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Minimal measurements of the gate fidelity of a qudit map
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We obtain a simple formula for the average gate fidelity of a linear map acting on qudits. It is given in terms
of minimal sets of pure state preparations alone, which may be interesting from the experimental point of view.
These preparations can be seen as the outcomes of certain minimal positive operator valued measures. The
connection of our results with these generalized measurements is briefly discussed.

DOI: 10.1103/PhysRevA.67.014303 PACS number~s!: 03.67.2a, 89.70.1c, 03.65.Wj
n
ar
ta
il
f
or
n

y

ur

se

a
in
s

r

a
r-

-
is
d

fa
or

e

es-

ver
ns,

e
li

t

as

s is
The interaction with the environment has a significa
negative impact on any physical implementation of a unit
gate or a quantum channel. Decoherence, turning pure s
into mixed states, creeps up and unitarity is lost in the H
bert subspace of the signal states. The characterization o
quality of such implementations is, hence, of utmost imp
tance for quantum computation from both experimental a
theoretical points of view@1#.

A physical quantum gate or channel is best described b
trace-preserving linear map or superoperatorE, which is as-
sumed to be an approximation of a unitary operatorU char-
acterizing the quantum gate (U51 for a quantum channel!.
The average gate fidelity

F̄~E,U !5E dc tr@UrcU†E~rc!#, ~1!

wheredc is the invariant Haar measure on the space of p
statesuc& ~i.e.,dc5dc8 if uc8&5Uuc&) andrc5uc&^cu, is
recognized as a convenient figure of merit and is widely u
to assess the quality of a quantum gate or channel.

For gates acting on qubits, Bowdreyet al. @2# have re-
cently derived a simple formula forF̄(E,U), from which
they obtain a convenient way of actually measuring the g
fidelity in a laboratory. It amounts to replacing the integral
Eq. ~1! by a sum over a finite number of pure states who
Bloch vectors point at the vertices of an octahedron o
tetrahedron inscribed in the Bloch sphere. Nielsen@3# has
obtained a similar formula for qudits~i.e., quantum states
belonging to ad-dimensional Hilbert space! in terms of a
finite set of unitary operationsU j orthogonal with respect to
the Hilbert-Schmidt inner product, namely, such th
tr(Ui

†U j )5d d i j . His derivation is based on Horodeckis’ fo

mula connectingF̄(E,1)[F̄(E) with the entanglement fidel
ity @4#, for which he also provides a simple proof. Our aim
to obtain a more natural expression of the average gate fi
ity so that only measurements over a~minimum! number of
pure states need to be performed to verifyF̄ experimentally.
Interestingly enough, the solution to this problem is not
removed from that of obtaining minimal positive operat
valued measurements~POVMs! in the context of optimal
communication of directions through a quantum~spin! chan-
nel, which has received much attention over the last f
years@5–7#.
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In the first part of this paper we derive a general expr
sion for F̄ in terms of the SU(d) group generators. In the
second part we writeF̄ as an average of measurements o
a finite and minimal number of pure state preparatio
which may be experimentally relevant.

We first notice that due to the invariance ofdc one has
F̄(E,U)5F̄(E8,1)5F̄(E8), whereE8(r)[E(U†rU). Hence
we only need to consider the simpler formF̄(E) without any
loss of generality. Furthermore, the uniform measuredc can
be effectively realized in the following way:*dcF(c)
[*dU F(Uc0), whereF is any function ofrc , uc0& is a
fixed reference state, anddU is the Haar measure of SU(d)
normalized such that*dU51. This ensures that*dcF(c)
5*dcF(U8c) for any U8PSU(d). Obviously, not all the
d221 parameters involved indU are physically significant.
For example, for qubits (d52), dc5dn is the uniform mea-
sure on the 2-sphereS2, which can be parametrized by th
Euler anglesa and b. If uc0& is an eigenstate of the Pau
matrix sz , any function ofrc is independent of the third
Euler angle g. Hence, *dc F5@*dg/(2p)51#3*dnF
5*dU F. For qudits,dn must be replaced by the invarian
measure of SU(d)/@SU(d21)3U(1)#, since any reference
density matrixr0[uc0&^c0u is now invariant under SU(d
21)3U(1). Note that the number of parameters match,
qudits depend on 2(d21) real variables. With all this, we
finally have

F̄~E!5E dU tr@Ur0U†E~Ur0U†!#. ~2!

There exists a (d221)-dimensional unitary vector with
componentsn0

a , a51,2, . . . ,d221, such that the density
matrix r0 can be written as

r05
1
d

1kdn0
aTa[

1
d

1kdnW 0•TW , ~3!

where kd5A2(d21)/d and $Ta% are the ~Hermitian and
traceless! generators of SU(d) @8#, normalized so that
tr(TaTb)5dab/2. They can be chosen asTa5la/2, wherela
are a generalization of the Gell-Mann matrices of SU(3).
Throughout this paper a sum over repeated latin indice
understood. It is straightforward to obtain
©2003 The American Physical Society03-1
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nW 05
2

kd
tr ~r0TW !. ~4!

We now recall the well-known relation@8#

UTaU†5~AU !a
bTb , ~5!

whereA stands for the adjoint representation of SU(d). We
also recall the orthogonality of the irreducible represen
tions of compact groups, which in the present case impli

E dU~AU !a
b50, ~6!

E dU~AU !a
b~AU !c

d5
dacd

bd

d221
. ~7!

Assuming thatE is linear and trace preserving, one gets

F̄~E!5
1

d
1

2

d~d11! (
a51

d221

tr@TaE~Ta!#. ~8!

This is the generalization of the formula for qubits

F̄~E!5
1

2
1

1

3 (
i 5x,y,z

trFs i

2
ES s i

2 D G ~9!

obtained in Ref.@2#. This concludes the first part of thi
paper.

The key ingredient of the derivation above is the orthog
nality relation of the group representations, exemplified
Eqs. ~6! and ~7!. We will show that it is possible to find a
discrete version of these equations. Namely, one can fin
finite set of SU(d) elements$Ur% and positive constants$cr%
such that

(
r

cr~AUr !a
b50, ~10!

(
r

cr~AUr !a
b~AUr !c

d5
dacd

bd

d221
. ~11!

With this we can reverse the steps going from Eq.~2! to Eq.
~8! using the relations~10! and~11! instead of their continu-
ous versions~6! and ~7!, and obtain

F̄~E!5(
r

cr tr @r rE~r r !#. ~12!

This equation has a very convenient form that allows set
up experimental tests to determine the fidelity of a gate
channel, as will be discussed below.

Let us briefly discuss the solutions to Eqs.~10! and ~11!.
The idea is to generalize the concept of a finite set ofisotro-
pically distributedunit vectors introduced in Ref.@6# and
adapt it to the problem at hand. A sufficient condition for E
~12! to hold can be obtained by contracting Eqs.~10! and
~11! with n0

a . If we define
01430
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n0
a~AUr !a

b[nr
b , ~13!

conditions~10! and ~11! lead to

(
r

crnr
b50; (

r
crnr

bnr
d5

dbd

d221
. ~14!

In this sense, we may qualify the set$nr% as isotropically
distributed@as far as the adjoint representation SU(d) is con-
cerned#. We have traded the problem of finding$Ur% for that
of finding $nr%. Note, however, that the set of matrices$AU%
is a proper subgroup of SO(d221). Hence, no vector on the
sphereSd222 is admissible. We will come back to this issu
below. The relations~10!, ~11!, and ~14! also appear in a
rather different context: the construction of finite positi
operator valued measurements that are optimal for com
nicating a direction@6,7,9#. Leaving aside an overall trivia
normalization ~from Eq. ~14! it follows that ( rcr51,
whereas in Ref.@9# ( rcr5d), the results in those papers ca
be readily used here. In particular, it is proved in Ref.@9# that
solutions of Eq.~14! exist and the minimal one is given by
set ofd2 vectors pointing at the vertices of a regular hype
tetrahedron or, more properly, (d221) simplex, inscribed on
Sd222. This hypertetrahedron is defined by the condition

nW r•nW s52
1

d221
, rÞs, ~15!

and the exact overall orientation has to be chosen so tha
vectorsnW r are of the form~13!. For this hypertetrahedron a
the coefficientscr are equal: in our notationcr51/d2, r

51,2, . . . ,d2. An explicit form of nW r for SU(3) can be
found in Ref.@9#, where also the general case is briefly d
cussed. The solution is more conveniently expressed in te
of statesuc r& such that

uc r&^c r u[r r5Urr0Ur
†5

1
d

1kdnW r•TW . ~16!

Then Eq.~15! translates into

u^c r ucs&u25
1

d11
, rÞs. ~17!

Since this equation is a condition on states, Eq.~13! is auto-
matically satisfied by the corresponding Bloch vectors.

For SU(3) a solution of Eq.~17! has the simple form

uc r&5
1

A2 S 1

e2(r 21)p i /3

0
D , r 51,2,3. ~18!

The remaining six states are obtained by applying cyclic p
mutations to the components ofuc1 –3& ~a different choice of
states is given in Ref.@9#!. From the experimental point o
view, the states~18! have a very appealing form; each o
them involves a linear combination ofonly twostates of the
3-2
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computational basis. If the qutrit is implemented by say th
atomic levels, only two levels need to be manipulated
prepare each one of ther r .

In the SU(2) case, a solution in terms ofnW r is more
simple and transparent, mainly because SU(2) is isomor
to SO(3), which makes Eq.~13! trivially satisfied by any
vector ofS2. A compact solution is given by

nW 15
1

A3
~1,1,1!, nW 25

1

A3
~21,21,1!, ~19!

and nW 3 , nW 4 are again obtained by applying cyclic permut
tions to the components ofnW 2.

For the hypertetrahedra discussed above, Eq.~12! can be
cast as

F̄~E!5
1

d2 (
r 51

d2

tr@r rE~r r !#, ~20!

which is the SU(d) generalization of Bowdreyet al. SU(2)
formula. This equation is our main result and provides
remarkably simple procedure for measuringF̄(E). One just
has to average the fidelities ford2 isotropically distributed
pure states. Notice that all state preparationsr r have the
same weight in the average, thus reducing systematic er
In some sense, Eq.~20! can be regarded as the average s
vival rate of the states$r r% in a quantum channel characte
ized by the linear mapE. There is an alternative way o
. A
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writing Eq. ~20!, which may provide further insight. It is
straightforward to verify that the projectorsOr[r r /d are the
complete set of positive operators~i.e., (Or51) of a mini-
mal POVM. Thus, there exists a device characterized
$Or% whose preparations are preciselyr r . We can write Eq.
~20! as

F̄~E!5
1

d (
r 51

d2

tr@OrE~r r !#. ~21!

We readily see that the same device$Or% can be used for the
preparations of the pure states$r r% as well as for the mea
surements over$E(r r)%.

Although we have presented the results for the minim
sets ofr r , for practical reasons, one may wish to use a lar
number of states. This possibility is easily implemented
this framework, as conditions~13! and ~14! are not specific
of minimal sets but entirely general. For example, for qub
one can find a set of six states whose Bloch vectors poin
the vertices of a regular octahedron@2,5,7#!. In this case
there is a simple setting for preparing the states, just th
Stern-Gerlach’s oriented along the three orthogonal dir
tions.
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