default search action
Seppe K. L. M. vanden Broucke
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j43]Bart Baesens, Amy Adams, Rodrigo Pacheco-Ruiz, Ann-Sophie Baesens, Seppe K. L. M. vanden Broucke:
Explainable Deep Learning to Classify Royal Navy Ships. IEEE Access 12: 1774-1785 (2024) - [j42]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
GeoRF: a geospatial random forest. Data Min. Knowl. Discov. 38(6): 3414-3448 (2024) - [j41]Manon Reusens, Alexander Stevens, Jonathan Tonglet, Johannes De Smedt, Wouter Verbeke, Seppe vanden Broucke, Bart Baesens:
Evaluating text classification: A benchmark study. Expert Syst. Appl. 254: 124302 (2024) - [j40]Yameng Guo, Seppe vanden Broucke:
Enhancing geospatial prediction models with feature engineering from road networks: a graph-driven approach. Int. J. Geogr. Inf. Sci. 38(8): 1611-1632 (2024) - [j39]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Validation set sampling strategies for predictive process monitoring. Inf. Syst. 121: 102330 (2024) - [j38]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
LS-ICE: A Load State Intercase Encoding framework for improved predictive monitoring of business processes. Inf. Syst. 125: 102432 (2024) - [j37]Tim Verdonck, Bart Baesens, María Óskarsdóttir, Seppe vanden Broucke:
Special issue on feature engineering editorial. Mach. Learn. 113(7): 3917-3928 (2024) - [j36]Carlos Ortega Vázquez, Seppe vanden Broucke, Jochen De Weerdt:
Hellinger distance decision trees for PU learning in imbalanced data sets. Mach. Learn. 113(7): 4547-4578 (2024) - [c41]Brecht Wuyts, Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
SuTraN: an Encoder-Decoder Transformer for Full-Context-Aware Suffix Prediction of Business Processes. ICPM 2024: 17-24 - 2023
- [j35]Carlos Ortega Vázquez, Seppe vanden Broucke, Jochen De Weerdt:
A two-step anomaly detection based method for PU classification in imbalanced data sets. Data Min. Knowl. Discov. 37(3): 1301-1325 (2023) - [j34]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Global conformance checking measures using shallow representation and deep learning. Eng. Appl. Artif. Intell. 123(Part): 106393 (2023) - [j33]Bing Zhu, Cheng Qian, Seppe vanden Broucke, Jin Xiao, Yuanyuan Li:
A bagging-based selective ensemble model for churn prediction on imbalanced data. Expert Syst. Appl. 227: 120223 (2023) - [j32]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
A Survey of Methods and Input Data Types for House Price Prediction. ISPRS Int. J. Geo Inf. 12(5): 200 (2023) - [j31]Lennert Van der Schraelen, Kristof Stouthuysen, Seppe K. L. M. vanden Broucke, Tim Verdonck:
Regularization oversampling for classification tasks: To exploit what you do not know. Inf. Sci. 635: 169-194 (2023) - [j30]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can recurrent neural networks learn process model structure? J. Intell. Inf. Syst. 61(1): 27-51 (2023) - [j29]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
A Direct Data Aware LSTM Neural Network Architecture for Complete Remaining Trace and Runtime Prediction. IEEE Trans. Serv. Comput. 16(4): 2330-2342 (2023) - [c40]Brecht Wuyts, Hans Weytjens, Seppe vanden Broucke, Jochen De Weerdt:
DyLoPro: Profiling the Dynamics of Event Logs. BPM 2023: 146-162 - [c39]Jan Niklas Adams, Jari Peeperkorn, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt, Wil M. P. van der Aalst:
Discovering high-quality process models despite data scarcity. ER (Companion) 2023 - [c38]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
An Evolutionary Geospatial Regression Tree. STRL@IJCAI 2023 - [c37]Yameng Guo, Seppe vanden Broucke:
Geospatial Prediction Using Road Topology: A Graph-based Perspective. STRL@IJCAI 2023 - [c36]Abdel-Jaouad Aberkane, Seppe vanden Broucke, Geert Poels:
Toward Data Protection by Design: Assessing the Current State of GDPR Disclosure in Web Applications. REW 2023: 218-223 - [i5]Jan Niklas Adams, Jari Peeperkorn, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt, Wil M. P. van der Aalst:
Discovering High-Quality Process Models Despite Data Scarcity. CoRR abs/2310.11332 (2023) - 2022
- [j28]Bing Zhu, Xin Pan, Seppe vanden Broucke, Jin Xiao:
A GAN-based hybrid sampling method for imbalanced customer classification. Inf. Sci. 609: 1397-1411 (2022) - [j27]Faruk Hasic, Johannes De Smedt, Seppe vanden Broucke, Estefanía Serral:
Decision as a Service (DaaS): A Service-Oriented Architecture Approach for Decisions in Processes. IEEE Trans. Serv. Comput. 15(2): 904-917 (2022) - [c35]Jari Peeperkorn, Carlos Ortega Vázquez, Alexander Stevens, Johannes De Smedt, Seppe vanden Broucke, Jochen De Weerdt:
Outcome-Oriented Predictive Process Monitoring on Positive and Unlabelled Event Logs. ICPM Workshops 2022: 255-268 - [c34]Björn Rafn Gunnarsson, Jochen De Weerdt, Seppe vanden Broucke:
A framework for encoding the multi-location load state of a business process. PMAI@IJCAI 2022: 13-24 - [c33]Carlos Ortega Vázquez, Jochen De Weerdt, Seppe vanden Broucke:
The Hidden Cost of Fraud: An Instance-Dependent Cost-Sensitive Approach for Positive and Unlabeled Learning. LIDTA 2022: 53-67 - [c32]Margot Geerts, Kiran Shaikh, Jochen De Weerdt, Seppe vanden Broucke:
Predicting the State of a House Using Google Street View - An Analysis of Deep Binary Classification Models for the Assessment of the Quality of Flemish Houses. RCIS 2022: 703-710 - [c31]Abdel-Jaouad Aberkane, Seppe vanden Broucke, Geert Poels:
Investigating Organizational Factors Associated with GDPR Noncompliance using Privacy Policies: A Machine Learning Approach. TPS-ISA 2022: 107-113 - [i4]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can deep neural networks learn process model structure? An assessment framework and analysis. CoRR abs/2202.11985 (2022) - [i3]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can recurrent neural networks learn process model structure? CoRR abs/2212.06430 (2022) - 2021
- [j26]Abdel-Jaouad Aberkane, Geert Poels, Seppe vanden Broucke:
Exploring Automated GDPR-Compliance in Requirements Engineering: A Systematic Mapping Study. IEEE Access 9: 66542-66559 (2021) - [j25]Björn Rafn Gunnarsson, Seppe vanden Broucke, Bart Baesens, María Óskarsdóttir, Wilfried Lemahieu:
Deep learning for credit scoring: Do or don't? Eur. J. Oper. Res. 295(1): 292-305 (2021) - [j24]Pieter De Koninck, Klaas Nelissen, Seppe vanden Broucke, Bart Baesens, Monique Snoeck, Jochen De Weerdt:
Expert-driven trace clustering with instance-level constraints. Knowl. Inf. Syst. 63(5): 1197-1220 (2021) - [j23]Adriano Augusto, Marlon Dumas, Marcello La Rosa, Sander J. J. Leemans, Seppe K. L. M. vanden Broucke:
Optimization framework for DFG-based automated process discovery approaches. Softw. Syst. Model. 20(4): 1245-1270 (2021) - [c30]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can Deep Neural Networks Learn Process Model Structure? An Assessment Framework and Analysis. ICPM Workshops 2021: 127-139 - [i2]Pieter De Koninck, Klaas Nelissen, Seppe vanden Broucke, Bart Baesens, Monique Snoeck, Jochen De Weerdt:
Expert-driven Trace Clustering with Instance-level Constraints. CoRR abs/2110.06703 (2021) - 2020
- [j22]Lanlan Huang, Junkai Zhao, Bing Zhu, Hao Chen, Seppe K. L. M. vanden Broucke:
An Experimental Investigation of Calibration Techniques for Imbalanced Data. IEEE Access 8: 127343-127352 (2020) - [j21]Sebastiaan Höppner, Eugen Stripling, Bart Baesens, Seppe vanden Broucke, Tim Verdonck:
Profit driven decision trees for churn prediction. Eur. J. Oper. Res. 284(3): 920-933 (2020) - [c29]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Conformance Checking Using Activity and Trace Embeddings. BPM (Forum) 2020: 105-121 - [c28]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Supervised Conformance Checking Using Recurrent Neural Network Classifiers. ICPM Workshops 2020: 175-187 - [c27]Steven Van Goidsenhoven, Daria Bogdanova, Galina Deeva, Seppe vanden Broucke, Jochen De Weerdt, Monique Snoeck:
Predicting student success in a blended learning environment. LAK 2020: 17-25 - [c26]Carlos Ortega Vázquez, Sandra Mitrovic, Jochen De Weerdt, Seppe vanden Broucke:
A Comparative Study of Representation Learning Techniques for Dynamic Networks. WorldCIST (3) 2020: 523-530
2010 – 2019
- 2019
- [j20]Jasmien Lismont, Tine Van Calster, María Óskarsdóttir, Seppe vanden Broucke, Bart Baesens, Wilfried Lemahieu, Jan Vanthienen:
Closing the Gap Between Experts and Novices Using Analytics-as-a-Service: An Experimental Study. Bus. Inf. Syst. Eng. 61(6): 679-693 (2019) - [j19]Johannes De Smedt, Faruk Hasic, Seppe K. L. M. vanden Broucke, Jan Vanthienen:
Holistic discovery of decision models from process execution data. Knowl. Based Syst. 183 (2019) - [j18]Bing Zhu, Zihan Gao, Junkai Zhao, Seppe K. L. M. vanden Broucke:
IRIC: An R library for binary imbalanced classification. SoftwareX 10: 100341 (2019) - [c25]Björn Rafn Gunnarsson, Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation. Business Process Management Workshops 2019: 250-262 - [c24]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
Optimizing Marketing Campaign Targeting Using Uncertainty-Based Predictive Modelling. ICDM Workshops 2019: 326-332 - 2018
- [j17]Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens:
An Interview with Bart Baesens, One of the Authors of Principles of Database Management. Big Data 6(2): 69-71 (2018) - [j16]Eugen Stripling, Bart Baesens, Barak Chizi, Seppe vanden Broucke:
Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud. Decis. Support Syst. 111: 13-26 (2018) - [j15]Hernán Ponce de León, Lucio Nardelli, Josep Carmona, Seppe K. L. M. vanden Broucke:
Incorporating negative information to process discovery of complex systems. Inf. Sci. 422: 480-496 (2018) - [j14]Bing Zhu, Bart Baesens, Aimée Backiel, Seppe K. L. M. vanden Broucke:
Benchmarking sampling techniques for imbalance learning in churn prediction. J. Oper. Res. Soc. 69(1): 49-65 (2018) - [j13]Eugen Stripling, Seppe vanden Broucke, Katrien Antonio, Bart Baesens, Monique Snoeck:
Profit maximizing logistic model for customer churn prediction using genetic algorithms. Swarm Evol. Comput. 40: 116-130 (2018) - [j12]Klaas Nelissen, Monique Snoeck, Seppe K. L. M. vanden Broucke, Bart Baesens:
Swipe and Tell: Using Implicit Feedback to Predict User Engagement on Tablets. ACM Trans. Inf. Syst. 36(4): 35:1-35:36 (2018) - [c23]Pieter De Koninck, Seppe vanden Broucke, Jochen De Weerdt:
act2vec, trace2vec, log2vec, and model2vec: Representation Learning for Business Processes. BPM 2018: 305-321 - [c22]Arnout Devos, Jakob Dhondt, Eugen Stripling, Bart Baesens, Seppe vanden Broucke, Gaurav S. Sukhatme:
Profit Maximizing Logistic Regression Modeling for Credit Scoring. DSW 2018: 125-129 - 2017
- [j11]Pieter De Koninck, Jochen De Weerdt, Seppe K. L. M. vanden Broucke:
Explaining clusterings of process instances. Data Min. Knowl. Discov. 31(3): 774-808 (2017) - [j10]Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
Fodina: A robust and flexible heuristic process discovery technique. Decis. Support Syst. 100: 109-118 (2017) - [j9]Bing Zhu, Bart Baesens, Seppe K. L. M. vanden Broucke:
An empirical comparison of techniques for the class imbalance problem in churn prediction. Inf. Sci. 408: 84-99 (2017) - [c21]Johannes De Smedt, Faruk Hasic, Seppe K. L. M. vanden Broucke, Jan Vanthienen:
Towards a Holistic Discovery of Decisions in Process-Aware Information Systems. BPM 2017: 183-199 - [c20]Pieter De Koninck, Klaas Nelissen, Bart Baesens, Seppe vanden Broucke, Monique Snoeck, Jochen De Weerdt:
An Approach for Incorporating Expert Knowledge in Trace Clustering. CAiSE 2017: 561-576 - [c19]Bing Zhu, Seppe vanden Broucke, Bart Baesens, Sebastián Maldonado:
Improving Resampling-based Ensemble in Churn Prediction. LIDTA@PKDD/ECML 2017: 79-91 - [i1]Sebastiaan Höppner, Eugen Stripling, Bart Baesens, Seppe vanden Broucke, Tim Verdonck:
Profit Driven Decision Trees for Churn Prediction. CoRR abs/1712.08101 (2017) - 2016
- [j8]Jasmien Lismont, Anne-Sophie Janssens, Irina Odnoletkova, Seppe vanden Broucke, Filip Caron, Jan Vanthienen:
A guide for the application of analytics on healthcare processes: A dynamic view on patient pathways. Comput. Biol. Medicine 77: 125-134 (2016) - [j7]Wei Zhe Low, Seppe K. L. M. vanden Broucke, Moe Thandar Wynn, Arthur H. M. ter Hofstede, Jochen De Weerdt, Wil M. P. van der Aalst:
Revising history for cost-informed process improvement. Computing 98(9): 895-921 (2016) - [j6]Xinwei Zhu, Seppe vanden Broucke, Guobin Zhu, Jan Vanthienen, Bart Baesens:
Enabling flexible location-aware business process modeling and execution. Decis. Support Syst. 83: 1-9 (2016) - [j5]Seppe K. L. M. vanden Broucke, Filip Caron, Jasmien Lismont, Jan Vanthienen, Bart Baesens:
On the gap between reality and registration: a business event analysis classification framework. Inf. Technol. Manag. 17(4): 393-410 (2016) - [c18]Johannes De Smedt, Seppe K. L. M. vanden Broucke, Josué Obregon, Aekyung Kim, Jae-Yoon Jung, Jan Vanthienen:
Decision Mining in a Broader Context: An Overview of the Current Landscape and Future Directions. Business Process Management Workshops 2016: 197-207 - 2015
- [c17]Hernán Ponce de León, Josep Carmona, Seppe K. L. M. vanden Broucke:
Incorporating Negative Information in Process Discovery. BPM 2015: 126-143 - [c16]Eugen Stripling, Seppe vanden Broucke, Katrien Antonio, Bart Baesens, Monique Snoeck:
Profit maximizing logistic regression modeling for customer churn prediction. DSAA 2015: 1-10 - 2014
- [b1]Seppe vanden Broucke:
Advances in Process Mining: Artificial negative events and othertechniques. Katholieke Universiteit Leuven, Belgium, 2014 - [j4]Alex Seret, Seppe K. L. M. vanden Broucke, Bart Baesens, Jan Vanthienen:
A dynamic understanding of customer behavior processes based on clustering and sequence mining. Expert Syst. Appl. 41(10): 4648-4657 (2014) - [j3]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, Bart Baesens:
Determining Process Model Precision and Generalization with Weighted Artificial Negative Events. IEEE Trans. Knowl. Data Eng. 26(8): 1877-1889 (2014) - [c15]Xinwei Zhu, Guobin Zhu, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Towards Location-Aware Process Modeling and Execution. Business Process Management Workshops 2014: 186-197 - [c14]Jochen De Weerdt, Seppe K. L. M. vanden Broucke:
SECPI: Searching for Explanations for Clustered Process Instances. BPM 2014: 408-415 - [c13]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Filip Caron:
Bidimensional Process Discovery for Mining BPMN Models. Business Process Management Workshops 2014: 529-540 - [c12]Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Declarative process discovery with evolutionary computing. IEEE Congress on Evolutionary Computation 2014: 2412-2419 - [c11]Wei Zhe Low, Jochen De Weerdt, Moe Thandar Wynn, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Seppe K. L. M. vanden Broucke:
Perturbing event logs to identify cost reduction opportunities: A genetic algorithm-based approach. IEEE Congress on Evolutionary Computation 2014: 2428-2435 - [c10]Xinwei Zhu, Guobin Zhu, Seppe vanden Broucke, Jan Recker:
On Merging Business Process Management and Geographic Information Systems: Modeling and Execution of Ecological Concerns in Processes. GRMSE 2014: 486-496 - [c9]Seppe K. L. M. vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Baesens, Jan Vanthienen:
Event-Based Real-Time Decomposed Conformance Analysis. OTM Conferences 2014: 345-363 - 2013
- [j2]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Active Trace Clustering for Improved Process Discovery. IEEE Trans. Knowl. Data Eng. 25(12): 2708-2720 (2013) - [c8]Seppe K. L. M. vanden Broucke, Cédric Delvaux, João Freitas, Taisiia Rogova, Jan Vanthienen, Bart Baesens:
Uncovering the Relationship Between Event Log Characteristics and Process Discovery Techniques. Business Process Management Workshops 2013: 41-53 - [c7]Seppe K. L. M. vanden Broucke, Filip Caron, Jan Vanthienen, Bart Baesens:
Validating and Enhancing Declarative Business Process Models Based on Allowed and Non-occurring Past Behavior. Business Process Management Workshops 2013: 212-223 - [c6]Seppe vanden Broucke, Jan Vanthienen, Bart Baesens:
Volvo IT Belgium VINST. BPIC@BPM 2013 - [c5]Alex Seret, Seppe K. L. M. vanden Broucke, Bart Baesens, Jan Vanthienen:
An Exploratory Approach for Understanding Customer Behavior Processes Based on Clustering and Sequence Mining. Business Process Management Workshops 2013: 237-248 - [c4]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, Bart Baesens:
A comprehensive benchmarking framework (CoBeFra) for conformance analysis between procedural process models and event logs in ProM. CIDM 2013: 254-261 - 2012
- [c3]Filip Caron, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
On the Distinction between Truthful, Invisible, False and Unobserved Events An Event Existence Classification Framework and the Impact on Business Process Analytics Related Research Areas. AMCIS 2012 - [c2]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Bart Baesens, Jan Vanthienen:
Improved Artificial Negative Event Generation to Enhance Process Event Logs. CAiSE 2012: 254-269 - [c1]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Leveraging process discovery with trace clustering and text mining for intelligent analysis of incident management processes. IEEE Congress on Evolutionary Computation 2012: 1-8 - 2011
- [j1]Tim Van den Bulcke, Paul Vanden Broucke, Viviane Van Hoof, Kristien Wouters, Seppe vanden Broucke, Geert Smits, Elke Smits, Sam Proesmans, Toon Van Genechten, François Eyskens:
Data mining methods for classification of Medium-Chain Acyl-CoA dehydrogenase deficiency (MCADD) using non-derivatized tandem MS neonatal screening data. J. Biomed. Informatics 44(2): 319-325 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint