
AN IDA-BASED PARALLEL STORAGE SCHEME IN THE SCIENTIFIC

DATA GRID

Weizhong Lu1,2*, Yuanchun Zhou1, Lei Liu1,3, and Baoping Yan1

1Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
*Email: lvweizhong@cnic.cn
2Graduate University of Chinese Academy of Sciences, Beijing, China
3CODATA-China Secretariat, Beijing, China

ABSTRACT

It is important to improve data reliability and data access efficiency for data-intensive applications in a data
grid environment. In this paper, we propose an Information Dispersal Algorithm (IDA)-based parallel storage
scheme for massive data distribution and parallel access in the Scientific Data Grid. The scheme partitions a
data file into unrecognizable blocks and distributes them across many target storage nodes according to user
profile and system conditions. A subset of blocks, which can be downloaded in parallel to remote clients, is
required to reconstruct the data file. This scheme can be deployed on the top of current grid middleware. A
demonstration and experimental analysis show that the IDA-based parallel storage scheme has better data
reliability and data access performance than the existing data replication methods. Furthermore, this scheme
has the potential to reduce considerably storage requirements for large-scale databases on a data grid.

Keywords: Parallel, Storage, Data Grid

1 INTRODUCTION

There are increasing requirements to process very large datasets in many high performance and data intensive
application domains. Many scientific research projects are generating petabytes of experimental data every year.
Processing and sharing such huge amounts of data among collaborative institutes poses new challenges to the
parallel computing community and data storage. The two important challenges that data-intensive applications
face are virtual massive data storage and high data access efficiency, which can be solved by introducing grid
technology and data parallel storage schemes, respectively.

Grid computing is an emerging technology to connect geographically distributed computing resources with
storage resources to provide high performance systems for users from different areas. The Scientific Data Grid
of the Chinese Academy of Sciences is a fundamental infrastructure for many data-intensive natural scientific
research projects. It provides a large shared storage environment for the geographically distributed and
heterogeneous multidisciplinary data resources from different institutes. Data replication is an effective way to
improve data availability and data access efficiency. However, recent research work shows that the most
effective method adopts distributed storage and a parallel access mechanism to get high data availability and
high data transport throughput (Allcock, Bresnahan, Kettimuthu, Link, Dumitrescu, & Raicu, et al., 2005;
Ghemawat, Gobioff, & Leung, 2003; Raicu, Zhao, Foster, & Szalay, 2008).

Data Science Journal, Volume 9, 26 May 2010

29

There are several advantages to using distributed storage and parallel access technology for data-intensive
applications in a data grid environment. First of all, because a data file is cut into blocks that are distributed
among grid nodes, parallel access can easily adapt to the changing network conditions. Secondly, when
integrating some fault tolerance algorithms to implement a reliable system, parallel access, by performing
automatic load balancing, is more resistant to congestion and failure in the network and servers than is
connecting to a single server. Thirdly, high data access performance can be achieved. Ideally, the total
throughput seen by one client is equal to the sum of the bandwidth from each individual storage server to the
client.

In this paper, we propose an IDA-based parallel storage scheme, which takes high data availability and data
access efficiency into consideration, in the scientific data grid. In this scheme, every data file is encoded into a
number of blocks that can be spread across the storage nodes in the grid. The data file can be reconstructed from
any of the blocks with simultaneous parallel access to the selected blocks. Thus we can achieve better data
availability and data access efficiency than the usual data replication technologies.

The paper is organized in the following way. In section 2, some related work is introduced, and the motivation
for our method is given. In section 3, our system model and algorithm are described in detail. Section 4 contains
the experiment and analysis. Section 5 concludes this paper.

2 RELATED WORK

Data grids are playing a more and more important role in sharing large data collections throughout the scientific
community. In recent years, many data storage and access technologies have been developed in the data grid
research area to improve data access reliability and performance. In this section, we investigate several data
storage and access schemes, such as Globus replication, GridFTP, SRB, iRODS, Google File System,
MapReduce, and Grid File System.

The open source Globus Toolkit (http://www.globus.org/) is a fundamental enabling technology for the grid that
allows people to share computing power, databases, and other tools securely across corporate, institutional, and
geographic boundaries, without sacrificing local autonomy. The toolkit includes software services and libraries
for resource monitoring, discovery, and management, plus security and file management. To get high data
availability, the Globus Toolkit introduced and implemented a Data Replication Service (DRS) that provides a
pull-based replication capability for grid files. Therefore, data replication is a very important method to improve
data availability in the Globus Toolkit grid environment. Another important component of the Globus Toolkit for
high data access performance and reliable massive data file transport is GridFTP (Allcock, Bresnahan,
Kettimuthu, Link, Dumitrescu, Raicu, et al., 2005). GridFTP, based on FTP, is a high-performance, secure,
reliable data transfer protocol optimized for high-bandwidth wide-area networks. GridFTP achieves a much
greater use of bandwidth by allowing multiple simultaneous TCP streams. Files can be downloaded in pieces
simultaneously from multiple sources or even in separate parallel streams from the same source.

The Storage Resource Broker (SRB) (Baru, Moore, Rajasekar, & Wan, 1998) and the Integrated Rule-Oriented
Data System (iRODS) (http://www.irods.org/) are two important, widely adopted data grid software developed
by the San Diego Supercomputing Center (SDSC). SRB, which is considered to be the first generation data grid
system, is a storage management system designed for data grid environments. SRB is client-server middleware

Data Science Journal, Volume 9, 26 May 2010

30

that provides a uniform interface and mechanism to access heterogeneous data resources distributed in multiple
hosts and multiple platforms by using logical to physical name mapping. iRODS, which is extended from SRB,
is a second generation data grid system providing a unified view and seamless access to distributed digital
objects across a wide area network. While SRB focuses mainly on providing a unified view over distributed
storages based on logical naming concepts using the client server architecture, iRODS takes things one level
higher by abstracting the data management process itself through what is called policy abstraction. In iRODS,
rules are explicitly declared to control the operations performed when a rule is invoked by a particular task.
iRODS implements data file replication and parallel transport by executing the rules. Ingestion of data files into
the iRODS digital system is accomplished by using the iPUT command. Just like GridFTP, the iPUT command
is a multithreaded application and adapts the number of threads it uses to the size of the file it transfers.

Another large data management and processing system is Google’s MapReduce system (Dean, & Ghemawat,
2008), which runs on the top of the Google File System (GFS) (Ghemawat, Gobioff, & Leung, 2003). In the
Google File System, a data file is loaded, partitioned into chunks, and each chunk is replicated. Thus data
processing is collocated with data storage. When a file needs to be processed, the job scheduler consults a
storage metadata service to get the host node for each chunk and then schedules a “map” process on that node,
so that data locality is exploited efficiently. MapReduce, along with Google File System and BigTable, couples
data resources and computing resources to accelerate data-intensive applications. In short, these systems
achieved distributed storage and parallel transport of data chunks based on GFS and replication technology.

The last grid data management system is the Grid File System (García-Carballeira, Carretero, Calderón, García,
& Sanchez, 2007). The Global Grid Forum defines a Grid File System as a human-readable resource namespace
for management of heterogeneous and distributed data resources that can span across multiple autonomous
administrative domains. García-Carballeira, Carretero et al. (2007) described a new Grid File System according
to the Global Grid Forum recommendations that integrates heterogeneous data storage resources in grids using
standard grid technologies: the GridFTP and the Resource Namespace Service, both defined by the Global Grid
Forum. To obtain high performance, the parallel transmission techniques used in traditional parallel file systems
are adopted. Although the Grid File System implements data file parallel storage and access, it does not actually
improve data file reliability for any failure of any file chunks would destroy the whole data file.

From all of the above, data replication and parallel transport are practical and effective methods of achieving
efficient data access in a grid environment. Globus and iRODS implement data file replication and achieve high
data file transport performance by GridFTP and iCommands, which establish multi-connections between each
source and destination. The Google MapReduce framework and the Grid File System both introduce distributed
storage technology to achieve high data file access performance by transferring data files in a parallel way. In
contrast, this paper proposes a new parallel storage scheme in which a data file is encoded into blocks and
distributed on different storage servers. It achieves high data availability and high parallel data access efficiency
physically at the same time.

3 THE IDA-BASED PARALLEL STORAGE SCHEME

3.1 System Overview

In this section, we introduce the IDA-based data parallel storage scheme and its components in detail. The

Data Science Journal, Volume 9, 26 May 2010

31

scheme basically focuses on data availability and parallel access. Currently, the most common method of
achieving high data availability is data replication technology, which uses several times as much as storage
space as does our scheme. In contrast, the IDA-based parallel storage scheme distributes data file blocks across
different storage servers achieving better data availability and can support the parallel access mechanism for
high performance at the same time.

One of the key technologies of the IDA-based parallel storage scheme is the information dispersal algorithm
(Rabin, 1989). The information dispersal algorithm was proposed as a fault-tolerance technique to address the
security and reliability problems in massive data storage systems. In the IDA algorithm, a data file F is striped
into n blocks of size L/m, where L is the length of the data file and m is the number of blocks required to
reconstruct the data file F. The diagram of the IDA-based parallel storage scheme is shown in Figure 1.

Figure 1. The diagram of information dispersal algorithms

A set of secret keys are used to disperse the file, providing confidentiality to the information at the same time.
Since m ≤ n, the redundancy level given by (n/m-1) % can be selected to be smaller than the replication
technique. The storage requirement is L*(n/m). Additionally, the information dispersal algorithm tolerates up to f
failures, where f = n – m, and guarantees a higher availability.

3.2 The Information Dispersal Algorithm

The processing of data within the information dispersal algorithm includes two phases: data file dispersal and
data file reconstruction. In the data file dispersal phase, a data file is divided into blocks and encoded into
encrypted files respectively, which will be dispersed into the distributed systems according to applications. In
the data file reconstruction phase, a subset of the encrypted files, needed to reconstruct the original data file, is
retrieved.
In the first phase, to disperse a data file F, a matrix An×m must be chosen. The matrix, as shown in Equation 1, is
composed of a set of vectors (V1, V2, V3, …, Vn), each of which has length m. These vectors are the keys that will
be used to encode the blocks of the original data file and recover the original data file from the blocks. One
important requirement of the vectors is that any subset of m different vectors is linearly independent. We define
the length of the data file to be L; then r equals L/m denotes the number of file blocks (Equation 2). The data file
is divided into sequences of blocks (F1, F2, F3, …, Fr) with length m. Accordingly, the data file F can be
described by a matrix Fm×r, as in Equation 3. Then the dispersal operation is achieved by multiplying matrices

Get m Blocks Construct Data File Distributed Data Blocks Data File Dispersal

IDA(n,m) IDA(n,m)

Data File

c2

c1

cm

1

3

2

n

Data File

n

5

3

2

1

Data Science Journal, Volume 9, 26 May 2010

32

An×m and Fm×r, and the product, matrix Cn×r, is the ciphered data file. The detailed processing is shown in
Equations 4 and 5. Finally, the output of the dispersal phase, the matrix Cn×r will be stored in n separate block of
files with each row of the matrix being stored as one file (C1, C2, C3, …, Cn).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×

nmnn

m

m

n

mn

aaa

aaa
aaa

V

V
V

A

L

MOMM

L

L

M

21

22221

11211

2

1

 (1)

m
Lr = (2)

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==×

mrmm

r

r

rrm

fff

fff
fff

FFFF

L

MOMM

L

L

K

21

22221

11211

21
 (3)

rnrmmn CFA ××× =⋅ (4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nrnn

r

r

mrmm

r

r

nmnn

m

m

ccc

ccc
ccc

fff

fff
fff

aaa

aaa
aaa

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

21

22221

11211

 (5)

In the second phase, in order to reconstruct the original data file F, m block files and the matrix An×m are
required. Given m scattered blocks (Cs1, Cs2, Cs3, …, Csm) that can be expressed by a matrix Cm×r, we know that
for each block Csi (1 ≤ i ≤ m) is the product of Vsi (1 ≤ i ≤ m) and Fm×r according to Equations 4 and 5. We let Bm

×m be a matrix whose rows are vectors (Vs1, Vs2, Vs3, …, Vsm) from matrix An×m, as shown in Equation 6. The
matrix Cm×r can be expressed by the result of multiplication of matrix Bm×m and matrix Fm×r, as shown in
Equation 7. Consequently, the original data file Fm×r is recovered by left multiplication of the inverse of the
matrix Bm×m (B-1) and Cm×r, as shown in Equation 8.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×

mmmm

m

m

sm

s

s

mm

bbb

bbb
bbb

V

V
V

B

L

MOMM

L

L

M

21

22221

11211

2

1

 (6)

rmrmmm CFB ××× =⋅ (7)

rmmmrmrmmmmm CBFFBB ×
−
××××

−
× ⋅==⋅⋅ 11 (8)

It should be noted that obtaining the inverse of matrix Bm×m is always guaranteed because the rows of the
matrix An×m are mutually independent, which implies that any submatrix of An×m is nonsingular and thus
invertible.

3.3 The IDA-based Data Parallel Storage System

Data Science Journal, Volume 9, 26 May 2010

33

The IDA-based data parallel storage system is designed to run based on iRODS, the data grid software. The
architecture of the IDA-based data parallel storage system is shown in Figure 2 as follows.

In principle, iRODS is designed as a virtual file system with a metadata catalogue and a file access API. The
metadata catalogue, iCAT of iRODS, stores name-value-unit triples in a relational database and presents
mechanisms to save, delete, or query metadata. The file access API offers a virtual file system for users to access
remote data in a similar way as using local file systems. It is configurable to get access to data in various storage
media. iRODS provides an infrastructure for data intensive applications in scientific research areas to fulfill
massive data file storage across different distributed storage media. With client tools, such as iCommands and
iRODS explore, researchers can manage large petabyte scale data collections. Moreover, the iRODS
programmable interfaces, such as Jargon API, have been developed and provide an approach for users to
develop additional custom functions and to integrate with their own software systems.

Figure 2. The data parallel storage system architecture

The IDA-based data parallel storage system implements the data file state querying, storing, and fetching
functions based on the information dispersal algorithm and iRODS system. It consists of six modules: Client
Requests, Authentication Processor, IDA-based Data Splitting and Reconstructing, Data Distributing and
Fetching, File Catalog Information, and Data Storage Location Selection, as shown in Figure 2.

Among the six modules, the Client Request module is an interface to users and administrators. Through this
interface, users perform data file storage information querying, data file storing to and fetching from the data
grid. In order to ensure system security, the Authentication Processor module has been designed and is triggered
when users start a data session and perform some operations. The IDA-based Data Splitting and Reconstructing
module performs the information dispersal algorithm processing to divide input data file into block files and
reconstruct block files fetching inversely from the data grid into the original file. The Data Distributing and
Fetching module is the interface to the data grid system that handles file transmission to and from storage
servers of the data grid. Similar to the data grid and distributed file systems, the whole data parallel storage
system also needs an important module named Files Catalog Information to store all the system’s metadata
information. The Files Catalog Information module stores all system information, i.e. the original file
information, blocks file information, IDA parameters (n, m, An×m), and storage location information, etc.

Location 1

Storage

Intermediate

Client
Requests

IDA-based Data Splitting
and Reconstructing

Files Catalog
Information

Location 2

Storage

Location n

Storage

iCAT Server

Data Distributing
 and Fetching

Data Storage
Location Selection

Authentication
Processor

Data Science Journal, Volume 9, 26 May 2010

34

It should be noted that the Data Storage Location Selection module is designed to rank and list the quality of the
access performance of different storage locations according to a priority defined by users themselves and system
conditions. Different storage locations may have distinct quality rankings, depending on three factors used to
generate a final grading, from which we evaluate the quality of storage locations: network bandwidth,
transmission distance, and history of access performance. Consequently, the data file can be distributed across
storage locations with high data access performance and can be fetched efficiently in parallel.

When storing a file in the IDA-based data parallel storage system, the user logs into the system and data grid
and then chooses preferred storage locations in the data grid and IDA parameters. The input file is next
processed by the IDA-based data splitting and reconstructing component, which divides it into n block files
distributed across the data grid by the data distributing and fetching module. Because the data distributing and
fetching module can transport the block files to different storage servers in parallel and concurrently, high data
transmission performance can be achieved. At the same time, the quality of each storage server is evaluated and
stored for further reference by the data storage location selection module. Finally, information about the original
file, block files, and storage locations is stored in the files catalog information module.

To download a file from the parallel storage system, the information about the file and n block files and storage
locations is obtained from the files catalog information module. Then the m block files stored in the best storage
locations with high rank are chosen by the data storage location selection module. The m block files are
downloaded in parallel with high performance from the different storage servers. Eventually, the m block files
are used to reconstruct the original file by the IDA-based data splitting and reconstructing module.

4 EXPERIMENTS AND ANALYSIS

4.1 Simulation Environment

In this section, we demonstrate a simulation environment to evaluate the data access efficiency and performance
of the IDA-based data parallel storage strategy compared to replication technology. For simplicity, we
implement all the modules of the IDA-based data parallel storage system on one single server and through the
server access a small data grid subsystem in parallel based on the integrated rule-oriented data system. The
simulation environment is shown in Figure 3.

Storage Servers

The Simulated IDA-based
Parallel Storage System

Router

Ethernet Switch

100Mbps

10Mbps

iCAT Server
100Mbps

Data Science Journal, Volume 9, 26 May 2010

35

Figure 3. The environment of the simulated IDA-based data parallel storage system

In the simulation environment, the data grid subsystem consists of one metadata catalog server and five storage
servers connected by an Ethernet switch configured with 10Mbps port bandwidth. The simulated IDA-based
parallel storage server with a 100Mpbs network interface card connects to the data grid subsystem by a router
with 100Mbps port bandwidth. The bandwidth between the switch and the router is configured to be 100Mbps.

4.2 Data Availability Analysis

In this section, we give a detailed theoretical analysis of the data availability of the IDA-based parallel storage
scheme compared with that of replication technology.

From the previously described system overview section, we know that the information dispersal algorithm
tolerates up to (n-m) failures. Furthermore, we assume that all the involved storage servers have an independent
probability of failure p. Therefore, the data availability of the IDA-based parallel storage scheme can be drawn
as shown in Equation 9. The data availability of the replication technology is determined by (1-pk) as shown in
Equation 10, which means that data access fails only when all the replicas break down.

() ini
mn

i
IDA PP

i
n

tyAvailabili −
−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ 1

0

 (9)

k
nreplicatio PtyAvailabili −= 1 (10)

Figure 4. Data availability of the IDA-based parallel storage scheme and the replication method

Suppose that the probability of failure p is 0.5. We can theoretically calculate the data availability of the
IDA-based parallel storage scheme by Equation 9, when the parameter n of IDA is set to be 4, 8, 16, 24, and 32.
From chart (a) of Figure 4 as shown above, data availability increases as the value of n increases under the
conditions of a fixed value of m because only a small subset of blocks are needed to reconstruct the original data
file. We can see that the data availability approaches the value 100% when the parameter n is much larger than
m.

Chart (b) of Figure 4 shows the difference of the availability trends toward storage redundancy between the

(a) Availability over n and m, where p=0.5 (b) Availability compare with replication, where p=0.5

Data Science Journal, Volume 9, 26 May 2010

36

IDA-based parallel storage scheme and the replication technology. Storage redundancy means the number of
replicas for replication technology and the multiples of n and m for the IDA-based parallel storage scheme.
From chart (b) of Figure 4, we can see that the IDA-based parallel storage scheme has better performance than
the replication technology when storage redundancy is greater than 2. For example, when the redundancy is 3,
the availability of the IDA-based parallel storage scheme (i.e. n=24, m=8, p=0.5) is 0.968 from Equation 9,
whereas the availability of replication technology from Equation 10 is 0.875 under the same conditions (i.e. k=3,
p=0.5). Furthermore, the availability of the IDA-based parallel storage scheme can far more quickly reach the
value of 100% than can replication technology with the redundancy increasing.

4.3 Parallel Access Performance Analysis

In the following, we present a detailed analysis and develop a data file access experiment to compare the
performance of the IDA-based parallel storage scheme and the replication technology. We evaluate the
download time to measure performance, denoted TIDA and TReplication, and formalized, as shown in Equations 11
and 12, respectively. The parameters involved in the two equations are described in Table 1.

As is shown in Equation 11, the file download time of the IDA-based parallel storage scheme is composed of
two parts: one is the block files download time; the other is the IDA processing time to reconstruct the data file.
We generally assume there are m block files scattered on m storage servers needed to reconstruct the original
data file. Therefore, the download time is determined by the longest transmission time among the m sessions
because the m block files are downloaded concurrently. Moreover, the block files download time can also be
divided into three portions: time for session establishment (Qi), time for being read from disks (Si/DBi), and time
for being transferred through the network (Si/NBi). Then the time for the IDA processing to reconstruct the
original file (QIDA), which can be formalized in Equation 13, is dependent on the specific system performance on
which the IDA is running. From Equation 13, it is apparent that this amount of time is in direct proportion to the
value of data file size L and parameter m of IDA. In our simulation, this is much smaller than the total download
time.

The time consumed for accessing a replicated file in a data grid environment is normally expressed as Equation
12. The minimum value among transmission times is determined by the downloading from k storage servers.
Similarly, the file download time of replication technology includes three portions: time for session
establishment (Qi), time for being read from disks (L/DBi), and time for being transferred through network
(L/NBi).

Table 1. The parameters of the IDA-based parallel storage scheme

Parameters Description
 L The size of the data file
 Si The size of the block files divided by the IDA
 DBi the disk bandwidth of the ith storage server

NBi the network bandwidth of the ith storage server to access point
Qi the time consumption of TCP connection establishment
QIDA the overhead of IDA processing to reconstruct the data file
r equal to L/m denoting the length of each file block
m the number of blocks required to reconstruct the data file

Data Science Journal, Volume 9, 26 May 2010

37

n the block number of data file divided by the IDA
k the number of replicas of a data file
IM the integer multiplication instruction
IA the integer addition instruction
TIDA the time consuming to download a file stored in IDA-based parallel

storage system
TReplication the time consuming to download a file or its replica stored in a

specific storage server

IDA
i

i

i

i
imiIDA Q

NB
S

DB
SQMAXT +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= = ,...,2,1

 (11)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= =

ii
ikiplication NB

L
DB

LQMINT ,...,2,1Re
 (12)

() ())*(mLOIAIMmLIAmIMmmrQIDA ⇒+∗∗=∗+∗∗∗= (13)

We have conducted a performance simulation to compare the performance of the IDA-based parallel storage
scheme with that of replication technology. The simulation environment is shown in Figure 4, and the results are
shown in Figure 5. In the simulation, data file sizes of 40MB, 80MB, 120MB, and 160MB are selected and
scattered in five storage servers for the download performance test. The parameters m and n of the IDA are set to
be 4 and 8 respectively, so there are four block files to be downloaded concurrently from four storage servers to
reconstruct the original data file. As to the replication technology performance test, the performance result is
acquired by downloading the data file from one storage server for simplicity. The resulting values of total
download time presented are the average of several test results.

Figure 5. Comparison of IDA-based and replication methods download times

From the results shown in Figure 5, the IDA-based parallel storage scheme presents a much better performance
than replication technology. Note that each session between a storage server and the access point (the simulated
IDA-based parallel storage system) has 10Mbps bandwidth. Therefore, the aggregation bandwidth of the session
in the IDA-based parallel storage scheme test is four times as much as the one in the replication technology test.

Data Science Journal, Volume 9, 26 May 2010

38

As expected, the file download time of replication technology is more than three times as much as that of the
IDA-based parallel storage scheme because of concurrent file transmission and the overhead of the IDA file
processing. Furthermore, as the size of the data file increases, the time consumed in the IDA processing to
reconstruct the original file rises accordingly.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we investigate several data storage and data access strategies in detail and propose a new
IDA-based parallel storage scheme in the data grid environment. Replication technology takes much more space
and achieves a smaller amount of data availability than the IDA-based parallel storage scheme. Moreover, the
IDA-based parallel storage scheme makes full use of data parallel transmission technology by accessing the
geographically scattered block data files in different locations and achieves higher data access performance than
replication technology. The theoretical analysis and simulation experiment confirms that the IDA-based parallel
storage scheme improves both data availability and data access performance in a data grid environment.
Furthermore, by virtue of the high data availability and the smaller storage space occupation, this scheme has
the potential to reduce considerably storage requirements for large-scale databases on a data grid.

In the future, we plan to work on improving the performance of the information dispersal algorithm to process
large data files of gigabytes efficiently. Additional attention will be paid to improving data transmission
performance, adopting multithreads dynamically within each session between storage server and access point.
We will try to implement a parallel storage system to run on separate servers to improve performance.
Ultimately, we plan to improve the prototype of the IDA-parallel storage scheme, not only to verify the
effectiveness as a proof-of-concept but also to try to instantiate it in a working data grid environment.

6 ACKNOWLEDGEMENT

This research is supported by the Special Project of Informatization of Chinese Academy of Sciences in "the
Eleventh Five-Year Plan" under grant NO. INFO-115-C01 and INFO-115-D02.

7 REFERENCES

Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., & Foster, I. (2005) The Globus
Striped GridFTP Framework and Server. Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
ACM Press.

Baru, C., Moore, R., Rajasekar, A., & Wan, M. (1998) The SDSC Storage Resource Broker. Proceedings of the
1998 Conference of the Centre for Advanced Studies on Collaborative Research.

Brinkmann, A. & Effert, S. (2007) Cost-effectiveness of Storage Grids and Storage Clusters. The 15th
EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing.

Changa, R., Guob, M. H., & Lin, H-C (2008) A multiple parallel download scheme with server throughput and

Data Science Journal, Volume 9, 26 May 2010

39

client bandwidth considerations for data grids. Future Generation Computer Systems 24, 798–805.

Data Intensive Cyber Environments Group, University of North Carolina at Chapel Hill, University of
California at San Diego (2008) iRODS: integrated Rule Oriented Data System White Paper. Retrieved October
15, 2009 from the WWW: http://www.irods.org/

Davis, S. (2008) Progress Towards Efficient Data Ingestion into iRODS. Retrieved October 21, 2009 from the
WWW: http://www.irods.org/

Dean, J., & Ghemawat, S. (2008) MapReduce: Simplified Data Processing on Large Clusters. Communications
of the ACM archive 51(1).

García-Carballeira, F., Carretero, J., Calderón, A., García, J. & Sanchez, L. (2007) A global and parallel file
system for grids. Future Generation Computer Systems 23, 116-122.

Ghemawat, S., Gobioff, H., & Leung, S-T. (2003) The Google File System. ACM SIGOPS Operating Systems
Review 37(5).

GT4: Globus Toolkit 4. Retrieved October 16, 2009 from the WWW: http://www.globus.org/

Gu, YH. & Grossman, R. (2008) Exploring Data Parallelism and Locality in Wide Area Networks. Many-Task
Computing on Grids and Supercomputers.

iRODS. Retrieved October 15, 2009 from the WWW: http://www.irods.org/

Li, K-C., Wang, H-H., Cheng, K-Y., & Wu, T-Y. (2009) Strategies Toward Optimal Access to File Replicas in
Data Grid Environments. Journal of Information Science and Engineering 25.

Moore, R. W. (2007) Managing Large Distributed Data Sets Using the Storage Resource Broker. ITEA Journal.

Rabin, M. O. (1989) Efficient dispersal of information for security, load balancing, and fault tolerance. Journal
of the ACM 36(2), 335-348.

Raicu, I., Zhao, Y., Foster, I., & Szalay, A. (2008) Accelerating Large-Scale Data Exploration through Data
Diffusion. Proceedings of the 2008 international workshop on Data-aware distributed computing.

Rodriguez, P. & Biersack, E. W. (2002) Dynamic Parallel Access to Replicated Content in the Internet.
IEEE/ACM Transactions on Networking 10(4).

Secretan, J., Lawson, M., & Bölöni, L. (2009) Efficient allocation and composition of distributed storage. The
Journal of Supercomputing 47(3), 286-310.

Wang, C. M., Hsu, CC. & Wu, JJ. (2007) A High-Performance Virtual Storage System for Taiwan UniGrid.
Journal of Information Technology and Applications 1(4).

Data Science Journal, Volume 9, 26 May 2010

40

Wylie, J. J., Bakkaloglu, M., Pandurangan, V., Bigrigg, M. W., Oguz, S., Tew, K., Williams, C., Ganger, G. R., &
Khosla, P. K. (2001) Selecting the Right Data Distribution Scheme for a Survivable Storage System. Technical
Report CMU-CS-01-120, Carnegie Mellon University.

(Article history: Received 2 February 2010, Accepted 7 May 2010, Available online 19 May 2010)

Data Science Journal, Volume 9, 26 May 2010

41

