaling of columns is treated similarly.

Proof of Theorem 5.2. Without loss of generality, we assume that p = q = 1.
Define an m × n matrix U = (uij) by

uij = ricjxij

T
for T = 1

N

∑
ij

ricjxij. (14)

We note that the scalings of U and X to margins (R, C) coincide and that∑
ij

uij = N .

By Theorem 8.1, the matrix Y minimizes∑
ij

zij(ln zij − ln uij),

over the set P(R, C) of m × n non-negative matrices Z with row sums R and the column
sums C.

For a real t, let us define the matrix Y(t) = (yij(t)) by

yij(t) =




yij + t if i = j = 1

yij − cj

N − c1
t if i = 1, j �= 1

yij − ri

N − r1
t if i �= 1, j = 1

yij + ricj

(N − r1)(N − c1)
t if i �= 1, j �= 1.

Then Y(0) = Y and Y(t) ∈ P(R, C) for all t sufficiently close to 0. Therefore,

d

dt
f (Y(t))

∣∣
t=0

= 0,
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where

f (Z) =
∑

ij

zij(ln zij − ln uij).

Therefore,

ln y11 − ln u11 + 1 − 1

N − c1

∑
j �=1

cj(ln y1j − ln u1j + 1)

− 1

N − r1

∑
i �=1

ri(ln yi1 − ln ui1 + 1)

+ 1

(N − r1)(N − c1)

∑
i,j �=1

ricj(ln yij − ln uij + 1)

= 0.

Rearranging the summands,

N2

(N − r1)(N − c1)
(ln y11 − ln u11) − N

(N − r1)(N − c1)

n∑
j=1

cj(ln y1j − ln u1j)

− N

(N − r1)(N − c1)

m∑
i=1

ri(ln yi1 − ln ui1) + 1

(N − r1)(N − c1)

∑
ij

ricj(ln yij − ln uij)

= 0.

On the other hand, by Lemma 8.2,

∑
ij

ricj(ln yij − ln uij) ≥ 0,

so we must have

N2(ln y11 − ln u11) − N
n∑

j=1

cj(ln y1j − ln u1j) − N
m∑

i=1

ri(ln yi1 − ln ui1) ≤ 0.

In other words,

ln y11 ≤ ln u11 + 1

N

n∑
j=1

cj(ln y1j − ln u1j) + 1

N

m∑
i=1

ri(ln yi1 − ln ui1).

Since

n∑
j=1

y1j = r1,
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we have

n∑
j=1

cj ln y1j ≤
n∑

j=1

cj ln
(cjr1

N

)
,

cf. the proof of Lemma 8.2. Similarly, since

m∑
i=1

yi1 = c1,

we have

m∑
i=1

ri ln yi1 ≤
m∑

i=1

ri ln
( ric1

N

)
.

Substituting (14) for U, we obtain

ln y11 ≤ ln x11 + ln(r1c1) − ln T + 1

N

n∑
j=1

cj ln
T

Nx1j
+ 1

N

m∑
i=1

ri ln
T

Nxi1
,

and the proof follows.

9. PROOF OF THEOREM 5.3

Fix margins (R, C), let ψ = ψR,C be the density of Section 2.2, and let X = (xij) be the
random matrix distributed in accordance with the density ψ . We will need a lemma that
connects linear functionals of X with the weighted sums T(R, C; W) of Section 4.1.

Lemma 9.1. Let λij < 1 be real numbers.

1. Let W = (wij) be the m × n matrix of weights given by

wij = (1 − λij)
−1 for all i, j.

Then

E exp

{∑
ij

λijxij

}
= T(R, C; W)

#(R, C)

∏
ij

wij;

2. We have

E
∏

ij

x
−λij
ij = 1

#(R, C)

∑
D=(dij)

∏
ij

�(dij − λij + 1)

�(dij + 1)
,

where the sum is taken over all m × n non-negative integer matrices D = (dij) with
row sums R and column sums C.
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Proof. Let us prove Part (1). We have

E exp

{∑
ij

λijxij

}
= 1

#(R, C)

∫
R

mn+
exp

{
−

∑
ij

(1 − λij)xij

} ∑
D=(dij)

∏
ij

x
dij
ij

dij! dX

= 1

#(R, C)

∫
R

mn+
exp

{
−

∑
ij

xij

} ∑
D=(dij)

∏
ij

w
dij
ij x

dij
ij

dij!
∏

ij

wij dX

= T(R, C; W)

#(R, C)

∏
ij

wij,

as desired.
Since

ψ(X)
∏

ij

x
−λij
ij = 1

#(R, C)

∑
D=(dij)

∏
ij

x
dij−λij
ij

dij! e−xij ,

the proof of Part (2) follows.

To prove Theorem 5.3 we need only Part (1) of the lemma, while Part (2) will be used
later in the proof of Theorem 3.2.

Proof of Theorem 5.3. We use the Laplace transform method, see, for example, Appendix
A of [1]. We have

P




∑
(i,j)∈S

xij ≥ t


 = P


exp


 1

2λ + 2

∑
(i,j)∈S

xij


 ≥ exp

{
t

2λ + 2

}


≤ exp

{
− t

2λ + 2

}
E exp


 1

2λ + 2

∑
(i,j)∈S

xij


 ,

by the Markov inequality.
By Part (1) of Lemma 9.1,

E exp


 1

2λ + 2

∑
(i,j)∈S

xij


 = T(R, C; W)

#(R, C)

(
2λ + 2

2λ + 1

)#S

,

where

wij =
{
(2λ + 2)/(2λ + 1) if (i, j) ∈ S
1 if (i, j) /∈ S.

Clearly,

(
2λ + 2

2λ + 1

)#S

≤ 2#S.

To bound the ratio of T(R, C; W) and #(R, C), we use Theorems 4.1 and 4.2.
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Let 0 < x1, . . . , xm; y1, . . . , yn < 1 be numbers such that

ρ(R, C) =
(

m∏
i=1

xi
−ri

) (
n∏

j=1

yj
−cj

) (∏
ij

1

1 − xiyj

)
.

For the typical table X∗ = (x∗
ij) we have

x∗
ij = xiyj

1 − xiyj
≤ λ for all i, j.

Therefore,

xiyj = x∗
ij

1 + x∗
ij

≤ λ

λ + 1
for all i, j

and

wijxiyj < 1 for all i, j.

Then we have

ρ(R, C; W) ≤
(

m∏
i=1

xi
−ri

) (
n∏

j=1

yj
−cj

) (∏
ij

1

1 − wijxiyj

)

and

ρ(R, C; W)

ρ(R, C)
≤

∏
(i,j)∈S

1 − xiyj

1 − wijxiyj
=

∏
(i,j)∈S

1

1 + (1 − wij)x∗
ij

.

Now

1

1 + (1 − wij)x∗
ij

≤ 2λ + 1

λ + 1
≤ 2 for all (i, j) ∈ S

and hence

ρ(R, C; W)

ρ(R, C)
≤ 2#S.

Since

T(R, C; W) ≤ ρ(R, C; W) and #(R, C) ≥ ρ(R, C)N−γ (m+n),

the proof follows.

We will need the following corollary.

Corollary 9.2. Suppose that m ≥ n and that the typical table X∗ = (x∗
ij) satisfies

x∗
ij ≤ λ for all i, j
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and some λ > 0. Let X = (xij) be a random m × n matrix distributed in accordance with
the density ψR,C, and let

ui = max
j=1,...,n

xij.

Then for some τ = τ(λ) > 0 we have

P

{
m∑

i=1

ui ≥ (λ + 1)τm ln N

}
≤ 4−m.

Proof. We apply Theorem 5.3 to each of the nm of subsets S having exactly one entry in
each row and sum up the tail estimates. Hence we obtain

P

{
m∑

i=1

ui ≥ (λ + 1)τm ln N

}
≤ nmN−τm/24mNγ (m+n)

≤ 4−m

for a sufficiently large absolute constant τ .

We will also use an unconditional bound on the sum of all the entries of X.

Lemma 9.3. Let X = (xij) be a random m × n matrix distributed in accordance with the
density ψR,C. Then

P

{∑
ij

xij ≥ 2(N + mn)

}
≤

(
3

4

)N+mn

.

Proof. As in the proof of Theorem 5.3, we have

P

{∑
ij

xij ≥ 2(N + mn)

}
= P

{
exp

{
1

2

∑
ij

xij

}
≥ exp{N + mn}

}

≤ exp{−(N + mn)}E exp

{
1

2

∑
ij

xij

}

by Markov’s inequality. By Lemma 9.1,

E exp

{
1

2

∑
ij

xij

}
= T(R, C; W)

#(R, C)

∏
ij

wij where

wij = 2 for all i, j

= 2N+mn

and the proof follows.
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10. PROOF OF THEOREM 3.1

We start with a technical result.

Lemma 10.1. Let (R, C) be upper α-smooth margins, so ri/N ≤ α/m and cj/N ≤ α/n
for all i, j. Let X = (xij) be a random m × n matrix with density ψR,C of Section 2.2. Then
for any real τ

P

{
1

N

n∑
j=1

cj ln xij ≤ −τ

}
≤ 2n exp

{
− nτ

2α

}
and

P

{
1

N

m∑
i=1

ri ln xij ≤ −τ

}
≤ 2m exp

{
−mτ

2α

}
.

Proof. Let us prove the first inequality. As in the proof of Theorem 5.3, we use the Laplace
transform method. We have

P

{
1

N

n∑
j=1

cj ln xij ≤ −τ

}
= P

{
− n

2αN

n∑
j=1

cj ln xij ≥ nτ

2α

}

≤ exp
{
− nτ

2α

}
E exp

{
− n

2αN

n∑
j=1

cj ln xij

}

= exp
{
− nτ

2α

}
E

n∏
j=1

x
−λj
ij where λj = ncj

2αN
.

Since

λj ≤ 1

2
,

by Part (2) of Lemma 9.1 we deduce that

E
n∏

j=1

x
−λj
ij ≤

(
�

(
1

2

))n

≤ 2n

(we observe that every term in the sum of Lemma 9.1 does not exceed �n(1/2)). The proof
of the second inequality is identical.

Proof of Theorem 3.1. Without loss of generality, we assume that m ≥ n. We recall that
function p(X) is computed as follows. Given a positive m ×n matrix X = (xij), we compute
the scaling Y = (yij) of X to have row sums R and the column sums C. Then we compute
the N × N block matrix B(X) consisting of mn blocks of sizes ri × cj with the entries in the
(i, j)-th block equal to yij/ricj. Thus B(X) is a doubly stochastic matrix and

p(X) = NN

N ! per B(X),

cf. Section 2.
We are going to use Theorem 5.2 to bound the entries of Y .
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By Lemma 9.3,

P

{∑
ij

xij < 2(N + mn)

}
≥ 1 −

(
3

4

)N+mn

.

Since N ≤ s0mn, ri/N ≤ α/m, and cj/N ≤ α/n we conclude that for some κ1 = κ1(α, s0) =
2α2(s0 + 1) we have

P

{
1

N2

∑
ij

ricjxij < κ1

}
≥ 1 −

(
3

4

)N+mn

.

From Lemma 10.1, for a sufficiently large κ2 = κ2(α), we have

P

{
1

N

n∑
j=1

cj ln xpj > −κ2

}
≥ 1 − 4−n for all p = 1, . . . , m and

P

{
1

N

m∑
i=1

ri ln xiq > −κ2

}
≥ 1 − 4−m for q = 1, . . . , n.

Therefore, by Theorem 5.2, we have for some κ = κ(α, s0)

P
{

ypq ≤ rpcq

N
κxpq for all p, q

}
≥ 1 −

(
3

4

)N+nm

− m4−n − n4−m.

Now, B consists of mn blocks, where the (p, q)-th block filled by the entries ypq/rpcq.
Therefore the probability that for all i, j = 1, . . . N we have

bij ≤ κ

N
xpq provided (i, j) lies in the (p, q)-th block of B (15)

is at least

1 −
(

3

4

)N+nm

− m4−n − n4−m.

We now bound per B(X) using Lemma 5.1 and Corollary 9.2.
Let

zi = max
j=1,...,N

bij for i = 1, . . . N and let

up = max
q=1,...,m

xpq.

Then, from (15) we have

N∑
i=1

zi ≤ κ

N

m∑
p=1

rpup ≤ ακ

m

m∑
p=1

up.

By Corollary 9.2, for some τ1 = τ1(α, s0), we have

P

{
m∑

p=1

um ≤ τ1m ln N

}
≥ 1 − 4−m.
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Thus for some τ = τ(α, s0) we have

P

{
N∑

i=1

zi ≤ τ ln N

}
≥ 1 −

(
3

4

)N+mn

− m4−n − n4−m − 4−m

and the proof follows by Lemma 5.1.

The rest of the paper deals with the proof of Theorem 3.2. This requires sharpening of the
estimates of Lemma 10.1. Roughly, we need to prove that with overwhelming probability

1

N

n∑
j=1

cj ln xij ≥ −τ + ln s and

1

N

m∑
i=1

ri ln xij ≥ −τ + ln s

for some constant τ = τ(α, β), where s = N/mn is the average entry of the table.

11. AN ESTIMATE OF A SUM OVER TABLES

To sharpen the estimates of Lemma 10.1 we need a more careful estimate of the sum in Part
(2) of Lemma 9.1. In this section, we prove the following technical result.

Proposition 11.1. Suppose that (R, C) are lower β-smooth and upper α-smooth margins
and that

s = N/mn ≥ 1.

Let λ1, . . . , λm ≤ 1/2 be numbers and let l = λ1 + · · · + λm. Then, for k < n we have

1

#(R, C)

∑
D=(dij)

∏
1≤i≤m
1≤j≤k

�(dij − λi + 1)

�(dij + 1)
≤ δkmNγ (m+n)s−kl,

where the sum is taken over all non-negative integer matrices D with row sums R and column
sums C, δ = δ(α, β) > 0 and γ is the absolute constant of Theorem 4.1.

We start with computing a simplified version of this sum in a closed form.

Definition 11.2. Let us fix positive integers c and m. The integer simplex ϒ(m, c) is the
set of all non-negative integer vectors a = (d1, . . . , dm) such that d1 + · · · + dm = c.

Clearly,

#ϒ(m, c) =
(

m + c − 1

m − 1

)
.

A sum over ϒ(m, c) similar to that of Proposition 11.1 can be computed in a closed form.
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Lemma 11.3. Let λi < 1, i = 1, . . . , m, be numbers and let l = λ1 + · · · + λm. Then

1

#ϒ(m, c)

∑
d1,...,dm≥0

d1+...+dm=c

m∏
i=1

�(di − λi + 1)

�(di + 1)
= �(c + m − l)�(m)

�(c + m)�(m − l)

m∏
i=1

�(1 − λi).

Proof. Let us define a function hc on the positive orthant R
m
+ by the formula

hc(x) = (m − 1)!
(m + c − 1)!

(
m∑

i=1

ξi

)c

exp

{
−

m∑
i=1

ξi

}
for x = (ξ1, . . . , ξm) ∈ R

m
+.

Since

(
m∑

i=1

ξi

)c

=
∑

d1,...,dm≥0
d1+···+dm=c

c!
d1! · · · dm!ξ

d1
1 · · · ξ dm

m ,

We can rewrite

hc(x) =
(

m + c − 1

m − 1

)−1 ∑
d1,...,dm≥0

d1+···+dm=c

m∏
i=1

ξ
di
i

di! e−ξi .

Therefore,

1

#ϒ(m, c)

∑
d1,...,dm≥0

d1+···+dm=c

m∏
i=1

�(di − λi + 1)

�(di + 1)
=

∫
R

m+
hc(x)

m∏
i=1

ξ
−λi
i dx.

Let Q ⊂ R
m
+ be the simplex ξ1 + · · · + ξm = 1 with the Lebesgue measure dx normalized

to the probability measure. Since the function

(
m∑

i=1

ξi

)c m∏
i=1

ξ
−λi
i

is positive homogeneous of degree c − l, we can write

∫
R

m+
hc(x)

m∏
i=1

ξ
−λi
i dx = �(c + m − l)

�(m)

∫
Q

hc(x)
m∏

i=1

ξ
−λi
i dx (16)

On the other hand,

hc(x) = �(m)

�(c + m)
h0(x) for x ∈ Q. (17)
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Using (16) with c = 0, we deduce that∫
Q

h0(x)
m∏

i=1

ξ
−λi
i dx = �(m)

�(m − l)

∫
R

m+
h0(x)

m∏
i=1

ξ
−λi
i dx

= �(m)

�(m − l)

m∏
i=1

∫ +∞

0
ξ

−λi
i e−ξi dξi

= �(m)

�(m − l)

m∏
i=1

�(1 − λi).

Now, from (16) and (17), we have∫
R

m+
hc(x)

m∏
i=1

ξ
−λi
i dx = �(c + m − l)�(m)

�(c + m)�(m − l)

m∏
i=1

�(1 − λi),

as desired.

We need an estimate.

Corollary 11.4. Suppose that λi < 1/2 for i = 1, . . . , m and c ≥ βm for some β > 0.
Then

1

#ϒ(m, c)

∑
d1,...,dm≥0

d1+···+dm=c

m∏
i=1

�(di − λi + 1)

�(di + 1)
≤

(m

c

)l

δm

for some constant δ = δ(β) > 0, where l = λ1 + · · · + λm.

Proof. The proof follows from Lemma 11.3.

Fix margins R = (r1, . . . , rm) and C = (c1, . . . , cn) and a number k ≤ n. Pick, uniformly
at random, a contingency table D = (dij) with margins (R, C) and consider its submatrix Z
consisting of the first k columns. Hence Z is an m × k non-negative integer matrix with the
column sums c1, . . . , ck . We interpret Z as a point in the product

ϒ = ϒ(m, c1) × · · · × ϒ(m, ck)

of integer simplices. This process induces a certain distribution on the set ϒ of non-negative
integer m × k matrices with the column sums c1, . . . , ck . We want to compare this distri-
bution with the uniform distribution. Lemma 11.5 below says that the probability to get
any particular matrix Z ∈ ϒ cannot exceed the uniform probability by much if the margins
(R, C) are smooth.

Once we fix the m × k submatrix Z consisting of the first k columns of a table with
margins (R, C), the complementary m × (n − k) table has row sums R′ = R − R(Z), where
R(Z) is the vector of row sums of Z , and column sums C̄ = (ck+1, . . . , cn), the truncation
of C. Hence the probability of obtaining a particular Z ∈ ϒ is

#(R′, C̄)

#(R, C)
,

where the ratio is declared to be 0 if R′ is not non-negative.
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We prove the following estimate.

Lemma 11.5. Consider margins (R, C) satisfying the constraints of Proposition 11.1.
Fix k ≤ n and let ϒ be the set of all m × k non-negative integer matrices with the column
sums c1, . . . , ck.

Let C̄ = (ck+1, . . . , cn), choose Z ∈ ϒ and set R′ = R − R(Z), where R(Z) is the vector
of the row sums of Z. Then

#(R′, C̄)

#(R, C)
≤ δkmNγ (m+n)

#ϒ

for some constant δ = (α, β) > 0, where γ > 0 is an absolute constant from Theorem 4.1.

Proof. Let ρ(R, C) be the quantity of Theorem 4.1. Here we agree that ρ(R′, C̄) = 0 if
R′ has negative components and that “max” and “min” are replaced by “sup” and “inf,”
respectively, if R′ is non-negative but has 0 components.

Let 0 < x1, . . . , xm < 1 and 0 < y1, . . . , yn < 1 be an optimal point in Theorem 4.1, so

ρ(R, C) =
m∏

i=1

x−ri
i

n∏
j=1

y
−cj
j

∏
1≤i≤m
1≤j≤n

1

1 − xiyj
.

Then

ρ(R′, C̄) ≤
m∏

i=1

x
−r′i
i

n∏
j=k+1

y
−cj
j

∏
1≤i≤m

k+1≤j≤n

1

1 − xiyj

≤
m∏

i=1

x−ri
i

n∏
j=1

y
−cj
j

∏
1≤i≤m

k+1≤j≤n

1

1 − xiyj

and hence

ρ(R′, C̄)

ρ(R, C)
≤

∏
1≤i≤m
1≤j≤k

(1 − xiyj).

Now, by Part (1) of Theorem 3.3, the typical table X∗ = (x∗
ij) satisfies

x∗
ij = xiyj

1 − xiyj
≥ δ1s for all i, j,

and for some δ1 = δ1(α, β). This implies that

1 − xiyj = 1

1 + x∗
ij

≤ 1

1 + δ1s
for all i, j.

Summarizing,

ρ(R′, C̄)

ρ(R, C)
≤

(
1

1 + δ1s

)km

.
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Now,

#ϒ =
k∏

j=1

(
cj + m − 1

m − 1

)
≤

k∏
j=1

(
cj + m

m

)

≤
k∏

j=1

(
cj + m

cj

)cj
(

cj + m

m

)m

.

We have (
cj + m

cj

)cj

≤ em.

Furthermore, since cj ≤ αsm, we have(
cj + m

m

)m

≤ (1 + αs)m

and

#ϒ
ρ(R′, C̄)

ρ(R, C)
≤ ekm

(
1 + αs

1 + δ1s

)km

≤ δkm.

Since by Theorem 4.1 we have

#(R, C) ≥ N−γ (m+n)ρ(R, C) and #(R′, C̄) ≤ ρ(R′, C̄),

the proof follows.

Proof of Proposition 11.1. Let ϒ(m, cj) be the integer simplex of non-negative integer
vectors summing up to cj and let

ϒ = ϒ(m, c1) × · · · × ϒ(m, ck).

Using Lemma 11.5, we bound

1

#(R, C)

∑
D=(dij)

∏
1≤i≤m
1≤j≤k

�(dij − λi + 1)

�(dij + 1)
=

∑
Z=(zij)

Z∈ϒ

#(R − R(Z), C̄)

#(R, C)

∏
1≤i≤m
1≤j≤k

�(zij − λi + 1)

�(zij + 1)

≤ δkm
1 Nγ (m+n)

#ϒ

∑
Z=(zij)

Z∈ϒ

∏
1≤i≤m
1≤j≤k

�(zij − λi + 1)

�(zij + 1)

for some δ1 = δ(α, β). The sum

1

#ϒ

∑
Z=(zij)

Z∈ϒ

∏
1≤i≤m
1≤j≤k

�(zij − λi + 1)

�(zij + 1)

is just the product of k sums of the type

1

ϒ(m, cj)

∑
d1,...,dm≥0

d1+···+dm=cj

m∏
i=1

�(di − λi + 1)

�(di + 1)
≤

(
m

cj

)l

δm
2

by Corollary 11.4, for some δ2 = δ(α, β). The proof now follows.
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12. PROOF OF THEOREM 3.2

Fix margins (R, C) and let X = (xij) be the m × n random matrix with density ψ = ψR,C of
Section 2.2. Define random variables

hi = 1

N

n∑
j=1

cj ln xij for i = 1, . . . , m and

vj = 1

N

m∑
i=1

ri ln xij for j = 1, . . . , n.

Lemma 12.1. Let (R, C) be lower β-smooth upper α-smooth margins such that s =
N/mn ≥ 1.

Choose a subset J ⊂ {1, . . . , n} of indices, #J = k. Then for all t > 0 we have

P

{
1

k

∑
j∈J

vj ≤ −t + ln s

}
≤ exp

{
− tkm

2α

}
δkmNγ (m+n),

Similarly, for a subset I ⊂ {1, . . . , m} of indices, #I = k, we have

P

{
1

k

∑
i∈I

hi ≤ −t + ln s

}
≤ exp

{
− tkn

2α

}
δknNγ (m+n).

for some number δ = δ(α, β) > 0 and the absolute constant γ > 0 of Theorem 4.1.

Proof. Without loss of generality, it suffices to prove only the first bound and only in the
case of J = {1, . . . , k}.

We use the Laplace transform method. We have

P

{
1

k

k∑
j=1

vj ≤ −t + ln s

}
= P

{
− m

2α

k∑
j=1

vj ≥ tkm

2α
− km ln s

2α

}

= P

{
exp

{
− m

2α

k∑
j=1

vj

}
≥ s−km/2α · exp

{
tkm

2α

}}

≤ skm/2α exp

{
− tkm

2α

}
· E exp

{
− m

2α

k∑
j=1

vj

}
.

Let

λi = mri

2αN
≤ 1

2
for i = 1, . . . , m and

l = λ1 + · · · + λm = m

2α
.

Using Part (2) of Lemma 9.1, we write

E exp

{
− m

2α

k∑
j=1

vj

}
= 1

#(R, C)

∑
D=(dij)

∏
1≤i≤m
1≤j≤k

�(dij − λi + 1)

�(dij + 1)
,
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where the sum is taken over all contingency tables D with margins (R, C).
The proof now follows by Proposition 11.1.

We will use the following corollary.

Corollary 12.2. Let (R, C) be lower β-smooth upper α-smooth margins such that s =
N/mn ≥ 1. Suppose further that m ≤ ρn and n ≤ ρm for some ρ ≥ 1. Then for some
τ = τ(α, β, ρ) > 0 we have

P {#{i : hi ≤ −τ + ln s} > ln N} ≤ 4−n and

P {#{j : vj ≤ −τ + ln s} > ln N} ≤ 4−m.

Proof. We introduce random sets

I = {i : hi ≤ −τ + ln s} and J = {j : vj ≤ −τ + ln s}
and note that

1

#I

∑
i∈I

hi ≤ −τ + ln s and
1

#J

∑
j∈J

vj ≤ −τ + ln s.

The proof now follows from Lemma 12.1.

Proof of Theorem 3.2. The proof is a modification of that of Theorem 3.1. We recall that

p(X) = NN

N ! per B(X),

where B(X) is the N × N doubly stochastic matrix constructed as follows: we scale m × n
matrix X to the matrix Y with row sums R and column sums C and let bij = ypq/rpcq

provided the entry (i, j) lies in the (p, q)-th block B(X) of size rp × cq. We are going to
bound the entries of Y . First, without loss of generality we assume that s = N/mn ≥ 1
since the case of s ≤ 1 is treated in Theorem 3.1.

As in the proof of Theorem 3.1 we conclude that

P

{
1

N2

∑
ij

ricjxij < 2α2(s + 1)

}
≥ 1 −

(
3

4

)N+mn

. (18)

Let

hp = 1

N

N∑
j=1

cj ln xpj for p = 1, . . . , m and

vq = 1

N

m∑
i=1

ri ln xiq for q = 1, . . . , n.

Choose τ > 0 as in Corollary 12.2. Set

P = {p : hp ≤ −τ + ln s} and Q = {q : vq ≤ −τ + ln s}.
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Thus the probability that

#P ≤ ln N and #Q ≤ ln N

is at least

1 − 4−m − 4−n.

If p /∈ P and q /∈ Q and (18) holds then by Theorem 5.2,

ypq ≤ δ1
rpcq

sN
xpq

for some δ1(α, β) > 0. If p ∈ P or q ∈ Q then

ypq ≤ min{rp, cq}.
Consequently, for bij with (i, j) in the p, q-th block we have

bij ≤ δ1

sN
xpq if p /∈ P and q /∈ Q

and

bij ≤ min

{
1

rp
,

1

cq

}
if p ∈ P or q ∈ Q.

As in the proof of Theorem 3.1, we let

zi = max
j=1,...,N

bij for i = 1, . . . N and let

up = max
q=1,...,m

xpq.

We estimate that

zi ≤ 1

rp

if i lies in the p-th row block with p ∈ P and we estimate that

zi ≤ δ1

sN
up + max

q∈Q

ypq

rpcq
,

if i lies in the row block p /∈ P. Hence

N∑
i=1

zi ≤ #P + δ1

sN

m∑
p=1

rpup +
m∑

p=1

max
q∈Q

ypq

cq
.

By Corollary 9.2,

P

{
m∑

p=1

up ≥ τ1sm ln N

}
≤ 4−m
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for some τ1 = τ1(α), and hence

P

{
δ1

sN

m∑
p=1

rpup ≤ δ2 ln N

}
≥ 1 − 4−m.

for some δ2 = δ2(α). Finally,

m∑
p=1

max
q∈Q

ypq

cq
≤

∑
q∈Q

m∑
p=1

ypq

cq
≤ δ3#Q

for some δ3 = δ3(α, β). Summarizing,

P

{
N∑

i=1

zi ≤ δ ln N

}
≥ 1 −

(
3

4

)N+mn

− 4−n − 2 · 4−m

for some δ = δ(α, β, ρ) > 0 and the proof is completed as in Theorem 3.1.
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