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Minimal measurements of the gate fidelity of a qudit map
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We obtain a simple formula for the average gate fidelity of a linear map acting on qudits. It is given in terms
of minimal sets of pure state preparations alone, which may be interesting from the experimental point of view.
These preparations can be seen as the outcomes of certain minimal positive operator valued measures. The
connection of our results with these generalized measurements is briefly discussed.
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The interaction with the environment has a significant In the first part of this paper we derive a general expres-
negative impact on any physical implementation of a unitarysion for F in terms of the SUd) group generators. In the

gate or a quantum channel. Decoherence, turning pure statgg part we writ€ as an average of measurements over

into mixed states, Creeps up and unitarity Is IOSt_ n Fhe Hil-3 “finite and minimal number of pure state preparations,
bert subspace of the signal states. The characterization of t%’nich may be experimentally relevant

quality of such implementations is, hence, of utmost impor- We first notice that due to the invariance af one has
tance for quantum computation from both experimental ang— } , N
theoretical points of viewd]. F(EU)= F(E )= F(f,’ ), where&'(p)= €(U pU). Hence
A physical quantum gate or channel is best described by #e only need to consider the simpler fof4<) without any
trace-preserving linear map or superoperatowhich is as- ~ 10ss of generality. Furthermore, the uniform measiiyecan
sumed to be an approximation of a unitary operatcchar-  be effectively realized in the following wayfdy7(#)

acterizing the quantum gatéJ&1 for a quantum channel  =/dU F(Ud,), whereF is any function ofp,, |¢o) is a
The average gate fidelity fixed reference state, artlJ is the Haar measure of Sd)(

normalized such thafdU=1. This ensures thatd ()
_ =[dyF(U'¢) for any U’ e SU(d). Obviously, not all the
F(E,U)ZJ dyrtr[Up, UTEpy)], (1) d?>—1 parameters involved idU are physically significant.
For example, for qubitsd=2), d¢/=dn is the uniform mea-
ure on the 2-spher#?, which can be parametrized by the
uler anglese and 8. If | ) is an eigenstate of the Pauli
atrix o, any function ofp, is independent of the third
uler angle y. Hence, [dy F=[fdy/(27)=1]XfdnF
=[dU F. For qudits,dn must be replaced by the invariant
measure of SW)/[SU(d—1)*xU(1)], since any reference
densny matrixpo=|o){o| is now invariant under S
1)XU(1). Note that the number of parameters match, as
qudits depend on 2i(— 1) real variables. With all this, we
ehnally have

whered is the invariant Haar measure on the space of pur
stateq y) (i.e., dy=dy’ if [y')=U|y)) andp,=|y)(yl, is
recognized as a convenient figure of merit and is widely use
to assess the quality of a quantum gate or channel.

For gates acting on qubits, Bowdrey al. [2] have re-

cently derived a simple formula foF(&,U), from which
they obtain a convenient way of actually measuring the gate
fidelity in a laboratory. It amounts to replacing the integral in
Eq. (1) by a sum over a finite number of pure states whos
Bloch vectors point at the vertices of an octahedron or a
tetrahedron inscribed in the Bloch sphere. Niel§8hhas
obtaine_d a similar form_ula for _qudité.e., quantum states E(g):f dU tr[UpoUTEWUpoUN]. 2)
belonging to ad-dimensional Hilbert spagen terms of a

finite set of unitary operationd; orthogonal with respect to ] ] ) ) ]
the Hilbert-Schmidt inner product namely, such that There exists ad®—1)-dimensional unitary vector with
tr(UfU;)=d &, . His derivation is based on Horodeckis' for- cCOmponentsng, a=1,2,. .. d?=1, such that the density

mula connectlng:(é’,i) F(S) with the entanglement fidel- matrix po can be written as
ity [4], for which he also provides a simple proof. Our aim is
to obtain a more natural expression of the average gate fidel-
ity so that only measurements ovefrainimum) number of

pure states need to be performed to veRfgxperimentally.

Interestingly enough, the solution to this problem is not farwhere ky=+2(d—1)/d and {T,} are the (Hermitian and
removed from that of obtaining minimal positive operator traceless generators of SW) [8], normalized so that
valued measuremeni®OVMs) in the context of optimal tr(T,Ty) = 8,,/2. They can be chosen @g=\,/2, wherex ,
communication of directions through a quant(spin) chan-  are a generalization of the Gell-Mann matrices of(SU

nel, which has received much attention over the last fewrhroughout this paper a sum over repeated latin indices is
years[5-7]. understood. It is straightforward to obtain

>

1 1 -
p0:a+kdngTaEa+kdn0'T, (3)
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.2 -
o= 1 (poT). (4)

We now recall the well-known relatiof8]
UT.UT=(A4U).°T,, (5

where A stands for the adjoint representation of S)J(We
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ng(AU) =ny, (13
conditions(10) and(11) lead to
sod
Er: ¢,nP=0; Er: crnf’n?:m. (14)

also recall the orthogonality of the irreducible representaln this sense, we may qualify the st} as isotropically
tions of compact groups, which in the present case imp”esdlstnbuted[as far as the adjoint representation 8Y{s con-

f dU(AU)P=0, (6)

d

54c0”
J dU(AU),"(AU) = 21 (7)

Assuming that is linear and trace preserving, one gets

d2-1

a; [T E(Ta)1. ®

_ 1 2
FEO=49" da+D

This is the generalization of the formula for qubits

(o] (Ui>
585 C)

_ 11
F(€)=§+§i2 tr

=X,y,z

obtained in Ref[2]. This concludes the first part of this

paper.

The key ingredient of the derivation above is the orthogo

cerned. We have traded the problem of findifig,} for that
of finding{n,}. Note, however, that the set of matride$U}
is a proper subgroup of S@—1). Hence, no vector on the

sphereSdz*2 is admissible. We will come back to this issue
below. The relationg10), (11), and (14) also appear in a
rather different context: the construction of finite positive
operator valued measurements that are optimal for commu-
nicating a directior{6,7,9. Leaving aside an overall trivial
normalization (from Eq. (14) it follows that X,c,=1,
whereas in Refl9] =,c,=d), the results in those papers can
be readily used here. In particular, it is proved in Réf.that
solutions of Eq(14) exist and the minimal one is given by a
set ofd? vectors pointing at the vertices of a regular hyper-
tetrahedron or, more properlyd{— 1) simplex, inscribed on

5°-2, This hypertetrahedron is defined by the condition

I 1

NeNs=— 27 r+s, (15

and the exact overall orientation has to be chosen so that all

-

nality relation of the group representations, exemplified byvectorsn, are of the form(13). For this hype_rtetrahedgon all
Egs. (6) and (7). We will show that it is possible to find a the coefficientsc, are equal: in our notatiow,=1/d%, r
discrete version of these equations. Namely, one can find &1,2, ... d%. An explicit form of n, for SU(3) can be

finite set of SU@) elementgU,} and positive constan{z,}
such that

> ¢ (AU)L=0,

r

(10

5 6bd
> ¢ (AU LAY ==

(o3
r d?-1

(11)

With this we can reverse the steps going from &).to Eq.
(8) using the relation$10) and(11) instead of their continu-
ous versiong6) and(7), and obtain

F(5>=Z ctr [pr&(pr)]. (12)

This equation has a very convenient form that allows setting
up experimental tests to determine the fidelity of a gate or

channel, as will be discussed below.

Let us briefly discuss the solutions to Eq$0) and(11).
The idea is to generalize the concept of a finite sasaofro-
pically distributed unit vectors introduced in Ref6] and

found in Ref.[9], where also the general case is briefly dis-
cussed. The solution is more conveniently expressed in terms
of states|,) such that

1 I
[l =p=UrpoU{ = g +ken T. (16)
Then Eq.(15) translates into
) 1
(el ) “qr1 7S (17)

Since this equation is a condition on states, @@) is auto-
matically satisfied by the corresponding Bloch vectors.
For SU(3) a solution of Eq.17) has the simple form

1
1 .
lpy=—=| €V =123 (8
2\

The remaining six states are obtained by applying cyclic per-
mutations to the components |af, _3) (a different choice of

adapt it to the problem at hand. A sufficient condition for Eq.states is given in Ref9]). From the experimental point of

(12) to hold can be obtained by contracting E¢$0) and
(12) with n§. If we define

view, the stateg18) have a very appealing form; each of
them involves a linear combination ohly twostates of the
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computational basis. If the quitrit is implemented by say threavriting Eq. (20), which may provide further insight. It is
atomic levels, only two levels need to be manipulated tostraightforward to verify that the projecto@ =p, /d are the
prepare each one of thg . complete set of positive operatofise., XO,=1) of a mini-

In the SU(2) case, a solution in terms 6;‘ iSs more mal POVM. Thus, there exists a device characterized by
simple and transparent, mainly because SU(2) is isomorphitOr} Whose preparations are precisgly We can write Eq.
to SO(3), which makes Eq(13) trivially satisfied by any (20 as

vector ofS2. A compact solution is given by 2

— 1
F(&)=G 2, tTO&(po)] (21)

.1 - 1
m="=(11D, f=—=(-1-11, (19

V3 V3 _
o We readily see that the same deV{€ } can be used for the
andns, n, are again obtained by applying cyclic permuta- preparations of the pure statgs,} as well as for the mea-

tions to the components of,. surements ovef&(p,)}.
For the hypertetrahedra discussed above,(E2). can be Although we have presented the results for the minimal
cast as sets ofp, , for practical reasons, one may wish to use a larger
number of states. This possibility is easily implemented in
. 1 & this framework, as condition&l3) and (14) are not specific
F(&)= p ;1 trl p E(pr) ], (20 of minimal sets but entirely general. For example, for qubits,

one can find a set of six states whose Bloch vectors point at

o L the vertices of a regular octahedr$d,5,7]). In this case
which is the SU() generalization of Bowdregt al. SU(2) there is a simple setting for preparing the states, just three

formula. Th|§ equation Is our main resul_t and proy|des aStern—GerIach's oriented along the three orthogonal direc-
remarkably simple procedure for measuriR(g). One just ions.

has to average the fidelities fol® isotropically distributed

pure states. Notice that all state preparatiphshave the We are grateful to A. Ao and A. Bramon for helpful
same weight in the average, thus reducing systematic errorsonversations. We acknowledge financial support from
In some sense, E@20) can be regarded as the average sur-CIRIT Project No. SGR-00185, Spanish Ministry of Science
vival rate of the state$p,} in a quantum channel character- and Technology Project No. BFM2002-02588, and the Euro-
ized by the linear magf. There is an alternative way of pean Funds for Regional DevelopmeéREDER).
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