


default search action
Joel A. Paulson
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j16]Yen-An Lu
, Wei-Shou Hu, Joel A. Paulson
, Qi Zhang
:
BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification. Comput. Chem. Eng. 192: 108859 (2025) - [i18]Madhav Muthyala, Farshud Sorourifar, You Peng, Joel A. Paulson:
SyMANTIC: An Efficient Symbolic Regression Method for Interpretable and Parsimonious Model Discovery in Science and Beyond. CoRR abs/2502.03367 (2025) - 2024
- [j15]Akshay Kudva, Wei-Ting Tang, Joel A. Paulson
:
Robust Bayesian optimization for flexibility analysis of expensive simulation-based models with rigorous uncertainty bounds. Comput. Chem. Eng. 181: 108515 (2024) - [j14]Madeline E. Scyphers
, Justine E. C. Missik
, Haley Kujawa, Joel A. Paulson, Gil Bohrer
:
Bayesian Optimization for Anything (BOA): An open-source framework for accessible, user-friendly Bayesian optimization. Environ. Model. Softw. 182: 106191 (2024) - [j13]Kimberly J. Chan
, Joel A. Paulson
, Ali Mesbah
:
A Practical Multiobjective Learning Framework for Optimal Hardware-Software Co-Design of Control-on-a-Chip Systems. IEEE Trans. Control. Syst. Technol. 32(6): 2178-2193 (2024) - [c37]Joel A. Paulson:
Predictive Analytics for Chemical Processes. ACC 2024: 770 - [c36]Farshud Sorourifar, Joel A. Paulson, Ye Wang, Rien Quirynen, Christopher R. Laughman, Ankush Chakrabarty:
Bayesian Forecasting with Deep Generative Disturbance Models in Stochastic MPC for Building Energy Systems. CCTA 2024: 414-419 - [c35]Ankush Chakrabarty, Luigi Vanfretti, Wei-Ting Tang, Joel A. Paulson, Sicheng Zhan, Scott A. Bortoff, Vedang M. Deshpande, Ye Wang, Christopher R. Laughman:
Assessing Building Control Performance Using Physics-Based Simulation Models and Deep Generative Networks. CCTA 2024: 547-554 - [c34]Wei-Ting Tang, Joel A. Paulson:
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization. CDC 2024: 1547-1552 - [i17]Farshud Sorourifar, Thomas Banker, Joel A. Paulson:
Accelerating Black-Box Molecular Property Optimization by Adaptively Learning Sparse Subspaces. CoRR abs/2401.01398 (2024) - [i16]Joel A. Paulson, Calvin Tsay:
Bayesian optimization as a flexible and efficient design framework for sustainable process systems. CoRR abs/2401.16373 (2024) - [i15]Wei-Ting Tang, Joel A. Paulson:
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization. CoRR abs/2405.07760 (2024) - [i14]Yen-An Lu, Wei-Shou Hu, Joel A. Paulson, Qi Zhang:
BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification. CoRR abs/2405.17875 (2024) - [i13]Wei-Ting Tang, Ankush Chakrabarty, Joel A. Paulson:
BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems. CoRR abs/2406.03616 (2024) - [i12]Prabhat K. Mishra, Joel A. Paulson, Richard D. Braatz:
Polynomial Chaos-based Stochastic Model Predictive Control: An Overview and Future Research Directions. CoRR abs/2406.10734 (2024) - [i11]Madhav Muthyala, Farshud Sorourifar, Joel A. Paulson:
TorchSISSO: A PyTorch-Based Implementation of the Sure Independence Screening and Sparsifying Operator for Efficient and Interpretable Model Discovery. CoRR abs/2410.01752 (2024) - [i10]Yilin Xie, Shiqiang Zhang, Joel A. Paulson, Calvin Tsay:
Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation. CoRR abs/2410.16893 (2024) - 2023
- [j12]Tong Zhao
, Ekim Yurtsever
, Joel A. Paulson
, Giorgio Rizzoni
:
Formal Certification Methods for Automated Vehicle Safety Assessment. IEEE Trans. Intell. Veh. 8(1): 232-249 (2023) - [c33]Joel A. Paulson, Farshud Sorourifar, Christopher R. Laughman, Ankush Chakrabarty:
LSR-BO: Local Search Region Constrained Bayesian Optimization for Performance Optimization of Vapor Compression Systems. ACC 2023: 576-582 - [c32]Joel A. Paulson, Farshud Sorourifar, Ali Mesbah:
A Tutorial on Derivative-Free Policy Learning Methods for Interpretable Controller Representations. ACC 2023: 1295-1306 - [c31]Truong X. Nghiem
, Ján Drgona, Colin N. Jones, Zoltán Nagy, Roland Schwan, Biswadip Dey, Ankush Chakrabarty, Stefano Di Cairano, Joel A. Paulson, Andrea Carron, Melanie N. Zeilinger, Wenceslao Shaw-Cortez, Draguna L. Vrabie:
Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems. ACC 2023: 3735-3750 - [c30]Georgios Makrygiorgos, Joel A. Paulson, Ali Mesbah:
No-Regret Bayesian Optimization with Gradients Using Local Optimality-Based Constraints: Application to Closed-Loop Policy Search. CDC 2023: 20-25 - [c29]Kimberly J. Chan, Joel A. Paulson, Ali Mesbah:
Safe Explorative Bayesian Optimization - Towards Personalized Treatments in Plasma Medicine. CDC 2023: 4106-4111 - [i9]Dinesh Krishnamoorthy, Joel A. Paulson:
Multi-agent Black-box Optimization using a Bayesian Approach to Alternating Direction Method of Multipliers. CoRR abs/2303.14414 (2023) - [i8]Congwen Lu, Joel A. Paulson:
No-Regret Constrained Bayesian Optimization of Noisy and Expensive Hybrid Models using Differentiable Quantile Function Approximations. CoRR abs/2305.03824 (2023) - [i7]Truong X. Nghiem, Ján Drgona, Colin N. Jones, Zoltán Nagy, Roland Schwan, Biswadip Dey, Ankush Chakrabarty, Stefano Di Cairano, Joel A. Paulson, Andrea Carron, Melanie N. Zeilinger, Wenceslao Shaw-Cortez, Draguna L. Vrabie:
Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems. CoRR abs/2306.13867 (2023) - 2022
- [j11]Joel A. Paulson
, Congwen Lu
:
COBALT: COnstrained Bayesian optimizAtion of computationaLly expensive grey-box models exploiting derivaTive information. Comput. Chem. Eng. 160: 107700 (2022) - [j10]Jared O'Leary
, Joel A. Paulson, Ali Mesbah
:
Stochastic physics-informed neural ordinary differential equations. J. Comput. Phys. 468: 111466 (2022) - [c28]Ali Mesbah, Kim Peter Wabersich, Angela P. Schoellig, Melanie N. Zeilinger, Sergio Lucia, Thomas A. Badgwell, Joel A. Paulson:
Fusion of Machine Learning and MPC under Uncertainty: What Advances Are on the Horizon? ACC 2022: 342-357 - [c27]Akshay Kudva, Farshud Sorourifar, Joel A. Paulson:
Efficient Robust Global Optimization for Simulation-based Problems using Decomposed Gaussian Processes: Application to MPC Calibration. ACC 2022: 2091-2097 - [c26]Bhavik R. Bakshi
, Joel A. Paulson:
Sustainability and Industry 4.0: Obstacles and Opportunities*. ACC 2022: 2449-2460 - [c25]Joel A. Paulson, Farshud Sorourifar, Ankush Chakrabarty:
Efficient Multi-Step Lookahead Bayesian Optimization with Local Search Constraints. CDC 2022: 123-129 - [c24]Angelo D. Bonzanini, Joel A. Paulson, Georgios Makrygiorgos, Ali Mesbah:
Scalable Estimation of Invariant Sets for Mixed-Integer Nonlinear Systems using Active Deep Learning. CDC 2022: 3431-3437 - [i6]Tong Zhao, Ekim Yurtsever, Joel A. Paulson, Giorgio Rizzoni:
Automated Vehicle Safety Guarantee, Verification and Certification: A Survey. CoRR abs/2202.02818 (2022) - 2021
- [j9]Angelo D. Bonzanini, Joel A. Paulson, Georgios Makrygiorgos, Ali Mesbah:
Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks. Comput. Chem. Eng. 145: 107174 (2021) - [j8]Joel A. Paulson
, Ali Mesbah
:
Data-Driven Scenario Optimization for Automated Controller Tuning With Probabilistic Performance Guarantees. IEEE Control. Syst. Lett. 5(4): 1477-1482 (2021) - [c23]Joel A. Paulson, Ali Mesbah:
Data-Driven Scenario Optimization for Automated Controller Tuning with Probabilistic Performance Guarantees. ACC 2021: 2102-2107 - [c22]Naitik A. Choksi, Joel A. Paulson:
Simulation-based Integrated Design and Control with Embedded Mixed-Integer MPC using Constrained Bayesian Optimization. ACC 2021: 2114-2120 - [c21]Kimberly J. Chan
, Joel A. Paulson, Ali Mesbah:
Deep Learning-based Approximate Nonlinear Model Predictive Control with Offset-free Tracking for Embedded Applications. ACC 2021: 3475-3481 - [c20]Joel A. Paulson, Ketong Shao, Ali Mesbah:
Probabilistically Robust Bayesian Optimization for Data-Driven Design of Arbitrary Controllers with Gaussian Process Emulators. CDC 2021: 3633-3639 - [i5]Jared O'Leary, Joel A. Paulson, Ali Mesbah:
Stochastic Physics-Informed Neural Networks (SPINN): A Moment-Matching Framework for Learning Hidden Physics within Stochastic Differential Equations. CoRR abs/2109.01621 (2021) - 2020
- [j7]Ali Mesbah, Joel A. Paulson, Richard D. Braatz
:
An internal model control design method for failure-tolerant control with multiple objectives. Comput. Chem. Eng. 140: 106955 (2020) - [j6]Joel A. Paulson
, Ali Mesbah
:
Approximate Closed-Loop Robust Model Predictive Control With Guaranteed Stability and Constraint Satisfaction. IEEE Control. Syst. Lett. 4(3): 719-724 (2020) - [j5]Joel A. Paulson
, Edward A. Buehler, Richard D. Braatz
, Ali Mesbah:
Stochastic model predictive control with joint chance constraints. Int. J. Control 93(1): 126-139 (2020) - [c19]Joel A. Paulson, Ali Mesbah:
A Low-complexity Tube Controller using Contractive Invariant Sets. CDC 2020: 899-904 - [c18]Angelo D. Bonzanini, Joel A. Paulson, Ali Mesbah:
Safe Learning-based Model Predictive Control under State- and Input-dependent Uncertainty using Scenario Trees. CDC 2020: 2448-2454 - [i4]Joel A. Paulson, Ali Mesbah:
Data-Driven Scenario Optimization for Automated Controller Tuning with Probabilistic Performance Guarantees. CoRR abs/2011.07445 (2020) - [i3]Farshud Sorourifar, Georgios Makrygirgos, Ali Mesbah, Joel A. Paulson:
A Data-Driven Automatic Tuning Method for MPC under Uncertainty using Constrained Bayesian Optimization. CoRR abs/2011.11841 (2020)
2010 – 2019
- 2019
- [j4]Joel A. Paulson
, Marc Martin-Casas, Ali Mesbah
:
Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions. PLoS Comput. Biol. 15(8) (2019) - [c17]Joel A. Paulson, Tor Aksel N. Heirung, Ali Mesbah:
Fault-Tolerant Tube-Based Robust Nonlinear Model Predictive Control. ACC 2019: 1648-1654 - 2018
- [j3]Tor Aksel N. Heirung
, Joel A. Paulson
, Jared O'Leary
, Ali Mesbah:
Stochastic model predictive control - how does it work? Comput. Chem. Eng. 114: 158-170 (2018) - [c16]Joel A. Paulson
, Tor Aksel N. Heirung, Richard D. Braatz
, Ali Mesbah:
Closed-Loop Active Fault Diagnosis for Stochastic Linear Systems. ACC 2018: 735-741 - [c15]Tito L. M. Santos
, Joel A. Paulson
, Ali Mesbah:
Stochastic Model Predictive Control with Enlarged Domain of Attraction for Offset-Free Tracking. ACC 2018: 742-748 - [c14]Joel A. Paulson
, Ali Mesbah:
Shaping the Closed-Loop Behavior of Nonlinear Systems Under Probabilistic Uncertainty Using Arbitrary Polynomial Chaos. CDC 2018: 6307-6313 - 2017
- [c13]Sergio Lucia
, Joel A. Paulson
, Rolf Findeisen
, Richard D. Braatz
:
On stability of stochastic linear systems via polynomial chaos expansions. ACC 2017: 5089-5094 - 2016
- [j2]Mengling Wang, Joel A. Paulson
, Huaicheng Yan, Hongbo Shi:
An Adaptive Model Predictive Control Strategy for Nonlinear Distributed Parameter Systems using the Type-2 Takagi-Sugeno Model. Int. J. Fuzzy Syst. 18(5): 792-805 (2016) - [c12]Eranda Harinath, Lucas C. Foguth, Joel A. Paulson
, Richard D. Braatz
:
Nonlinear model predictive control using polynomial optimization methods. ACC 2016: 1-6 - [c11]Amos E. Lu, Joel A. Paulson
, Richard D. Braatz
:
pH and conductivity control in an integrated biomanufacturing plant. ACC 2016: 1741-1746 - [c10]Tillmann Muhlpfordt, Joel A. Paulson
, Richard D. Braatz
, Rolf Findeisen
:
Output feedback model predictive control with probabilistic uncertainties for linear systems. ACC 2016: 2035-2040 - [c9]Joel A. Paulson
, Venkatasailanathan Ramadesigan, Venkat R. Subramanian, Richard D. Braatz
:
Control systems analysis and design of multiscale simulation models. ACC 2016: 3083-3085 - [c8]Edward A. Buehler, Joel A. Paulson
, Ali Mesbah:
Lyapunov-based stochastic nonlinear model predictive control: Shaping the state probability distribution functions. ACC 2016: 5389-5394 - 2015
- [j1]Benben Jiang
, Xiaoxiang Zhu, Dexian Huang, Joel A. Paulson
, Richard D. Braatz
:
A combined canonical variate analysis and Fisher discriminant analysis (CVA-FDA) approach for fault diagnosis. Comput. Chem. Eng. 77: 1-9 (2015) - [c7]Amos E. Lu, Joel A. Paulson
, Nicholas J. Mozdzierz, Alan Stockdale, Ashlee N. Ford Versypt
, Kerry R. Love, J. Christopher Love, Richard D. Braatz
:
Control systems technology in the advanced manufacturing of biologic drugs. CCA 2015: 1505-1515 - [c6]Joel A. Paulson
, Stefan Streif
, Ali Mesbah:
Stability for receding-horizon stochastic model predictive control. ACC 2015: 937-943 - [c5]Ali Mesbah, Joel A. Paulson
, Richard Lakerveld
, Richard D. Braatz
:
Plant-wide model predictive control for a continuous pharmaceutical process. ACC 2015: 4301-4307 - [c4]Marcello Torchio, Nicolas A. Wolff, Davide Martino Raimondo, Lalo Magni
, Ulrike Krewer, R. Bhushan Gopaluni, Joel A. Paulson
, Richard D. Braatz
:
Real-time model predictive control for the optimal charging of a lithium-ion battery. ACC 2015: 4536-4541 - [c3]Lucas C. Foguth, Joel A. Paulson
, Richard D. Braatz
, Davide Martino Raimondo:
Fast robust model predictive control of high-dimensional systems. ECC 2015: 2009-2014 - [i2]Edward A. Buehler, Joel A. Paulson, Ali Akhavan, Ali Mesbah:
Lyapunov-based Stochastic Nonlinear Model Predictive Control: Shaping the State Probability Density Functions. CoRR abs/1505.02871 (2015) - [i1]Joel A. Paulson, Edward A. Buehler, Richard D. Braatz, Ali Mesbah:
Receding-horizon Stochastic Model Predictive Control with Hard Input Constraints and Joint State Chance Constraints. CoRR abs/1506.08471 (2015) - 2014
- [c2]Joel A. Paulson
, Ali Mesbah, Stefan Streif
, Rolf Findeisen
, Richard D. Braatz
:
Fast stochastic model predictive control of high-dimensional systems. CDC 2014: 2802-2809 - [c1]Joel A. Paulson
, Davide Martino Raimondo, Rolf Findeisen
, Richard D. Braatz
, Stefan Streif
:
Guaranteed active fault diagnosis for uncertain nonlinear systems. ECC 2014: 926-931
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-11 19:57 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint