


default search action
Nikola B. Kovachki
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Ricardo Baptista, Bamdad Hosseini
, Nikola B. Kovachki
, Youssef M. Marzouk:
Conditional Sampling with Monotone GANs: From Generative Models to Likelihood-Free Inference. SIAM/ASA J. Uncertain. Quantification 12(3): 868-900 (2024) - [j5]Kaushik Bhattacharya, Nikola B. Kovachki
, Aakila Rajan, Andrew M. Stuart, Margaret Trautner
:
Learning Homogenization for Elliptic Operators. SIAM J. Numer. Anal. 62(4): 1844-1873 (2024) - [c5]Giannis Daras, Weili Nie, Karsten Kreis, Alex Dimakis, Morteza Mardani, Nikola B. Kovachki, Arash Vahdat:
Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models. NeurIPS 2024 - [i26]Nikola B. Kovachki, Samuel Lanthaler, Andrew M. Stuart:
Operator Learning: Algorithms and Analysis. CoRR abs/2402.15715 (2024) - [i25]Nikola B. Kovachki, Samuel Lanthaler, Hrushikesh Mhaskar:
Data Complexity Estimates for Operator Learning. CoRR abs/2405.15992 (2024) - [i24]Edoardo Calvello, Nikola B. Kovachki, Matthew E. Levine, Andrew M. Stuart:
Continuum Attention for Neural Operators. CoRR abs/2406.06486 (2024) - [i23]Hongkai Zheng, Wenda Chu, Austin Wang, Nikola B. Kovachki, Ricardo Baptista, Yisong Yue:
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems. CoRR abs/2409.20175 (2024) - [i22]Giannis Daras, Weili Nie, Karsten Kreis, Alex Dimakis, Morteza Mardani, Nikola Borislavov Kovachki, Arash Vahdat:
Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models. CoRR abs/2410.16152 (2024) - [i21]Jean Kossaifi, Nikola B. Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George, Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, Anima Anandkumar:
A Library for Learning Neural Operators. CoRR abs/2412.10354 (2024) - 2023
- [j4]Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs. J. Mach. Learn. Res. 24: 89:1-89:97 (2023) - [j3]Maarten V. de Hoop, Nikola B. Kovachki
, Nicholas H. Nelsen
, Andrew M. Stuart
:
Convergence Rates for Learning Linear Operators from Noisy Data. SIAM/ASA J. Uncertain. Quantification 11(2): 480-513 (2023) - [c4]Zongyi Li, Nikola B. Kovachki, Christopher B. Choy, Boyi Li, Jean Kossaifi, Shourya Prakash Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, Animashree Anandkumar:
Geometry-Informed Neural Operator for Large-Scale 3D PDEs. NeurIPS 2023 - [i20]Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal, Arash Vahdat, Anima Anandkumar:
Score-based Diffusion Models in Function Space. CoRR abs/2302.07400 (2023) - [i19]Ricardo Baptista, Bamdad Hosseini, Nikola B. Kovachki, Youssef M. Marzouk, Amir Sagiv:
An Approximation Theory Framework for Measure-Transport Sampling Algorithms. CoRR abs/2302.13965 (2023) - [i18]Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M. Stuart, Margaret Trautner:
Learning Homogenization for Elliptic Operators. CoRR abs/2306.12006 (2023) - [i17]Miguel Liu-Schiaffini, Clare E. Singer, Nikola B. Kovachki, Tapio Schneider, Kamyar Azizzadenesheli, Anima Anandkumar:
Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces. CoRR abs/2308.08794 (2023) - [i16]Zongyi Li
, Nikola Borislavov Kovachki, Christopher B. Choy, Boyi Li, Jean Kossaifi, Shourya Prakash Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, Anima Anandkumar:
Geometry-Informed Neural Operator for Large-Scale 3D PDEs. CoRR abs/2309.00583 (2023) - [i15]Kamyar Azizzadenesheli, Nikola B. Kovachki, Zongyi Li
, Miguel Liu-Schiaffini, Jean Kossaifi, Anima Anandkumar:
Neural Operators for Accelerating Scientific Simulations and Design. CoRR abs/2309.15325 (2023) - [i14]Jean Kossaifi, Nikola B. Kovachki, Kamyar Azizzadenesheli, Anima Anandkumar:
Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs. CoRR abs/2310.00120 (2023) - 2022
- [c3]Zongyi Li, Miguel Liu-Schiaffini, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Learning Chaotic Dynamics in Dissipative Systems. NeurIPS 2022 - [d1]Zongyi Li
, Miguel Liu-Schiaffini
, Nikola Borislavov Kovachki
, Burigede Liu
, Kamyar Azizzadenesheli
, Kaushik Bhattacharya
, Andrew M. Stuart
, Anima Anandkumar
:
Learning Dissipative Dynamics in Chaotic Systems (Datasets). Zenodo, 2022 - 2021
- [j2]Nikola B. Kovachki, Andrew M. Stuart:
Continuous Time Analysis of Momentum Methods. J. Mach. Learn. Res. 22: 17:1-17:40 (2021) - [j1]Nikola B. Kovachki, Samuel Lanthaler, Siddhartha Mishra:
On Universal Approximation and Error Bounds for Fourier Neural Operators. J. Mach. Learn. Res. 22: 290:1-290:76 (2021) - [c2]Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Fourier Neural Operator for Parametric Partial Differential Equations. ICLR 2021 - [i13]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Markov Neural Operators for Learning Chaotic Systems. CoRR abs/2106.06898 (2021) - [i12]Nikola B. Kovachki, Samuel Lanthaler, Siddhartha Mishra:
On universal approximation and error bounds for Fourier Neural Operators. CoRR abs/2107.07562 (2021) - [i11]Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Learning Maps Between Function Spaces. CoRR abs/2108.08481 (2021) - [i10]Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen
, Andrew M. Stuart:
Convergence Rates for Learning Linear Operators from Noisy Data. CoRR abs/2108.12515 (2021) - [i9]Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzadenesheli, Anima Anandkumar:
Physics-Informed Neural Operator for Learning Partial Differential Equations. CoRR abs/2111.03794 (2021) - 2020
- [c1]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew M. Stuart, Kaushik Bhattacharya, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. NeurIPS 2020 - [i8]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Graph Kernel Network for Partial Differential Equations. CoRR abs/2003.03485 (2020) - [i7]Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, Andrew M. Stuart
:
Model Reduction and Neural Networks for Parametric PDEs. CoRR abs/2005.03180 (2020) - [i6]Nikola B. Kovachki, Ricardo Baptista, Bamdad Hosseini, Youssef M. Marzouk:
Conditional Sampling With Monotone GANs. CoRR abs/2006.06755 (2020) - [i5]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. CoRR abs/2006.09535 (2020) - [i4]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Fourier Neural Operator for Parametric Partial Differential Equations. CoRR abs/2010.08895 (2020)
2010 – 2019
- 2019
- [i3]Nikola B. Kovachki, Andrew M. Stuart
:
Analysis Of Momentum Methods. CoRR abs/1906.04285 (2019) - [i2]Lixue Cheng, Nikola B. Kovachki, Matthew Welborn, Thomas F. Miller III:
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning. CoRR abs/1909.02041 (2019) - 2018
- [i1]Nikola B. Kovachki, Andrew M. Stuart
:
Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks. CoRR abs/1808.03620 (2018)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-15 00:15 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint