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I. Introduction 

Two-stage stochastic linear programs have a 
deterministic equivalent program with convex ob- 
jective function that can be solved by a variety of 
methods. The L-shaped method of Van Slyke and 
Wets [12] is a cutting plane or outer linearization 
technique for solving this program when the ran- 
dom variables have finite support. It has been 
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extended to multi-stage stochastic linear and 
quadratic programs by Birge [3] and Louveaux 
[10], respectively. Their analyses showed the L- 
shaped algorithm to be an effective solution tech- 
nique for a variety of examples. The structure of 
stochastic programs, however, allows the L-shaped 
method to be extended to include multiple cuts on 
the objective in each major iteration. This paper 
describes this procedure for two-stage stochastic 
linear programs. A multi-stage version has been 
proposed by Silverman [11]. 

Adding multiple cuts at each iteration of an 
outer linearization procedure corresponds in the 
dual to including several columns in the master 
problem of an inner linearization algorithm such 
as Dantzig-Wolfe decomposition (see, for exam- 
ple, Lasdon [9]). In inner linearization, adding 
several columns instead of a single aggregated 
column may speed up convergence (see Birge [2]) 
and reduce the number of major iterations. The 
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same types of behavior may arise in outer lineari- 
zation, but only qualitative descriptions have been 
given. In this paper, we quantify this phenomenon 
by using the problem structure to derive worst-case 
bounds on the number of major iterations in the 
single and multiple cut cases. These results are 
supported by experiments on practical test prob- 
lems. 

In Section 2, we briefly describe the L-shaped 
algorithm and the problem structure. In Section 3, 
we present the multicut algorithm and, in Section 
4, we discuss its efficiency in terms of bounds on 
the number of major iterations for general prob- 
lems. The specific case of simple recourse prob- 
lems is discussed in Section 5. Section 6 presents 
results of numerical experiments and the ap- 
pendices provide illustrative examples of claims 
made in the text. 

2. The I~shaped algorithm 

The classical two-stage stochastic linear pro- 
gram with fixed recourse is the problem of finding 

min z = c x  + E~[min q(co)y(¢o)],  

s.t A x  = b, (1) 
T(co)x  + W y ( ~ )  = h(o~), 

x>~O, y(~)>~O a.s 

where c is a known vector in R " ,  b a known 
vector in R " ' ,  ~ is a random N-vector defined on 
the probability space, (12,~,P), and A and W are 
known matrices of sizes rn 1 × nl and m 2 × n2, 
respectively. W is called the recourse matrix. 

For each ~0, T(o~) is m 2 × n 1, q ( w )  ~ R "2 and 
h(¢o) ~ R. Piecing together the stochastic compo- 
nents of the problem, we obtain a vector ~ ( w ) =  
(q(o~), h (w) ,  Tl(¢o ) . . . . .  Tm2(¢o)) with N = n 2 + 
m 2 + (n 2 × nl) components, where Ti(o~ ) is the 
i-th row of T(¢0). Transposes have been eliminated 
for simplicity. E¢ represents the mathematical ex- 
pectation with respect to ~. 

A precise formulation of (1) is given by the 
deterministic equivalent program (DEP): 

rain z = cx + I2( x ), 

s.t. A x  = b, (2) 
x>~0, 

where 

$2(x) = E~Q(x ,  ~ ( w ) ) ,  

and 

Q ( x ,  ~(¢o)) = n~fin{ q(co)y(co)  lWv(¢o ) 

= h(¢o) - T (co)x ,  y >~ 0}. 

Properties of the DEP have been extensively 
studied (Wets [13], Garstka and Wets [6]). Of 
particular interest for computational aspects is the 
fact that Q(x ,  4) is a convex piecewise linear 
function of x and that I2(x) is also piecewise 
linear convex if ~ has finite support. 

When T is non-stochastic, the original formula- 
tion (2) can be replaced by 

min z = c x +  ff'(X), 

s.t. Ax=b,  (3) 
T x - x = O ,  
x>~0, 

where ~/'(X)= E~q~(X, ~(~0)) and ~/(X, ~(¢o))= 
min{  q(co)y(o~)lWy(¢o) = h(¢o) - X, Y >~ 0}. This 
formulation stresses the fact that choosing x cor- 
responds to generating an m z-dimensional tender 
X = Tx to be bid against the outcomes h(¢o) of the 
random events. 

In this paper, we concentrate on algorithms for 
solving (2) or (3). Excluding algorithms for the 
specific simple recourse problem (see, e.g., Kall 
[8], Wets [14]), a major method for solving (2) is 
the L-shaped algorithm due to Van Slyke and 
Wets [12] which is an outer linearization proce- 
dure as in Benders' decomposition (Benders [1]). 
For more details on other algorithmic procedures, 
see the discussion in Wets [14]. Outer linearization 
is generally preferred to inner linearization of the 
dual because the dual generally has more rows 
than the primal and, hence, requires more work 
per iteration. Outer linearization is also generally 
preferred to basis factorization in stochastic linear 
programming because basis requires storing a ba- 
sis for each realization of ~. In outer linearization, 
these bases need not be stored. Efficient proce- 
dures (see Wets [14]) may then be used to solve 
Q(x ,  ~(w)) for large numbers of realizations of ~. 

The L-shaped method consists of solving an 
approximation of (2) by using an outer lineariza- 
tion of I2. Two types of constraints are sequen- 
tially added: (i) feasibility cuts (5) determining 
{ x I ~2(x) < + oo ) and (ii) optimality cuts (6) which 
are linear approximations to ~2 on its domain of 
finiteness. 
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Assumption. The random variable ~ has finite 
support. 

Let k = 1 . . . . .  K index the possible realizations 
of ~ with probabilities Pk. 

L-shaped algorithm 
Step O. Set s = t = v = O. 
Step 1. Set v = v + 1. Solve the linear program 

(4)-(6): 

m i n  z = c x + O ,  

s.t. A x  = b, 

D t x > l d  t, l = 1  . . . . .  s,  

E t x + O > l e  l, l = 1  . . . . .  t, 

x>~0, 0 ~ R  

(4) 

(5) 
(6) 

Let (x ", 0 ") be an optimal solution. If no 
constraint (6) is present, 0 is set equal to - oo and 
is ignored in the computation. 

Step 2. For k = 1 . . . . .  K solve the linear pro- 
gram 

ra in  W 1 = eo + + eo - ,  

s.t. W y  + Iv + - I v -  = hk - Tk Xp , 

y>~O, v+>~O, o - > 1 0 ,  

where e = (1 . . . .  ,1), until, for some k, the optimal 
value w l >  0. Let o ~ be the associated simplex 
multipliers and define 

Os+l = OVTk 

and 

ds+ 1 = o"hk 

to generate a feasibility cut of type (5). Set s = s + 
1 and return to Step 1. If, for all k, w a = 0, go to 
Step 3. 

Step 3. For k = 1 . . . . .  K solve the linear pro- 
gram 

m in  w2 = qkY,  

s.t. W y  = h k - T k x ' ,  (7) 

y>~0. 

Let ~r[ be the simplex multipliers associated 
with the optimal solution of Problem k of type 
(7). Define 

K 

E,+I = E (8) 
k = l  

and 

K 

e,+l = Y2 pk~r[hk. (9) 
k = l  

Let w z" = et+ 1 - E t + l x  ~. If 0 ~>/w 2", stop, x ~ 
is an optimal solution. Otherwise, set t = t + 1, 
and return to Step 1. 

Improvements in this algorithm have been given 
in two directions: (i) the study of cases in which 
Step 2 can be modified to solve only one linear 
program instead of N and (ii) the study of bunch- 
ing and sifting procedures to reduce the work in 
Step 3 (Garstka and Rutenberg [5]). We again 
refer to Wets [14] for a detailed account of these 
improvements. 

In this paper, we propose to replace the outer 
linearization of .~ used in the L-shaped method by 
an outer linearization of all functions 

Q k ( x ) = m i n ( q k y l W y = h  k -  Tkx ,  y>~0},  (10) 

of which I2(x) constitutes the expectation, i.e. 
I2 (x )  = E l~=lpkQk(x ) .  

3. The multicut L-shaped algorithm 

The multicut L-shaped algorithm is defined as 
follows: 

Step O. Set s = u = 0  and t k = 0  for all k =  
1 . . . . .  K. 

Step 1. Set v = v + 1. Solve the linear program 
(11)-(13): 

m i n  z = c x  + Er~=lOk,  (11) 

s.t. A x  = b, 

Dlx  >i d t, 1= 1, .  . . ,  s,  (12) 

El(k)X + O k >~ el(k ), 

/ ( k )  = 1 . . . . .  t ( k ) ;  

k = l  . . . .  , K ,  
x )~ 0, (13) 

Let (x ~, 0~ . . . . .  0~:) be an optimal solution of 
(11). If no constraint (13) is present for some k, 0~ 
is set equal to - oo and is ignored in the computa- 
tion. 

Step 2. As before. 
Step 3. For k = 1 . . . . .  K solve the linear pro- 

gram (7). 
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Let 7r[ be the simplex multipliers associated 
with the optimal solution of problem k. If 

O~ <pkCrf,(hk -- Tk x~) (14) 

define 

E,~k)+ l = pk~r;Tk (15) 

and 

et(k )+ 1 = pkqr~hk (16) 

and set t( k ) = t( k ) + 1. 
If (14) does not hold for any k = 1 . . . . .  K, stop, 

x ~ is an optimal solution. Otherwise, return to 
Step 1. 

We illustrate the differences and similarities 
between the multicut approach and the standard 
L-shaped algorithm in the example of Appendix 
A. The multicut approach is bases on the idea that 
using outer approximations of all Qk(X) sends 
more information than a single cut on $2(x) and 
that, therefore, fewer iterations are needed. 

4. Efficiency and bounds 

The following dominance property can be 
established. Define, K 1 A K 2 to be the constraint 
set of the stochastic program (2), where 

K 1= ( x [ A x = b ,  x ~ O }  

and 

K2 = (~ ~ ~ z { x 13y >/0 such that 

W y = h ( ~ ) -  T ( ~ ) x } ,  

where by assumption ~ is finite. 
12(x) is known to be piecewise linear, hence 

there exists a polyhedral decomposition of K 1 A K 2 
into a finite collection of closed convex sets Cr, 
called the cells of the decomposition, such that the 
intersection of two distinct cells has an empty 
interior and such that the function ~ ( x )  is either 
identically - ~ or affine on each cell. 

The L-shaped method outerlinearizes ~2(x) by 
identifying a facet, the function graph for one cell 
of the decomposition, on each return to Step 1. 
The multicut algorithm outerlinearizes Qk(x).  On 
each return to Step 1, the multicut algorithm 
identifies a facet of some Qk(x). This information 
may, however, be equivalent to identifying several 

facets of 12 since each combination of facets of Qk 
corresponds to a single facet of 12. This property 
enables the multicut algorithm to converge faster 
than the L-shaped algorithm. 

In the following proposition, we state this more 
precisely. We define a mafor iteration to be the 
operations performed between returns to Step 1 in 
both algorithms. Simplex iterations are the num- 
ber of simplex algorithm pivots performed on any 
of the linear programs considered by the al- 
gorithms. 

Proposition. Let ( x ~ } be a sequence of points 
generated by the multicut algorithm and let ( y ~ } be 
a sequence generated by the L-shaped algorithm. 
Then, if at all major iterations, x ~ and y ~ belong to 
the same cells of the decomposition of $2, the num- 
ber of major iterations needed by the multicut al- 
gorithm will be less than or equal to the number of 
major iterations of the L-shaped algorithm. 

Proof. If the conditions of the proposition are 
met, then constraints (5) and (12) are the same in 
the L-shaped and multicut algorithms. Each con- 
straint in (6) corresponds to K constraints in (13) 
such that E~ r K e = ~ , k = l E l ( k )  and e / =  Y"k=l /(k)- 
Hence, if (x, Ok), k =  1 . . . .  , K are feasible in 
(11)-(13) for k = 1 . . . . .  K, then (x, 0 = )-~.k=lOk)K is 
feasible in (4)-(6). Therefore, the multicut al- 
gorithm objective value, z(multi) >/z(L-shaped), 
the L-shaped algorithm objective value. If z(L- 
sh ap ed )=z* ,  the optimal value in (1), then 
z(multi) = z*. [] 

Note that x p and y~ belong to the same cell of 
the decomposition if the recourse function Q(x,  
~) is linear in ~ for each iterate x. Whenever a 
nonlinearity is detected, however, the iterates gen- 
erally diverge. In addition, whether the iterate 
points belong to cells that are close to or far from 
the optimal point is partly a matter of chance. 
Therefore, the L-shaped method can conceivably 
do better than the multicut approach (the reverse 
is obviously also true) in terms of number of 
major iterations. We illustrate this by the example 
in Appendix B. Other examples where the multi- 
cut approach does better than the L-shaped 
method can easily be constructed (see Appendix 
A). 

Since none of the methods is superior to the 
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other in all circumstances, the efficiency of the 
two approaches is measured in terms of worst-case 
analysis on the number of major iterations. 

Definition. Let b(~) represent the maximum num- 
ber of different slopes of Q(x ,  ~) in any direction 
parallel to one of the axes for a given ~, i.e. the 
maximum number of different cells (of the poly- 
hedral decomposition of K~ n K 2 relative to Q(x ,  
~) for a given ~) encountered by any ray (parallel 
to one of the axes) originating at a point arbi- 
trarily chosen in K~ N K 2. 

Define b = max~Ezb(f )  to be the 'slope num- 
ber of the second-stage of (2)'. 

For examples of b(~) and b, see the ap- 
pendices. Figure 1 illustrates the example in Ap- 
pendix A. The functions Qa, Q2, and Q3 represent 
Q(x ,  ~) for ~1= 1, ~2=2,  and ~3=4 ,  respec- 
tively. In this case, m 2 = 1, b(1) = b(2) = b(4) = b 
= 2. In Appendix B, m z = 1, b(~ 1) -- 2, and b(~ 2) 
= 4 = b .  

Theorem. Let b be the slope number of the second 
stage of (2). Then, the maximum number of itera- 
tions for the multicut algorithm is 

1 + K ( b  m= - -  1) (17) 

while the maximum number of iterations for the 
L-shaped algorithm is 

[1 + K ( b  - 1)] m2 (18) 

where K is the number of the different realiza- 
tions of f. 

Proof. To illustrate the result, consider Figure 1 
for the example in Appendix A. Let b be the slope 
number of the second stage of (2) (b = 2 in Figure 
1). In the worst-case (as in Figure 1), b(~) = b for 
all ~ ~ .~. A single linear piece of each Qk, k = 
1 . . . . .  K, in some direction j corresponds to a 
single linear piece of I2 in direction j.  Each new 
slope for each Q i  c a n  result in a new slope for I2 
in direction j. For b - 1 new slopes for each qi, in 
the worst-case, 12 obtains 1 + K ( b -  1) slopes in 
direction j. (Note the 4 = 1 + 3(1) slopes in Fig- 
ure 1.) Since this can occur in each direction 
j = 1 , . . . ,  m2, [1 + K ( b  - 1)] m2 facets of $2 can be 
generated. 

In the worst-case, the L-shaped method consid- 
ers every facet of I2 (proving (18)). For the multi- 

cut approach, however, in the worst-case, one 
facet of each Qk is identified in each step. Since 
each Qk has at most b slopes in direction j ,  each 
Qk has at most b m2 facets. On the first iteration, a 
facet is identified for each ~k, k = 1 . . . . .  K. Hence, 
the maximum number of iterations is 1 + (Kb ''~ - 
K),  proving (17). [] 

The maximal number of iterations has an im- 
mediate consequence on the size of the first-stage 
problems to be solved. While problems of smaller 
size are needed in the first iterations of the 
L-shaped method (m I + 1 constraints, nl + 1 vari- 
ables) as compared to the multicut (m~ + K con- 
straints, n 1 + K  variables), the above theorem 
shows that the size of the problem is of the order 
( b - l ) m 2 K  m2 in the worst-case for the L-shaped 
approach and K ( b  ''~ - 1) for the multicut strategy. 
One can therefore expect the multicut approach to 
be especially efficient for problems where m 2 is 
large, many cuts are needed, and, as we mention 
in the discussion of numerical examples below, K 
is not larger than n 1. 

In the next section, the number of facets for the 
particular case of simple recourse is given ex- 
plicitly. 

5. The simple recourse case 

The simple recourse problem is a particular 
case of the formulation (3) with non-stochastic 
matrix T where the function ~(X, ~) is separable 

m2 

q'(X, f ) =  Y'. ~bi(X,, ~,) (19) 
i=1 

and 

~b,(X, , ~,) = min( q~-y~+ + q?YZ l Y7 - Y 7  

= h i - x i ,  yi + ~ 0 ,  Yi- ~ 0 } ,  

(20) 

where 

~i= (qi +, q? ,  hi).  

Assume that, for each i, ~i can  take on J 
different values (where for simplicity of exposition 
J is assumed to be the same for all i). 

Then, using the multicut approach consists of 
approximating the recourse function XO(X ) by the 
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outerlinearization 

m2 J 

E E 0,,. (21) 
i=1 j = l  

Due to the simple recourse property, only two 
cuts of type (13) can be generated for each 0,j, 
namely 

Oi j >~ P,~q~ ( xi  - h ij ) (22) 

and 

>- + ( h , , - X , )  (23) 0,j ~ P,s qis 

where p,j denotes the probability of the j,h reali- 
zation of ~,. 

Introducing the slack variable uij in constraint 
(22), 

P i j q i j ( X , -  hi./) + Uij = Oij (24)  

and substituting Oij from (24) into (21)-(23), the 
simple recourse problem (19), (20) is equivalent to 

J 
m i n  cx + E im==l E j = l P i j q ~ j ( X i -  h o )  

g-,m2 g-,j 
-~- l..~ i=l l..~j=lUij 

s.t. A x  = b, 
Tx - X = 0 (25) 

Uij >~ Pi jq i j (  h i j -  X i ) ,  

i = 1  . . . . .  me; j = l  . . . . .  J ,  

u~j>O, i = 1  . . . . .  m2; j = l  . . . . .  J ,  

where qi, = qi+j + q~. 
From (25), we 

algorithm. 
can derive the following 

Multicut algorithm for simple recourse problems 
Step O. Set v = t = O .  
Step 1. Set v = v + 1. Solve the linear program 

min 

s . t .  

J T , cx + E i ~ , E j = , p i j q ~ ( i x )  + E , = , u , ,  

A x  = b ,  
u/>~e I - E t x ,  1=1  . . . . .  t, 

uz>~0, I = 1  . . . . .  t. 

(26) 

Let (x ", u") be an optimal solution. If t = 0, 
then u is ignored in the computation. 

Step 2. For each i = 1 . . . . .  m 2, and j = 1 . . . . .  J, 

if the constraint 

0 >~pi jq , s (h i j -  Ti x~) 

is violated, define 

Et+ 1 = Pisq~lT~ 

and 

e, + 1 = Pij qij h ij 

and set t = t + l .  

(27) 

Note that the constraints in (26) are a subset of 
the constraints in (25). We use the notation u t to 
represent those uij in (25) that have been identi- 
fied in Step 2 of the multicut algorithm. Inequality 
(27) identifies any constraints in (25) that are not 
met on iteration v. These constraints are added for 
the next iteration, v + 1. 

The initial problem (26) involves m I con- 
straints and n 1 variables. For this problem, the 
worst-case situation is when at each iteration, only 
one constraint (27) is violated in Step 2. Then, the 
maximal number of iterations is Jm2 + 1. To com- 
pare with the maximal number of iterations an 
L-shaped algorithm would require to solve the 
same problem, note that for each i, the function 
q'i(X~) = E~i(X,,  ~i) contains J + 1 facets and 
since q'(X) is separable in i, it contains at most 
( J +  1) m= facets. This is precisely the worst-case 
upper bound on the number of iterations for an 
L-shaped type algorithm as in the theorem of 
Section 4. 

6. Numerical experimentation and conclusions 

The L-shaped algorithm and the multicut 
method have been coded in FORTRAN in the codes 
NDREG and NDSEP respectively. NDREG is a two- 
stage version of the multi-stage code developed by 
Birge in [3] and described in [4]. NDSEP uses the 
same subroutines for linear program solutions, 
constraint generation and constraint elimination 
as NDREG. The subroutines to control where cuts 
are placed and to determine optimality have been 
modified in NDSEP tO reflect the differences be- 
tween the standard L-shaped method and the mul- 
ticut approach. 

The set of test problems and their size char- 
acteristics appear in Table 1. The first four prob- 
lems are small energy examples with varying ob- 
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Table 1 
Problem parameters 
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Problem Period I(A) Period 2(W) 

nl ml  p a n2 m2 p a 

Realizations 
K 

NRG1 7 3 1.000 20 8 0.375 3 
NRG2 7 3 1.000 20 8 0.375 3 
NRG3 7 3 1.000 20 8 0.375 9 
NRG4 7 3 1.000 20 8 0.375 27 
SCAGR7.S2 36 16 0.191 79 39 0.092 8 

a Fraction of elements (excluding slack variable elements) which are nonzero. 

jectives and constraints and the last example is a 
stochastic two-stage version of one of Ho and 
Loute's [7] staircase problems. These examples 
were chosen because of their applicability and the 
facet structure of their recourse functions. 

The problems were solved using the FORTRAN-G 
compiler at The University of Michigan on an 
Amdahl 5860. The number of major iterations, 
simplex iterations and CPU seconds are given for 
each problem in Table 2, where 'Single cut' refers 
to NDREG and 'Multiple cuts' refers to NDSEP. 
Both NDREG and NDSEP used the bunching ap- 
proach (Wets [14]) for solving second-period prob- 
lems. They also both included the deletion of slack 
cuts which resulted in savings of up to twenty 
percent in CPU times. 

The results in Table 2 illustrates the effective- 
ness of the multicut approach and some of its 
shortcomings. In each example, the number of 
major iterations is reduced. This is due to the 
passing of more information on each major itera- 
tion as noted above. A difficulty arises, however, 
because of the increased size of (11)-(13) over 
(4)-(6). Although (4)-(6) in the worst-case may 
have many more constraints than (11)-(13), pro- 
gram (11)-(13) is initially larger and, hence, re- 

quires more time to solve. This leads to the in- 
creased time in solving NRG4 by NDSEP. NDSEP, 
in fact, spends 2.8 more CPUs solving (11)-(13) 
than NDREG spends solving (4)-(6) on NRG4. 
This problem is an especially bad case because the 
original problem is so small that the addition of 
27 extra constraints increases its size nine-fold and 
has a significant slowing effect. 

These examples suggest that the multicut ap- 
proach can lead to significant reductions in the 
number of major iterations. As indicated above, 
the worst-case advantage of the multicut approach 
in limiting major iterations is enhanced as m 2 
increases in size. The experiments show that the 
multicut approach is most effective when the 
number of realizations K is not significantly larger 
than the number of first period constraints n 1. 
When K is large relative to n l, it may be advanta- 
geous to use a hybrid approach in which subsets 
of the realizations are grouped together to form a 
reduced number of combination cuts. The worth 
of this and other strategies is, however, problem 
dependent and should be demonstrated through 
experimentation in different and varied applica- 
tion areas. 

Table 2 
Experimental results 

Problem Single cut 

Major Simplex 
iterations iterations 

CPUs 

Multiple cuts 

Major Simplex CPUs 
iterations iterations 

NRG1 10 117 0.34 6 64 0.23 
NRG2 13 163 0.49 9 92 0.35 
NRG3 14 196 1.26 8 121 1.11 
NRG4 14 207 3.19 7 166 5.66 
SCAGR7.S2 10 138 1.66 7 108 1.40 
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Appendix A send the cut 

x + l  Assume that  n x = 1, n 2 = 2, m 2 =- 1, K = 3, W 0 1> - -  
=(1-1) ,  and Q(x, ~ ) = ( ~ - x ,  ifx_<~; x -  3 

~, if x >/~ }, and that  ~ can take on the values 1, 2, 
and 4, each with probabi l i ty  1 /3 .  Assume also 
cx -- 0 and 0 < x < 10. No te  that  Q has two slopes 
for each ~, hence, b = 2. 

Figure 1 represents the functions Ql(x), Q:(x),  
Q3(x) ,  and ~2(x). Since the first-stage objective cx 
is zero, ~2(x) is also the funct ion z(x)  to be 
minimized. Assume the start ing point  is x ~ =  0. 
The  sequence of i terations for the L-shaped 
method  would be: 

Iteration 1: x ~ is not opt imal;  send the cut 

0 >/- 7 / 3  - x. 

Iteration 2: x 2 =  10, 0 2 =  - 2 3 / 3  is not  opti-  01 > / -  
mal;  send the cut 

0 >/- x - 7 / 3 .  

Iteration 3." x 3 =  7 /3 ,  03--  0 is not  opt imal;  

1 ~x 

1 2 

'O3(x} 

i h f v 
2 3 4 

Iteration 4." x 4 = 1.5, O 4 ~--- 2 .5 /3  is not opt imal ;  
send the cut 

5 - - X  
0 > - - -  

3 

Iteration 5: x 5 = 2, 05 = 1, which is the opt imal  
solution. 

Starting f rom x 1 =  0, the mult icut  approach  
would yield the following sequences: 

Iteration 1: x x is not  opt imal;  send the cuts 

4 - x  2 - x  1 - x  
3 ' 02>'--5--' 03>-'---3--- 

Iteration 2." x 3 =  10, 
= - 3  is not  opt imal;  
send the cuts 

0?= -2, -8/3, 

x - 4  x - 2  x - 1  
01>--T-,  02>---y--, 03>-~--- 

Iteration 3.' x 3 = 2, 03 = 2 /3 ,  03 -- 0, 03 = 1 / 3  
is the opt imal  solution. 

Therefore,  by sending separate  cuts on Ql(x), 
Q2(x) ,  and Q3(x), the full description of ~ ( x )  is 
obta ined in two iterations. 

Appendix B 

Assume nl = 1, rn 2 = 3, n 2 = 6, 

W =  1 0 0 1 0 
0 1 0 0 1 

and K = 2 realizations of  ~ with equal probabi l i ty  
1 /2 .  These realizations are ~1__ (ql,  h l, T 1) and 
~ 2 = ( q 2 ,  h 2, T 2 ) ,  where ql = ( 1 ,  0, 0, 0, 0 ,0), 
q2 = (3/2 ,  0, 2 /7 ,  1, 0, 0), h 1 = ( -  1, 2, 7) "r, h 2 --- 

(0, 2, 7) r, and T I = T z = (1). For  the first value of 
~, Q(x, ~) has two pieces, such that  

Q l ( x ) = { o X - 1  i fx~<  - 1 ,  
if x>-  - 1 .  

Figure 1. Recourse functions For  the second value of ~, Q(x, ~) has four pieces 
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such that  

/ O 1 . 5  x i f / ~ < 0 ,  
i f 0 ~ < x ~ < 2 ,  

a 2 ( x ) = ] 2 / 7 ( x - 2 )  i f 2 ~ < x ~ < 9 ,  

\ x - 7  if x>_-9. 

A s s u m e  also tha t  x is b o u n d e d  by  - 2 0  ~< x ~< 
20 a n d  c = 0. S ta r t ing  f rom a n y  in i t i a l  p o i n t  x 1 ~< 

- 1 ,  one  ob t a in s  the  fo l lowing sequence  of i te ra te  

po in t s  a n d  cuts  for the L- shaped  me thod .  N o t e  

tha t  four  s lopes occur  for Q2, hence,  b = 4. 

Iteration 1: x 1 =  - 2 ,  01 is omi t t ed ;  n ew  cu t  

0 >/ - 0 . 5  - 1.25x. 
Iteration 2: x 2 =  + 2 0 ,  0 2 =  - 2 5 . 5 ;  n e w  cut  

0 >1 0.5x - 3.5. 
Iteration 3: x 3 =  1 2 / 7 ,  0 3 =  - 3 7 / 1 4 ;  n e w  cut  

0 > / 0 .  
Iteration 4: x 4 ~ [ - 2 / 5 ,  7], 04 = 0. 

If  x 4 is chosen  to be  a n y  va lue  in  [0,2] t hen  the  

a lgor i thm t e rmina t e s  at I t e r a t i o n  4. 
The  m u l t i c u t  a p p r o a c h  wo u l d  genera te  the  fol- 

lowing  sequence.  

Iteration 1: x 1 =  - 2 ,  0~ a n d  021 omi t t ed ;  n e w  

cuts  01 >/ - 0.5x - 0.5, 02 >/ - 3 / 4 x .  
Iteration 2: x 2 = 2 0 ,  07 = - 1 0 . 5 ,  02 z =  - 1 5 ;  

new  cuts  01 >/0, 02 > /0 .5x  - 3.5. 
Iteration 3." x 3 = 2 . 8 ,  0 3 = 0 ,  03 = - 2 . 1 ;  n e w  

cut  02 > / 2 / 7 ( x  - 2). 
Iteration 4." x 4 = 0.552, 04 = 0, 04 = - 0 . 4 1 4 ;  

new  cut  02 >/0. 
Iteration 5: x 5 = 0, 0~ = 025 = 0, STOP. 
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