Die in der Kartografie verwendete Mercator-Projektion ist eine nach dem Kartografen Gerhard Mercator benannte Form der Zylinderprojektion, bei der die Projektion in Richtung der Zylinderachse adäquat verzerrt ist, um eine winkeltreue Abbildung der Erdoberfläche zu erreichen. Die Mercator-Projektion ist keine Projektion in physikalischer Hinsicht und kann daher nicht geometrisch konstruiert werden. Die Winkeltreue ist gleichbedeutend mit Konformität, so dass geometrische Formen im Kleinen unverzerrt bleiben. Dagegen ist die Mercator-Projektion weder flächentreu noch richtungstreu über große Distanzen, d. h., Flächeninhalte haben an verschiedenen Stellen der Abbildung unterschiedliche Maßstäbe; Richtungswinkel zu entfernten Punkten sind in der ebenen Karte und auf der Kugel nicht gleich, weil Großkreise als kürzeste Verbindungen zweier Punkte nicht auf Geraden abgebildet werden. Längentreue besteht nur entlang einer oder zweier ausgezeichneter Linien.
Nach der Lage des Projektionszylinders unterscheidet man die normale Mercator-Projektion, bei der die Zylinderachse identisch mit der Erdachse ist, die transversalen Mercator-Projektionen mit Zylinderachsen senkrecht zur Erdachse sowie die schiefen Mercator-Projektionen in den anderen Fällen.
Mercator-Projektionen finden insbesondere in der Navigation und im Vermessungswesen Anwendung: in der Navigation als normale Projektion, im Vermessungswesen überwiegend als transversale Projektionen mit unterschiedlichen Achsen für verschiedene Meridianstreifen (UTM, Gauß-Krüger-Koordinatensystem u. a.). Gerhard Mercator hatte 1569 zu Navigationszwecken eine Karte dieser Art in normaler Lage der Abbildungsfläche veröffentlicht, auf der erstmals ein gesteuerter Kurs als Gerade eingezeichnet werden konnte (siehe: Nova et aucta orbis terrae descriptio ad usum navigantium emendate accomodata).
Konstruktion
BearbeitenDie Erdoberfläche ist in erster Näherung eine Kugeloberfläche, die nicht verzerrungsfrei auf eine ebene Karte abgebildet werden kann. Bei der Mercator-Projektion wird um die Erde ein gedachter Zylinder gelegt, der diese entlang eines Großkreises berührt oder in zwei Kreisen beiderseits dieses Großkreises schneidet. Von der Mitte des Globus aus wird jeder Punkt des Globus gradlinig auf den Zylinder projiziert. Dabei werden innerhalb des Zylinders liegende Urbilder in Umfangsrichtung umso stärker vergrößert, je näher sie an der Zylinderachse liegen; außerhalb liegende werden verkleinert. Um Winkeltreue zu erreichen, muss ein solches Flächenelement daher in Achsrichtung um denselben Faktor vergrößert werden. Um die Lage in Achsrichtung zu bestimmen, muss die Vergrößerung über die Strecke von der Berührungslinie bis zum zu projizierenden Punkt rechnerisch integriert werden.
Normale Mercator-Projektion
BearbeitenBei der normalen Mercator-Projektion werden Breitenkreise und Meridiane zu Geraden. Flächen werden durch die Projektion auf die nun parallelen Meridiane in Ost-West-Richtung mit dem Kehrwert des Cosinus der geographischen Breite gedehnt. In Nord-Süd-Richtung muss daher dieselbe Dehnung vorgenommen werden, die Lage eines Punktes errechnet sich dann mit dem Integral des Kehrwerts des Cosinus der geographischen Breite.
Abbildungsgleichungen für normale Lage
BearbeitenDie folgenden Gleichungen bestimmen die Koordinaten und eines Punktes auf einer Mercatorkarte aus seiner geographischen Breite und geographischen Länge (mit als geographischer Länge des Kartenzentrums, Winkel im Bogenmaß). Die Erde wird als kugelförmig angenommen; Längen sind mit dem Erdradius dimensionslos gemacht. Die Gleichung für ist das oben genannte Integral des Kehrwerts des Cosinus der geographischen Breite (anstelle des Tangens bei der gnomonischen Zylinderprojektion):
Die Inverse ist die Gudermannfunktion:
Transversale Mercator-Projektion
BearbeitenDie Anwendung der Mercator-Projektion in transversaler Lage des Abbildungszylinders wurde 1772 von Johann Heinrich Lambert veröffentlicht. Zur Steigerung der Genauigkeit erweiterte Carl Friedrich Gauß 1825 die Anwendung auf das Erdellipsoid, die von Louis Krüger 1912 für die praktische Anwendung weiter untersucht wurde (vgl. Gauß-Krüger-Koordinatensystem).
Abbildungseigenschaften
BearbeitenDie wichtigste Eigenschaft der Mercator-Projektion ist ihre Winkeltreue. Diese bedeutet auch, dass in kleinen Bereichen der Längenmaßstab in allen Richtungen gleich ist. Jedoch ist er nur entlang der Berührungslinie und ihrer Parallelen konstant. Nur an Berührungslinien ist die Projektion längentreu, d. h., entspricht dem angegebenen Maßstab. Damit ist sie auch nicht flächentreu. Die Verzerrungen werden mit Abstand zur Berührungslinie zunehmend größer und an der Achse der Projektion unendlich. Bei zwei Berührungslinien wird der Bereich zwischen diesen gestaucht.
Die Winkeltreue führt in normaler Lage auch zur Achsentreue. Das heißt hier, dass die Nordrichtung überall auf der Karte dieselbe ist. Zusammen mit der Winkeltreue bedeutet dies, dass Loxodromen (d. h. gleichbleibende Kurse) als Geraden abgebildet werden. Kürzeste Verbindungen werden jedoch nicht als Geraden abgebildet, dazu wäre stattdessen Richtungstreue erforderlich (→ gnomonische Azimutalprojektion).[1]
Je näher ein Gebiet am Nord- oder Südpol liegt, desto mehr wird es bei der Abbildung in normaler Lage vergrößert. Dadurch ist die Insel Grönland (2,2 Mio. km²) in dieser Kartenprojektion fast so groß dargestellt wie der Kontinent Afrika (30,3 Mio. km²). Der Nord- und der Südpol können nicht dargestellt werden, da diese Punkte in der Projektion im Unendlichen liegen.
Verwendung
BearbeitenSeekarten
BearbeitenDie normale Mercator-Abbildung liegt wegen ihrer Winkel- und Achsentreue fast allen Seekarten und einigen Luftfahrtkarten zugrunde. Die Maßstabsänderungen sind auf größeren Ausschnitten der Erdoberfläche merklich, so dass die am Kartenrand gedruckte Breitengradskala nicht äquidistant ist. Eine Seemeile auf der Seekarte entspricht genau einer Bogenminute auf der gleichen Breite am linken oder rechten Kartenrand.
Landesvermessung
BearbeitenFür kleinräumige Karten, insbesondere für die Grundkarten sehr vieler Landesvermessungen, findet die transversale Mercator-Projektion als Gauß-Krüger-Koordinatensystem, Universale transversale Mercator-Projektion (UTM) und Ähnliches in großem Umfang Anwendung. Die UTM findet Anwendung in 30 unterschiedlichen Achslagen für jeweils 6° breite Streifen, Gauß-Krüger verwendet doppelt so viele Lagen für Streifen von 3°. Um die Längentreue über die breitere Abbildungsfläche zu verbessern, schneidet bei der UTM der Projektionszylinder das Erdellipsoid in zwei Linien.
In Deutschland und Österreich war bisher die Gauß-Krüger-Projektion Grundlage der Landesvermessung. Die in der Geodäsie mittlerweile erforderliche internationale Zusammenarbeit hat international der auf Gauß-Krüger basierenden jüngeren Universalen Transversalen Mercator-Projektion zur Durchsetzung verholfen, auf die auch in Deutschland und Österreich umgestellt wird.
In der schweizerischen Landesvermessung findet eine schiefachsige Mercator-Projektion Anwendung, bei der die Achse so gewählt ist, dass der Fundamentalpunkt der Landesvermessung, die Sternwarte Bern, auf demselben Meridian sowie auf der Berührungslinie liegt.[2]
Karten im Internet
BearbeitenIm Internet nutzen sowohl freie Projekte wie OpenStreetMap[3] als auch kommerzielle Anbieter wie Bing Maps und Yahoo Maps für zweidimensionale Darstellungen vorzugsweise diese Projektion.
Google Maps wechselte 2018 dagegen auf eine orthografische Azimutalprojektion, bei der die Kugelgestalt der Erde beim Herauszoomen sichtbar wird.[4]
Großflächige Karten
BearbeitenFür großflächige Karten, insbesondere Weltkarten, soweit sie nicht speziell der Kursbestimmung in der Navigation dienen, ist die Mercator-Projektion wegen ihrer mit zunehmendem Abstand von der Berührungslinie stark zunehmenden Verzerrungen ungeeignet. Dass sie hier dennoch zeit- und teilweise verwendet wurde, führte ab 1974 zu einer von Arno Peters initiierten Diskussion um die Mercator-Projektion und die Alternative der annähernd flächentreuen zylindrischen Gall-Peters-Projektion, die in der Kartographie als Galls orthographische Projektion bekannt ist. Peters kritisierte, dass die Mercator-Projektion ein „eurozentrisches Weltbild“ vermittele, da auf einer Weltkarte in normaler Mercator-Projektion industrialisierte Länder in gemäßigten Breiten wie Europa im Verhältnis größer erscheinen als äquatornahe Gebiete, wo hauptsächlich Entwicklungsländer liegen.
Literatur
Bearbeiten- Mark Monmonier: Rhumb Lines and Map Wars: A Social History of the Mercator Projection. University of Chicago Press, Chicago 2004, ISBN 0-226-53431-6.
- Reinhard Buchholz, Wilhelm Krücken: Die Mercator-Projektion. Zu Ehren von Gerhard Mercator (1512–1594). Becker, Velten 1994, ISBN 3-930640-36-8.
- Julius Löwenberg: „Nach Mercator’s Projection“. In: Die Gartenlaube. Heft 36, 1878, S. 592–594 (Volltext [Wikisource]).
- Manfred Spata: Die Universale Transversale Mercator-Abbildung (UTM-Abbildung) in der deutschen Landesvermessung. In: Duisburger Forschungen, Band 59, 2013, S. 269–299. ISBN 3-87463-532-5. Weblinks
- Ad maiorem Gerardi Mercatoris gloriam. Website von F. Wilhelm Krücken zu Mercator, der Mercator-Projektion und der Peters-Projektion
- Zum 500. Geburtstag des genialen Kartografen Gerardus Mercator Website von Fred Killet zu Mercator und der Mercator-Projektion
- John Parr Snyder, Map projections used by the U.S. Geological Survey, 1982, [1] S. 50f
Einzelnachweise
Bearbeiten- ↑ Sönke Roever: Der Umweg ist kürzer! Segeln auf der Großkreisroute. In: Blauwasser.de. 7. April 2016, abgerufen am 4. März 2023 (deutsch).
- ↑ Schweizerisches Bundesamt für Landestopographie, Website: Schweizerische Kartenprojektionen
- ↑ Frederik Ramm, Jochen Topf: OpenStreetMap: Die freie Weltkarte nutzen und mitgestalten. ISBN 978-3-86541-375-8.
- ↑ Tilman Wittenhorst: Keine flache Erde mehr: Google Maps wechselt zu Globus-Ansicht. In: heise.de. 4. August 2018, abgerufen am 12. September 2019.