


default search action
15. PAKDD 2011: Shenzhen, China
- Joshua Zhexue Huang, Longbing Cao, Jaideep Srivastava:
Advances in Knowledge Discovery and Data Mining - 15th Pacific-Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27, 2011, Proceedings, Part II. Lecture Notes in Computer Science 6635, Springer 2011, ISBN 978-3-642-20846-1
Graph Mining
- Leting Wu, Xiaowei Ying, Xintao Wu
, Aidong Lu, Zhi-Hua Zhou:
Spectral Analysis of k-Balanced Signed Graphs. 1-12 - U Kang, Brendan Meeder, Christos Faloutsos
:
Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation. 13-25 - Yasuo Tabei, Daisuke Okanohara, Shuichi Hirose, Koji Tsuda:
LGM: Mining Frequent Subgraphs from Linear Graphs. 26-37 - Yasuhiro Fujiwara, Makoto Onizuka
, Masaru Kitsuregawa:
Efficient Centrality Monitoring for Time-Evolving Graphs. 38-50 - Rajul Anand, Chandan K. Reddy:
Graph-Based Clustering with Constraints. 51-62
Social Network/Online Analysis
- Jing Yang, Lian Li:
A Partial Correlation-Based Bayesian Network Structure Learning Algorithm under SEM. 63-74 - Rohit Parimi, Doina Caragea
:
Predicting Friendship Links in Social Networks Using a Topic Modeling Approach. 75-86 - Chao Li, Zhongying Zhao, Jun Luo, Jianping Fan:
Info-Cluster Based Regional Influence Analysis in Social Networks. 87-98 - Richi Nayak
:
Utilizing Past Relations and User Similarities in a Social Matching System. 99-110 - Jhao-Yin Li, Mi-Yen Yeh
:
On Sampling Type Distribution from Heterogeneous Social Networks. 111-122 - Di Jin, Dayou Liu, Bo Yang, Carlos Baquero, Dongxiao He:
Ant Colony Optimization with Markov Random Walk for Community Detection in Graphs. 123-134
Time Series Analysis
- Wei Luo
, Marcus Gallagher
:
Faster and Parameter-Free Discord Search in Quasi-Periodic Time Series. 135-148 - Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme
:
INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification. 149-160 - Harya Widiputra, Russel Pears, Nikola K. Kasabov:
Multiple Time-Series Prediction through Multiple Time-Series Relationships Profiling and Clustered Recurring Trends. 161-172 - Michal Lewandowski, Dimitrios Makris, Jean-Christophe Nebel
:
Probabilistic Feature Extraction from Multivariate Time Series Using Spatio-Temporal Constraints. 173-184
Sequence Analysis
- Yasuhiro Urabe, Kenji Yamanishi, Ryota Tomioka, Hiroki Iwai:
Real-Time Change-Point Detection Using Sequentially Discounting Normalized Maximum Likelihood Coding. 185-197 - Yan Zhou, W. Meador Inge, Murat Kantarcioglu:
Compression for Anti-Adversarial Learning. 198-209 - Muhammad Muzammal
, Rajeev Raman:
Mining Sequential Patterns from Probabilistic Databases. 210-221 - Xu Sun, Hisashi Kashima, Ryota Tomioka, Naonori Ueda:
Large Scale Real-Life Action Recognition Using Conditional Random Fields with Stochastic Training. 222-233 - Atsuyoshi Nakamura, Mineichi Kudo
:
Packing Alignment: Alignment for Sequences of Various Length Events. 234-245
Outlier Detection
- Trung Le, Dat Tran
, Wanli Ma, Dharmendra Sharma
:
Multiple Distribution Data Description Learning Algorithm for Novelty Detection. 246-257 - Hao Huang, Qinming He, Jiangfeng He, Lianhang Ma:
RADAR: Rare Category Detection via Computation of Boundary Degree. 258-269 - Jun Gao, Weiming Hu, Zhongfei (Mark) Zhang, Xiaoqin Zhang, Ou Wu:
RKOF: Robust Kernel-Based Local Outlier Detection. 270-283 - Flora S. Tsai, Yi Zhang:
Chinese Categorization and Novelty Mining. 284-295 - Timothy M. Hospedales, Shaogang Gong, Tao Xiang:
Finding Rare Classes: Adapting Generative and Discriminative Models in Active Learning. 296-308
Imbalanced Data Analysis
- Xiannian Fan, Ke Tang, Thomas Weise:
Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets. 309-320 - Yuxuan Li, Xiuzhen Zhang:
Improving k Nearest Neighbor with Exemplar Generalization for Imbalanced Classification. 321-332 - Pengyi Yang
, Zili Zhang, Bing Bing Zhou, Albert Y. Zomaya
:
Sample Subset Optimization for Classifying Imbalanced Biological Data. 333-344 - Wei Liu, Sanjay Chawla:
Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets. 345-356
Agent Mining
- Maya Wardeh, Frans Coenen
, Trevor J. M. Bench-Capon
, Adam Z. Wyner:
Multi-agent Based Classification Using Argumentation from Experience. 357-369 - Chao Luo, Yanchang Zhao, Dan Luo, Chengqi Zhang
, Wei Cao:
Agent-Based Subspace Clustering. 370-381
Evaluation (Similarity, Ranking, Query)
- Tias Guns, Siegfried Nijssen
, Luc De Raedt:
Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework. 382-394 - Jun Du, Charles X. Ling:
Asking Generalized Queries with Minimum Cost. 395-406 - Pei Li, Jeffrey Xu Yu, Hongyan Liu, Jun He, Xiaoyong Du:
Ranking Individuals and Groups by Influence Propagation. 407-419 - Yifeng Zeng, Xian He, Yanping Xiang, Hua Mao
:
Dynamic Ordering-Based Search Algorithm for Markov Blanket Discovery. 420-431 - Cláudio Rebelo de Sá, Carlos Soares
, Alípio Mário Jorge
, Paulo J. Azevedo, Joaquim Pinto da Costa:
Mining Association Rules for Label Ranking. 432-443 - Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter
, Thomas Seidl:
Tracing Evolving Clusters by Subspace and Value Similarity. 444-456 - Ghita Berrada
, Ander de Keijzer
:
An IFS-Based Similarity Measure to Index Electroencephalograms. 457-468 - Aditya Desai, Himanshu Singh, Vikram Pudi
:
DISC: Data-Intensive Similarity Measure for Categorical Data. 469-481 - Ning Gao, Zhi-Hong Deng, Hang Yu, Jia-Jian Jiang:
ListOPT: Learning to Optimize for XML Ranking. 482-492 - Marc Segond, Christian Borgelt:
Item Set Mining Based on Cover Similarity. 493-505
Applications
- Bo Wang, Zhaonan Li, Jie Tang, Kuo Zhang, Songcan Chen, Liyun Ru:
Learning to Advertise: How Many Ads Are Enough? 506-518 - Colin DeLong, Nishith Pathak, Kendrick Erickson, Eric Perrino, Kyong Jin Shim
, Jaideep Srivastava:
TeamSkill: Modeling Team Chemistry in Online Multi-player Games. 519-531 - Dan He, Douglas Stott Parker Jr.:
Learning the Funding Momentum of Research Projects. 532-543 - Yi Guo, Junbin Gao:
Local Feature Based Tensor Kernel for Image Manifold Learning. 544-554

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.