[go: up one dir, main page]

Spring til indhold

Ortogonalitet

Fra Wikipedia, den frie encyklopædi
(Omdirigeret fra Ortogonal basis)
Linjerne AB og CD er ortogonale til hinanden.

Ortogonalitet er et begreb med anvendelser indenfor matematik. At to linjer er ortogonale betyder, at de står vinkelret på hinanden. I matematikken siger man, at to vektorer er ortogonale, hvis deres indre produkt er nul. I planet R² og rummet R³ er det indre produkt typisk underforstået at være prikproduktet, så her kaldes to vektorer v og w ortogonale, hvis vw = 0. På grund af egenskaberne ved prikproduktet svarer dette til, at vektorerne står i 90 graders vinkel med hinanden, hvilket med et dansk ord kaldes vinkelret. Derfor hører man tit ordet vinkelret brugt som et synonym for ortogonal; også mht. andre indre produkter, og også brugt om vektorer, der ikke er de traditionelle talpar.

Hvis B = {v1, v2, ..., vn} er en basis for et euklidiske vektorrum V, kaldes B en ortogonalbasis, hvis alle vektorene i B er indbyrdes ortogonale. Dvs. ⟨vi, vj⟩ = 0 for alle ij.

Spire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.