
Design patterns for
Amazon ElastiCache

2

Table of Contents

Introduction 03

What is a cache? When should I use one? 04

What is Redis OSS? Why choose Redis OSS as my in-memory cache? 04

Benefits of Amazon ElastiCache and Amazon MemoryDB 05

Redis OSS resources and bottlenecks 06

Core data modeling patterns 07
Read-aside caching pattern 08

Extending the read-aside pattern for changing data 09

Working with TTLs 11

Efficient resource usage in Redis OSS 12
Memory pressure and object sizes 13

CPU conservation and blocking the main thread 14

Optimizing network usage 15

Working with Redis OSS collection types 16
Hashes 17

Lists 17

Sets 21

Working with advanced data types 22
Sorted sets 23

HyperLogLog 24

Working with multiple operations 26

Pipelining 27

Transactions 28

Scripting 29

Advanced patterns 32
Scaling Redis OSS 33

UNLINK instead of DEL 34

Locking with Redis OSS 34

Saving memory with small hashes 36

Negative result caching 37

Conclusion 38

Introduction
Caching is a critical component for most high-traffic applications.
Caches can provide data access at high throughput with low latency
while relieving load on your systems of record. When used correctly,
caches can even provide for use cases that are near impossible to
handle with a traditional database.

In this ebook, you will learn how to use Redis OSS as an application
cache. We’ll cover some background on caches, their use cases, and
some unique aspects about Redis OSS. Then, we’ll look at how to use
Redis OSS well, including basic caching patterns, the core Redis OSS
data types, and some advanced tips.

What is a cache? When should I use one?
The word “cache” applies to a range of concepts in software development, all the way
from the CPU cache or page cache on physical hardware to the browser cache in your
end user’s Chrome window. But if you hear a coworker mention they want to add a
cache to your application, chances are they’re talking about a centralized, in-memory
cache solution like Redis OSS or Memcached.

For these types of caches, the goal is speed. They aim to provide low-latency, high-
throughput access to your application data. To do this, these caches strip out features
that are common to other centralized databases. For example, caches often use
in-memory storage only rather than more persistent disk-based storage. They also
eschew replication in most cases or use asynchronous replication to reduce write
times. Finally, they typically provide simple, key-based access to your data rather than
a flexible query language or secondary indexes.

Because of these differences, caches are rarely used as system-of-record datastores.
Rather, they’re aimed at more specialized use cases. A review of a variety of
production caching use cases at Twitter was able to group caching use cases into
three groups:

•	 Caching for storage: The most common use case. With caching for storage, you
are looking to provide faster access to your data. It can also be used to reduce
load on your downstream database, but beware of becoming over-reliant on
your cache.

•	 Caching for compute: Certain results, such as large-scale aggregations or
machine learning inference, can be expensive to compute. If a single result is
used multiple times, you can save compute by calculating it once and caching it
for subsequent usage.

•	 Transient data: While most cached data is stored in a more persistent database
elsewhere, there’s certain data that doesn’t need as much permanence. Caches
can be a nice fit for this data. The common examples here are rate limiters or
session stores.

In the data modeling sections below, we’ll look at modeling patterns that fit into
each of these categories.

What is Redis OSS? Why choose Redis OSS as my in-
memory cache?
Redis OSS is used in a wide variety of applications and companies, from enormous
social media and e-commerce applications to bootstrappers with a side project.
Redis OSS has the standard features of in-memory caches mentioned above, from
non-persistent storage to key-based data access. However, there are a few aspects of
Redis OSS that are unique from other caches.

First, Redis OSS allows for a variety of types of objects to be stored. Many caches
provide simple key-value access where values are simple strings. With Redis OSS,
your value can be a string, but it can also be a collection like a list, a set, or a hash.
It can even be a more advanced type like a sorted set or HyperLogLog. Developers
choose Redis OSS not only for its performance, but for the higher-level objects and
operations it provides.

Second, Redis OSS allows you to opt-in to database-like features such as replication
and persistence. These features allow you to use the performance and functionality
of Redis OSS while also receiving better read scalability and availability through
replication or durability through persistence.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

4

https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang
https://aws.amazon.com/builders-library/caching-challenges-and-strategies/
https://aws.amazon.com/builders-library/caching-challenges-and-strategies/

Benefits of Amazon ElastiCache and Amazon MemoryDB
Amazon Web Services (AWS) provides two options for using Redis OSS: Amazon
ElastiCache and Amazon MemoryDB. The right option for you depends on your needs
and circumstances.

ElastiCache provides a standard Redis OSS experience with a fully managed
operational model. You’ll get all the core features of Redis OSS, including advanced
data types, Redis OSS streams, and high performance. Further, the fully managed
model means you have fewer operational burdens. The ElastiCache service will
handle failovers if your hardware becomes degraded. You can increase your instance
sizes with the click of a button, and ElastiCache even provides clustering to spread
your data across multiple instances. In a Redis OSS cluster, your overall dataset is
partitioned into sections called “shards”, each of which hold a subset of your entire
dataset. These shards allow for easier horizontal scalability as your application grows.
You can trust the experience and automation of the ElastiCache team to handle your
Redis OSS cluster.

Additionally, ElastiCache provides some functionality above and beyond the standard
Redis OSS installation. ElastiCache supports enhanced I/O multiplexing where it
offloads connection management work to the non-primary threads, allowing the
engine full use of the main thread. Further, ElastiCache provides the ElastiCache
Serverless option for using the Redis OSS API. With ElastiCache Serverless, you
get pay-per-use billing with automated scale-up and scale-down to adjust to your
application needs.

Some developers like the objects and API of Redis OSS so much that they would like
to use it as a more persistent database. MemoryDB is an in-memory database with
multi-AZ durability and a Redis OSS-compatible API. You still get the useful object
types and blazing fast read performance of Redis OSS while opening Redis OSS up
as a primary datastore given the addition of persistence. MemoryDB is a great fit for
applications like online gaming where performance is critical but you also can’t afford
to lose data.

Between ElastiCache and MemoryDB, AWS has the Redis OSS
services to fit your application needs.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

5

https://aws.amazon.com/blogs/database/enhanced-io-multiplexing-for-amazon-elasticache-for-redis/
https://aws.amazon.com/blogs/aws/amazon-elasticache-serverless-for-redis-and-memcached-now-generally-available/
https://aws.amazon.com/blogs/aws/amazon-elasticache-serverless-for-redis-and-memcached-now-generally-available/

Redis OSS resources and
bottlenecks
In the following sections, we’ll learn about specific data modeling
patterns you can use with Redis OSS in your application. These patterns
are recommended for you to get the best performance out of your Redis
OSS usage.

But first, let’s think about performance more generally. Whenever you’re
having a performance issue in your application, there will be a bottleneck
in some specific resource that is causing the issue. If you’re using a
database with a traditional hard disk drive, your bottleneck might be
reading the physical bits from disk. Moving to a more modern solid-state
drive can reduce this bottleneck and improve performance.

Or, if your users are trying to access your application that’s located on a
different continent, you have a bottleneck related to the speed of light
and the absolute distance between your users and your application. Since
the former is hard to change, you’ll need to consider ways to reduce that
distance, perhaps by replicating your data to additional regions.

In Redis OSS, there are three main resources that are going to affect your
performance. They are:

•	 Memory. Redis OSS stores all of its data in memory. This means your
Redis OSS instance will need significantly more memory as compared
to disk than most data stores. Many of the data modeling tips below
focus on how to efficiently use memory in Redis OSS.

•	 Compute. The Redis OSS engine that handles data access is single-
threaded. This greatly simplifies data access, but it means you should
ensure to avoid compute-heavy operations. Most of the Redis OSS
operations are designed to be consistently fast at any scale, but there
are some operations that slow down with larger objects. The sections
below will often talk about the time complexity of an operation to
help optimize your Redis OSS usage.

•	 Network. Redis OSS is a centralized cache that your application will
communicate with over a network. The Redis OSS engine is so fast
that your request will often spend more time in the network than
within Redis OSS itself. You should work to optimize network usage as
your application interacts with your Redis OSS instance.

Keep these resources in mind as you read through the data modeling
patterns below. The sections often mention these resources specifically
to help describe the optimizations you can make. You can also review
the ‘Efficient resource usage in Redis OSS’ section below for a holistic
overview of resource optimization in Redis OSS.

Core data modeling patterns
Redis OSS can do a lot of fun, incredible things, and we’ll see some of
the more advanced patterns later on in this book. However, the most
common use case for Redis OSS is as a simple cache that’s holding data
from a system of record. In this section, we’ll look at the read-aside
caching pattern, which is the most common pattern for using Redis OSS
as a cache. In doing so, we’ll be using the simple Redis OSS string data
type. In subsequent sections, we’ll look at more advanced data types
and patterns.

Read-aside caching pattern
The read-aside caching pattern is the canonical caching use case. In this pattern,
your application code will first try to retrieve an object, such as a user profile or a
product, from your cache. If the object does not exist in the cache, your application
will fall back to retrieving it from the system of record, such as your database. Once
it has retrieved the object, it will then store it in the cache for future use.

Your code to implement this might look something as follows:

import redis
import json

client = redis.Redis(host=’localhost’, port=6379, db=0)

def get_user(user_id):
 # Try to retrieve the user from the cache
 user = json.loads(client.get(f’user:{user_id}’))

 # If the user is not in the cache, retrieve it from the
database
 if user is None:
 user = retrieve_user_from_database(user_id)
 client.set(f’user:{user_id}’, json.dumps(user))

 return user

The great thing about the read-aside pattern is in its simplicity and ubiquity. You
can implement the read-aside functionality with a few lines of code in your service’s
get_user function, and all consumers of the service will benefit from the upgrade.

Further, this pattern can be used broadly across a number of use cases. Almost any
object that is frequently accessed and fairly static can be cached -- user profiles,
product details, social media posts, and more. Not only will this reduce latency for
your end users, but it will also reduce the load on your system of record.

Notice that, even though our User is a complex object, we’re storing it as a simple
string in Redis OSS. We’re using json.dumps() to serialize the object to a string
before storing it in Redis OSS, and we’ll use json.loads() to deserialize it back
to an object when we retrieve it from Redis OSS. This is a common pattern in Redis
OSS, particularly when you’ll always be working on the full object rather than a
subset of the object. We’ll see more advanced patterns for working with complex
objects in subsequent sections.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

8

Extending the read-aside pattern for changing data
The read-aside pattern is great, but the previous example glossed over some
complexities. It mentioned that the read-aside pattern works for fairly static data,
but that may not describe your data. Maybe it’s true for product descriptions, but
there are other objects that are more dynamic. These objects are still cacheable, but
you need to be more careful about how you handle them.

It’s often said that cache invalidation is one of the two hard problems in computer
science, but that’s what you’ll need to do with these dynamic objects. When the
object changes, you’ll need to make a corresponding change in your cache.

One way you can handle this is by explicitly removing the item from your cache
when it’s updated in your application. Redis OSS provides the DEL command to
remove items from your cache. You can add this to your update_user function as
follows:

def update_user(user_id, new_user):
 # Update the user in the database
 update_user_in_database(user_id, new_user)

 # Remove the user from the cache
 client.delete(f’user:{user_id}’)

Now, the user item will be removed from the cache whenever it’s updated in the
database. Here we see the benefits of our read-aside pattern -- whether the item
does not exist in the cache because it was never there or because it was removed,
the application will fall back to the system of record to retrieve the item the next
time it’s requested.

There are two improvements we can make to this implementation. The first is
purely in our code structure to avoid mistakes. Notice that we’ve been using a key
pattern of user:${userId}. When that key access is limited to a single place in our
code -- the get_user function -- it was fine to hardcode the key pattern. However,
now that we’re using it in multiple places, we should abstract it into a function to
avoid mistakes in our code.

You could do this as follows:

def get_user_key(user_id):
 return f’user:{user_id}’

def update_user(user_id, new_user):
 # Update the user in the database
 update_user_in_database(user_id, new_user)

 # Remove the user from the cache
 client.delete(get_user_key(user_id))

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

9

In our updated example, we have a get_user_key function that returns our key
pattern. We can use that function within update_user and get_user when we
need to access the key pattern.

A second change we could make is in how we handle the write path. In our
update_user example, we’re removing the user from the cache altogether when it
is updated. However, in most cases, a recently updated item will be requested again
soon. Rather than deleting our user record from the cache, we could refresh the
cache with the new user data. This would allow us to avoid the latency of a cache
miss the next time the user is requested.

Our updated code would look as follows:

def update_user(user_id, new_user):
 # Update the user in the database
 update_user_in_database(user_id, new_user)

 # Refresh the user in the cache
 user = json.dumps(new_user)
 client.set(get_user_key(user_id), user)

In this updated example, we’re setting the user in the cache with the new user data.
This will ensure that the next time the user is requested, it will be available in the
cache.

This pattern won’t work for all workflows. If you’re retrieving this record from an
API that you don’t control rather that from your own system of record, you may
not know when all updates occur. Further, if the object can be updated in multiple
different places, it can be difficult to know how and when to update. In those
situations, you might opt for a simpler solution. You should consider your needs
and the tradeoffs of each approach.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

10

Working with TTLs
In the previous section, we saw explicit deletion or refresh of items as they
changed. However, there’s another way to handle changing data in your cache:
using time-to-live (TTL) values on your keys.

When setting a key in Redis OSS, you can set a TTL on the key. That TTL indicates
when Redis OSS should expire that key. Once that time has passed, Redis OSS will
automatically remove the key from the cache.

When setting the value of a string key, you can set the TTL at the same time by
using the EX or PX options. The EX option sets the TTL in seconds, while the PX
option sets the TTL in milliseconds. For example, you can set a TTL of 60 seconds
on a key as follows:

client = redis.Redis(host=’localhost’, port=6379, db=0)
client.set(‘my_key’, ‘my_value’, ex=60)

For more advanced data types, you’ll need to use the EXPIRE command to set the
TTL after the key has been set. For example, to set a TTL on a daily HyperLogLog to
expire after 24 hours, you can use the following:

client = redis.Redis(host=’localhost’, port=6379, db=0)
key = ‘users:20240601’
client.pfadd(key, ‘1234’)
client.expire(key, 86400)

A TTL is a powerful cache tool to use, and it works in a variety of situations.

For data that is changing somewhat regularly and is out of your control, a TTL
can be a nice way to regularly refresh the state of that data. You can prevent
overloading your downstream system while maintaining some level of freshness by
relying on Redis OSS to expire older data.

For data that is less frequently changing, you can still use a TTL to maintain
memory usage of your data. Certain items like social media posts or breaking news
articles may be hot for a few hours, but after that, they’re rarely accessed. You
can set a TTL on these items to ensure that they’re removed from the cache after
a certain period of time. This can reduce the amount of memory needed for your
cache.

Finally, a TTL can be used to reduce load on your database, even if you know the
data is likely to be stale. Imagine a high-traffic social network site like Reddit. You
can cache the number of likes, the top-performing comments, and other metadata
for a post, but this may not help if you’re doing explicit cache busts on every
update. A popular Reddit post will be updated many times per second. You can
alleviate pressure on your database by setting a brief TTL of a few seconds. This will
allow you to serve the same, slightly stale, data to multiple users without hitting
your database. As the data expires, it can be refreshed to the cache by the next user
that requests it.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

11

Efficient resource usage
in Redis OSS
Now that we’ve seen the basic patterns for working with Redis OSS,
let’s go back and take a deeper look at the resources used in Redis OSS.
Optimizing these resources is crucial for performance in Redis OSS.
These resources will be discussed regularly in the more advanced data
modeling sections that follow.

Memory pressure and object sizes
When you’re sizing your ElastiCache cluster, the available memory is likely to be
the most important choice as you pick your instance size. As we’ve seen, Redis OSS
stores its data in memory by default, so the available memory has to exceed your
desired working set.

The good news is that high memory usage is a straightforward technical problem
to solve, as you can increase the size or number of instances in your Redis OSS
cluster to access more memory. The largest instances in ElastiCache have hundreds
of GiB of memory, and you can have an ElastiCache cluster with up to 500 shards.
Few use cases will need more memory than that, and you can even set up multiple
clusters if you do.

While the scaling problem of memory is solvable, you don’t necessarily want to
solve it solely by increasing your memory capacity. After all, increasing the number
and size of your instances will increase your bill correspondingly. Instead, think of
ways to reduce your memory usage.

The easiest way to reduce your memory usage is to reduce the size of the data you
store in Redis OSS. For your object keys, you can abbreviate the key length. It’s not
uncommon to have Redis OSS clusters with millions of keys and long, descriptive
key names. A simple change such as going from userprofiles:${userId} with
up:${userId} will save 10 bytes per key, or 10 MB per million objects.

Shortening your key names will only get you so far, and you don’t want to sacrifice
readability and debuggability for memory. Another, more effective approach for
conserving memory is to reduce the size of your object values. This can be by
stripping extraneous data from the values you’re storing. If you don’t need the
extra attributes for your specific caching use case, don’t store it in your cache.

Even better, you can compress the value before storing it in Redis OSS. At the cost
of a bit of CPU when writing and reading your data, you can significantly reduce the
size of data stored in Redis OSS memory.

Remember that compression’s benefit depends on your dataset. Do some testing
with different compression libraries to see how it affects object size and CPU
consumption for your application.

Another way to reduce Redis OSS memory usage is to remove items from
your cache when they are unused. You can handle this manually via Redis OSS
commands like DEL, but an easier approach is the TTL approach that we saw in
the previous section. You can set TTLs on your keys to indicate when Redis OSS
should expire them out. Setting a realistic TTL can help with not only ensuring data
freshness but also in reducing your required memory footprint.

If you don’t handle your memory well and start to push the limits of available
memory, Redis OSS will automatically remove items for you. This is done according
to the eviction policy you set on your Redis OSS cluster, which can be based on
factors such as how often or how recently keys have been accessed or whether the
key has a TTL configured. You can even choose not to evict keys when memory
limits are reached, which will result in blocking writes to Redis OSS until the
necessary memory is available.

When using ElastiCache, you can choose instance types that allow for data tiering.
With data tiering, ElastiCache will smartly decide whether to store your item values
in memory or on local SSD drives. SSD drives provide slightly slower performance
than memory but at a much lower price point. If you have a long tail of less
frequently accessed cache data and don’t mind the additional latency in reading
from SSDs, data tiering can alleviate your memory usage concerns.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

13

CPU conservation and blocking the main thread
A second, less understood, potential bottleneck in Redis OSS is the CPU.

If you have a larger Redis OSS instance that’s experiencing high or variable latency,
you might dismiss CPU usage as a source of the problem when you look at the
CPU utilization metric. Many larger Redis OSS instances show low single-digit CPU
usage. However, this could be hiding a CPU problem. The Redis OSS engine that
reads and writes data is single-threaded. If you have a Redis OSS instance with
16 vCPUs, your main thread could be at 100% utilization while your overall CPU
utilization would show CPU utilization under 7%!

Thus, CPU usage in Redis OSS is about two things: (1) monitoring the proper
metrics to understand when you have a problem, and (2) using Redis OSS in a way
to avoid having CPU problems.

To monitor your CPU performance, you should focus primarily on the core that the
Redis OSS engine is using. If you are using Amazon ElastiCache, you can use the
EngineCPUUtilization for this metric. You can set CloudWatch alarms on this
metric to warn you of excessive CPU consumption.

Note that, in addition to easily displaying the usage of the engine CPU utilization,
ElastiCache also helps conserve CPU usage in other ways. ElastiCache has
introduced a number of improvements to use the other CPUs on your ElastiCache
instance for other non-core Redis OSS work. This includes not only the background
Redis OSS tasks but also TLS termination, network processing, and more. The result
is that the Redis OSS core is dedicated to as much pure Redis OSS work as possible
without handling other areas of the stack.

Beyond monitoring your CPU usage, you should use Redis OSS in a way that
does not cause CPU issues. The Redis OSS documentation includes the Big-O
notation of every Redis OSS operation. From that, you can see that the Redis OSS
SET command has a time complexity of O(1), indicating that it’s a constant-time
operation. Many common Redis OSS commands have O(1) time complexity, which
make them attractive as your application scales.

Conversely, there are other operations that have less-favorable time complexity.
Some operations, like LINDEX to find an element within a list, have O(N) time
complexity, where N is the number of elements to traverse before finding the
relevant element. Meanwhile others, like the SMEMBERS command to return all
members in a set or the dreaded KEYS operation to search all keys in your Redis
OSS instance have time complexity of O(N), which can result in wildly different
response times depending on the number of elements being acted upon.

You shouldn’t let time complexity be the sole consideration in using a command.
Redis OSS is still quite fast, even on most O(N) operations, and advanced features
like list operations and sorted sets are part of the reason developers love Redis OSS
so much. Rather, use this information to guide your usage based on your situation,
application, and user needs. If you start to see higher CPU usage, you can use this
information to understand how to reduce the strain on your Redis OSS cluster.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

14

https://redis.io/docs/latest/

Optimizing network usage
The last resource to consider is network. Redis OSS is a centralized cache, rather
than a cache that’s local to your application instances. Accordingly, you’ll need to
initialize a connection over a network and send requests back and forth. Failing
to consider the network can significantly increase the latency of your Redis OSS
requests.

First, ensure you’re optimizing the connection itself. You’ll be communicating with
Redis OSS over TCP, which involves setting up a connection via the three-way
handshake. If you encrypt your communication via TLS, this involves additional
round-trip requests to be established. You should reuse your connection across
multiple requests if possible to avoid this additional traffic as you communicate
with your Redis OSS cluster.

In addition to the additional latency of the TCP connection initialization and TLS
configuration, setting up and tearing down connections can also consume CPU on
your Redis OSS cluster. Fortunately, if you’re using the enhanced I/O features of the
new ElastiCache instance types, these operations will be offloaded to the non-core
CPU to reduce strain on the Redis OSS engine.

You should also consider the specifics of your infrastructure topology when working
with your ElastiCache instances. Keeping your application compute in the same
availability zone as your Redis OSS instance will reduce latency by avoiding requests
across datacenters. Further, you’ll reduce cross-AZ networking costs by staying in
the same AZ where possible.

Aside from connection management, you should also consider how to reduce the
round trips to your Redis OSS instance. A common pattern is to perform multiple
actions in Redis OSS as part of a particular workflow. For example, you may
need to store a blob of data, increment a count, and add a value into a set or a
HyperLogLog. Rather than making three separate round trips to Redis OSS, you can
pipeline these three commands together in a single request to Redis OSS.

With these considerations in mind, let’s continue our look at data modeling in
Redis OSS.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

15

Working with Redis OSS
collection types
So far, we’ve used the simple string data type in Redis OSS to store our
objects. However, much of the joy of using Redis OSS comes in its more
advanced data types. In this section, we’ll look at the core Redis OSS
collections -- hashes, lists, and sets. For each type, we’ll look at examples
of when you can use them in your application. In later sections, we’ll look
at even more advanced data types like sorted sets and HyperLogLogs.

Hashes
The first collection type we’ll look at is the hash. A hash is a collection of key-value
pairs. It’s similar to a Python dictionary or a JavaScript object. You can use hashes
to store a collection of related fields, such as a user profile that has name, email
address, and profile picture fields, or a social media post that has the post content
along with data on likes, views, and shares.

You’ll notice that there is overlap in the examples we’ve given for hashes and
strings. In many cases, you can use either a hash or a string to store your data. The
choice between the two comes down to a few factors:

•	 When reading the item, are you using the whole item or just a subset? If you’re
using the whole item, a string is likely the right choice. If you’re using a subset,
a hash may be a better fit. This is particularly true when one element is much
larger than the others and is not frequently accessed.

•	 When updating the item, are you updating the whole item or just a subset? If
you’re updating the whole item, a string is likely the right choice as you can
simply overwrite the current existing value. If you’re updating a subset, a hash
may be a better fit. This is particularly true when you have concurrent updates
to the item.

Imagine our social media post example. The actual content of the post is unlikely to
change very frequently, but you may be often updating the likes and views. If you
used a string value, you would need to read the current value, update the likes, and
then write the new value back to Redis OSS. If other clients are operating on the
value at the same time, you could overwrite each other.

Conversely, if you used a hash, you could use the HINCRBY command to increment
the likes and views without needing to read the current value. The Redis OSS
increment commands are atomic, so you won’t have to worry about concurrent
updates.

Redis OSS provides a number of helpful operations on hashes, and all of the Redis
OSS operations on hashes start with an ‘H’. You can use HSET to set one or more
fields in a hash, HGET to retrieve a field from a hash, HMGET to read multiple values
in a hash, and HINCRBY to increment a field in a hash. These operations can build a
variety of features in your application.

Hashes are a great fit for a variety of use cases for the same reason that hashes are
popular in your application code. They’re a great way to store a collection of related
fields, and they provide constant time access to each field. In the Advanced Tips
section, you can even find a unique trick where using hashes can save significant
memory over using individual strings.

Lists
The second Redis OSS collection type we’ll look at is the list. A list is an ordered
collection of items. Common use cases for lists include queued jobs or a timeline of
events.

The important aspect of Redis OSS lists is ordered -- you want to be working with
items that have some inherent order that affects how you access them. A queue
is a great example of this, as you’ll be adding elements to one end of a list and
processing them on the other end. Likewise, a timeline is great for lists as you can
push new events into a list and then read the most recent events from the front of
the list.

To understand the importance of ordering in using lists, it helps to know a bit about
how Redis OSS implements lists. Redis OSS lists are linked lists rather than arrays.
Whereas arrays store themselves in a contiguous block of memory, linked lists do
not. Rather, each item in a linked list has a pointer to the next item in the list.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

17

A linked list makes sense for Redis OSS. Redis OSS doesn’t need to over-allocate
space for an array to allow for growth, and it doesn’t need to shift an entire array
to a new location if it exceeds the previously allocated memory. Further, adding
or removing an item from the front or back of a list is a constant time operation,
regardless of the size of the list. For caching use cases, this efficiency is important.

However, it does mean that accessing items in the middle of a list is not as efficient.
If you need to access items in the middle of a list, you may want to consider a
different data type.

When working with Redis OSS lists, there are two sets of terminology you should
know. First, Redis OSS uses the terms ‘push’ and ‘pop’ to refer to adding and
removing items from the list. Pushing an item onto the list adds the item to the list,
such as when you’re enqueuing a new job. Then, a client that wants to process a job
would pop an item to remove it from the list.

Second, Redis OSS uses the terms ‘left’ and ‘right’ to refer to the ends of the list.
You should visualize a Redis OSS list as a line, with the left end being the front of
the line and the right end being the back of the line. You can push and pop items
from either end of the line.

The core Redis OSS list operations use this terminology. You can use LPUSH to
push an item onto the left end of the list and RPUSH to push an item onto the
right end of the list. Similarly, you can use LPOP to pop an item from the left end
of the list, and RPOP to pop an item from the right end of the list. Again, because
these operations are working at the ends of a list, they are efficient, constant time
operations. Redis OSS does have a LINDEX command to access items in the middle
of a list, but it’s an O(N) operation, where N is the number of items to traverse to
reach the desired item.

Let’s look at a brief example of how to implement a queue using a Redis OSS list.
For most queues, you follow a ‘first-in, first-out’ (FIFO) pattern. You’ll push items
onto one side of the list and pop items from the other side.

You can implement this as follows:

QUEUE_NAME = ‘jobs’

def enqueue_job(job):
 client.rpush(QUEUE_NAME, json.dumps(job))

def dequeue_job():
return json.loads(client.lpop(QUEUE_NAME))

Redis OSS makes this pretty simple -- we push a serialized job to the right side of
the list with RPUSH and pop a job from the left side of the list with LPOP. This is
a simple, efficient way to implement a queue in Redis OSS. Additionally, you can
modify this into a ‘last-in, first-out’ (LIFO) pattern by pushing to and popping from
to the same side of the list.

With a queue, you may have a fleet of workers that are processing the queue. At
times, the workers available may work through the queue so quickly that there are
no elements in the queue. In this case, the workers will get empty results as they try
to pop items from the queue. This can be inefficient, as the workers will be making
many requests to Redis OSS that result in no work.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

18

Fortunately, Redis OSS provides a blocking version of the pop operation. You can
use BLPOP to block until an item is available in the queue. If there are items in the
list, Redis OSS will return immediately. If not, it will hold the connection until a
new element appears in the list, then return it to the client. You can also configure
a timeout for the blocking operation, so that the client will return after a certain
period of time if no item is available.

Updating our previous example to use BLPOP would look as follows:

def dequeue_job_blocking():
 result = client.blpop(QUEUE_NAME, timeout=30)
 if result:
 _, job = result
 return json.loads(job)
 else:
 return None

Note that while this is a ‘blocking’ operation, it’s only blocking for that particular
Redis OSS client. It’s not blocking the engine thread on the Redis OSS server.
Redis OSS will keep processing other requests from other clients while the client is
blocked. This is a great way to quickly process your queue without overloading your
Redis OSS server.

One other neat thing about the blocking pop operations is that you can provide
multiple lists to block on. Redis OSS will pop from the first list that has an item
available. This can be a great way to implement a priority queue, where you have
multiple queues for different priority levels and you want to process the highest
priority items first. Your queue workers could list the queues in order of priority in
their blocking pop operation, and Redis OSS will return the first item available from
the highest priority queue.

Our updated example would look as follows:

HIGH_PRIORITY_QUEUE = ‘high_priority_jobs’
MEDIUM_PRIORITY_QUEUE = ‘medium_priority_jobs’
LOW_PRIORITY_QUEUE = ‘low_priority_jobs’

def dequeue_job_blocking():
 _, job = client.blpop([HIGH_PRIORITY_QUEUE, MEDIUM_
PRIORITY_QUEUE, LOW_PRIORITY_QUEUE], timeout=30)
 return json.loads(job)

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

19

Finally, we should note that Redis OSS lists are not just for queues. They’re also
great for timelines, where you’re adding new events to the list and reading the
most recent events from the list. You can use the same LPUSH operation to add
items to the list, and you can use the LRANGE command to read a range of items
from the list.

We could implement this as follows:

def user_timeline_key(user_id):
 return f’timeline:{user_id}’

def add_event(user_id, event):
 client.lpush(user_timeline_key(user_id), json.dumps(event))

def get_recent_events_for_user(user_id, count):
 events = client.lrange(user_timeline_key(user_id), 0, count
- 1)
 return [json.loads(event) for event in events]

When a new event comes in, we push it to the left side of the list with LPUSH. When
we want to read the most recent events, we use LRANGE to read a range of items
from the list.

Note that the LRANGE operation has time complexity of O(S+N), where S is distance
that the start of the range is from the head or tail of the list and N is the number
of elements to return. If you’re doing a “most recent” timeline operation, this is a
constant-time operation as you’ll be reading from the head of the list. However,
if you’re pulling items from the middle of the list, it can be a more expensive
operation.

Lists are a powerful tool in Redis OSS as long as you are working with ordered
events that require access to the ends of the list. They’re a great fit for queues
and timelines, and they provide efficient, constant time operations for adding and
removing items from the list.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

20

Sets
The final core collection data type in Redis OSS is the set. A set is an unordered
collection of unique items. The uniqueness is the key attribute here -- you’ll want
to focus on sets where you either want to ensure uniqueness when adding items or
you want to prevent duplicate counts when reading items.

All the set operations start with the letter S -- SADD to add an element to a set,
SPOP to remove and return a random element from a set, and SCARD to return the
number of elements (the cardinality) of a set.

One use case for a set is to handle idempotency to prevent duplicate processing.
When performing the SADD operation to add an item to a set, Redis OSS will return
1 if the item was added to the set and 0 if the item was already in the set. You can
use this to ensure that you only process an item once, even if it’s requested multiple
times.

You can implement this as follows:

def process_item(item_id):
 if client.sadd(‘processed_items’, item_id):
 process_item(item_id)
 else:
 pass

You can use sets for a number of use cases, including tracking the count of unique
visitors to a page or the users that have voted in a poll today. For the core set
operations -- SADD, SPOP, and SCARD, you get constant time complexity, making
sets a great fit for high-performance use cases.

There are some advanced set operations that you can use to perform set operations
on multiple sets. For example, you can use SINTER to find the intersection of
multiple sets, SUNION to find the union of multiple sets, and SDIFF to find the
difference of multiple sets. These operations can be useful for a variety of use
cases, such as finding the intersection between who is following two different
users on a social media platform or finding the union of users that have visited two
different pages on a website. However, take note that these operations have less
favorable time complexity than the core set operations. If you use them for sets
with a large number of elements, you may see a performance hit.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

21

Working with advanced
data types
As we move beyond the standard data types, Redis OSS has some
more unique data types. These data types aren’t included in most
other caches or even other database systems. However, they can be
incredibly useful for certain use cases. In this section, we’ll look at two
of these advanced data types -- sorted sets and HyperLogLogs.

Sorted sets
In the previous section, we looked at list data type, which provides nice ordering
semantics, along with the set data type, which provides uniqueness. But what if
you want both -- a unique collection of items that are ordered along some metric?
Further, what if you could update the ordering of individual items in the collection?

Enter the sorted set. The sorted set provides a unique collection of items that are
ordered along a client-specified ‘score’. Sorted sets are one of the most loved parts
about Redis OSS as they vastly simplify certain types of problems.

The most common example use case for a sorted set is a leaderboard. Imagine
you have a multiplayer game where users can earn points. As the users play, they
continue to rack up points. You want to show what place they’re currently in, as
well as the users that are immediately above and below them. All of this can be
done with a sorted set.

Continuing with Redis OSS’s theme of using a prefix to denote the type of data,
sorted sets use the prefix Z. The ZADD command is used to add an item to a sorted
set with the given score. If that item is already in the set, the score will be updated.
This is the command you would use to update a user’s score in the leaderboard as
they gain points.

To get the user’s current place in the leaderboard, you can use the ZRANK command.
This will return the 0-based index of the user in the sorted set.

Then, if you want to retrieve the users that are immediately above and below
the user in the leaderboard, you can use the ZRANGE command. This will return a
range of items from the sorted set, which you can use to find the users that are
immediately above and below the user.

The basic implementation of a leaderboard would look as follows:

def set_points_for_user(user_id, points):
 client.zadd(‘leaderboard’, {user_id: points})

def get_user_place_in_leaderboard(user_id):
 return client.zrank(‘leaderboard’, user_id)

def get_users_around_user_in_leaderboard(user_id):
 place = get_user_place_in_leaderboard(user_id)
 return client.zrange(‘leaderboard’, place - 1, place + 1)

One of the interesting things about sorted sets is their performance profile. We saw
that lists have nice, constant time characteristics for operating on the ends of lists
but slower, O(N) time characteristics for operating on elements in the middle of
the list. Sorted sets, on the other hand, are able to efficiently operate on any item
in the list. The ZADD operation is O(log(N)). Further, finding the rank of a given
element with ZRANK is O(log(N)) as well. Even the ZRANGE operation is
O(log(N) + M), where M is the number of elements to return. This makes
sorted sets a great fit even for large, fast-moving leaderboards.

Like with sets, there are some operations with less favorable time complexity. All
the set-like operations that compare two or more sets -- operations like ZINTER
and ZUNION -- are going to get slower as the size of your sets increase. Use these
sparingly and with smaller sorted sets.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

23

While leaderboards are the canonical use case for sorted sets, they can be used
for a variety of other use cases. We can even use them to augment some of the
examples in previous sections.

For example, in the section on Redis OSS lists, we talked about using multiple lists
and the BLPOP command to implement a priority queue. This works for simple
situations where the priority is coarse-grained and items are not updated once
they are in a queue. However, sorted sets can give you a more fine-grained priority
queue as you explore the entire space of a score range. Further, you can update the
score of a job in the queue to change its priority.

Even simple operations like cancelling an item in a queue are easier with sorted
sets. With a list, you’d need to iterate through the entire list to find the job to
cancel. With a sorted set, the ZREM command allows you to quickly remove one or
more elements.

We also saw Redis OSS lists used for timelines. Again, this works great for a static
timeline of operations. But what if you have a timeline of events that can be
updated? If you’re showing a social media feed of recent items, you may need to
reorder an item if the post is updated. With a sorted set, changing the timestamp
score of an element is a simple, fast operation.

HyperLogLog
The second advanced data type we’ll look at is the HyperLogLog. The HyperLogLog
is unlike most data structures you’ve seen before.

In some ways, a HyperLogLog overlaps with a set, as it provides a way to store
a collection of unique items. However, storing enormous sets can be memory-
intensive. A HyperLogLog provides a way to store a collection of unique items with
a much smaller memory footprint. To do this, the HyperLogLog is a probabilistic
data structure. Rather than giving you an exact count of unique items, it gives you
an estimate of the number of unique items. This estimate is very close to the actual
count, with a given level of error, but it’s not exact.

The HyperLogLog is a great fit for use cases where you need to estimate the
number of unique items in a large set. For example, you could use a HyperLogLog
to estimate the number of unique visitors to a website in a given time. Each time
a user visits the website, you would add the user’s ID to the HyperLogLog using
the PFADD command. Then, you can use the PFCOUNT command to estimate the
number of unique visitors to the website.

If you were doing this with a Redis OSS string and using the SETBIT and BITCOUNT
commands for these counts, you would need to use a single bit for each visitor.
This means one million users would require a 125 KB string, and it would scale
linearly from there -- two million users would require a 250 KB string, etc. With a
HyperLogLog, the maximum size is only 12 KB and can be used to count over 18
quintillion (2^64) unique items.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

24

The implementation of this would look as follows:

def get_unique_visitor_key_for_date(date):
 return f’unique_visitors:{date}’

def add_user_to_unique_visitors(user_id):
 date = datetime.datetime.now().strftime(‘%Y-%m-%d’)
 altered = client.pfadd(get_unique_visitor_key_for_date(date), 	
 user_id)
 return altered

def get_unique_visitor_count_for_date(date):
 return client.pfcount(get_unique_visitor_key_for_date(date))

There are two main tradeoffs with the HyperLogLog. First, it’s a probabilistic data
structure, so the count is not exact. With how Redis OSS has implemented the
HyperLogLog, the standard error is 0.81%. Second, the HyperLogLog is not as
flexible as a set. You can’t remove items from a HyperLogLog.

Even when adding an element to a HyperLogLog, you won’t always be sure if the
element was present previously or not. The PFADD operation will return 1 if the
HyperLogLog was altered and 0 if it was not altered. The fact that a HyperLogLog
was altered by a PFADD means that the element definitely did not exist before, but
the fact that it was not altered does not mean that the element did exist before.
The reason behind this is beyond the scope of this ebook and has to do with how
the HyperLogLog is implemented.

The HyperLogLog is powerful, but use it with caution. It’s a fast, space-efficient way
to estimate the number of unique items, but it’s not a perfect fit for all use cases.
Consider when you need more accuracy than what the HyperLogLog can provide.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

25

Working with multiple
operations
To this point, we’ve learned the core Redis OSS data types -- what they
are, how to use them, and when they’re useful. All of this is useful as
you consider which data type is right for your use case. In the examples
we show, you’re usually running a single Redis OSS command.

Yet in many scenarios, you’ll need to perform multiple Redis OSS
operations in a single workflow to achieve your desired functionality.
For example, you may need to both update the score for a user in a
sorted set while also updating the score for that same user in the user’s
cached record. Or, you may need to create a new list item while also
setting the TTL for that item.

In this section, we’ll look at a few patterns for working with multiple
Redis OSS operations in a single workflow. There are three ways to
handle this -- pipelining, transactions, and scripting -- and we’ll look at
each in turn.

Pipelining
The first way to handle multiple operations in a single workflow is via pipelining
(also known as ‘batching’ in some Redis OSS client implementations).

We’ve seen that working with Redis OSS is very fast. Unless you’re working with
huge objects, you’re going to be able to handle hundreds of thousands of Redis
OSS operations per second. If you’re running multiple Redis OSS commands in a
single workflow, the bottleneck isn’t going to be the speed of the Redis OSS server.
Rather, it’s going to be the network latency between your application and the Redis
OSS server.

Pipelining is a way to reduce the impact of network latency on your Redis OSS
operations. With pipelining, you can send multiple commands to Redis OSS in
a single request. Redis OSS will process the commands in the order they were
received and return the results in the same order. There’s a single round trip for the
entire set of commands, rather than a round trip for each command.

Let’s go to our example of updating a user’s score in a sorted set and updating
the user’s score in the user’s cached record. We can use pipelining to send both
commands in a single request. We can use the pipeline command in your Redis OSS
SDK to start the pipeline and the execute command to execute the pipeline.

The implementation of this would look as follows:

def update_user_score(user_id, new_score):
 pipeline = client.pipeline()
 pipeline.zadd(‘leaderboard’, user_id, new_score)
 pipeline.hset(f’user:{user_id}’, ‘score’, new_score)
 pipeline.execute()

Our two commands -- ZADD and HSET -- are sent in a single request.

Pipelining is great when you have multiple, independent commands. However,
you can’t use pipelining when you have multiple commands that rely on the
results of previous commands. You aren’t able to, for example, read the result of
one command and use it in a subsequent command during a pipeline. For those
situations, you’ll need to look at transactions or scripting.

Further, don’t assume that pipelining will give you guarantees like a SQL
transaction. The only guarantees you get from pipelining is that the commands
you send will be executed in the order you send them. However, it is possible for
commands from other clients to be executed between the commands in your
pipeline.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

27

Another good use case for pipelines is to maintain capped collections. In our
section on Redis OSS lists, we showed how to maintain a list of recent events for
user timelines. However, if we’re continually pushing new items to the front of our
list, our list will grow without bound. You can use the LTRIM command to trim the
list to a certain length.

We can combine this together so that when we add a new event to the list, we also
trim the list to a certain length. We can use pipelining to send both commands in a
single request.

The implementation of this would look as follows:

def add_event_to_user_timeline(user_id, event):
 pipeline = client.pipeline()
 pipeline.lpush(user_timeline_key(user_id), json.
dumps(event))
 pipeline.ltrim(user_timeline_key(user_id), 0, 100)
 pipeline.execute()

If our list is less than 100 items, the LTRIM command will have no effect. If our list
is more than 100 items, the LTRIM command will trim the list to 100 items and
prevent us from using too much memory.

A final common use case of pipelines is to set TTLs for items. In our section on
TTLs, we showed how to set a TTL on a key when you set the value of a string key.
However, you can’t set a TTL when manipulating a collection type. You can use
pipelining to add elements to a collection and then set the TTL for the collection in
a single request.

Transactions
The second way to handle multiple operations in a single workflow is via
transactions. Redis OSS transactions have some similarities to database
transactions, but they’re not quite the same. By itself, the main functionality that
transactions give you over pipelining is the guarantee that multiple commands will
be executed atomically. They won’t interleave commands from other clients in the
middle of your transaction.

This is a nice feature, but it’s not that helpful for most situations. It is more useful
when it’s possible that the interleaving commands may conflict with your pipeline/
batch. In general, it’s a good protection against inconsistency, as it’s also possible
that one command in the batch would be executed but the other may be dropped if
there is a failure. In our pipelining examples above, none of them benefit from the
atomicity of a transaction.

The real power of Redis OSS transactions comes with combining them with the
WATCH command. The WATCH command allows you to monitor one or more keys
for changes. If any of the keys change before the transaction is executed, the
transaction will be aborted. This is powerful -- we now get the powerful ‘compare
and set’ semantics that we’re used to from databases.

One good use case for Redis OSS transactions is to help with distributed locking, as
discussed in the Advanced Tips section below.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

28

Scripting
The previous examples have been client-side approaches to handling multiple
operations in a single workflow. However, client-side approaches come with
limitations due to the network latency between the client and the Redis OSS server.
You either have the limitation of independent commands in the pipelining scenario,
or the separation of read and write commands in the transaction scenario.

This leads us to the third way to handle multiple operations in Redis OSS --
scripting. With scripting, you are writing a script in Lua that is executed on the Redis
OSS server. This script is executed atomically, meaning that, once the script starts,
no other commands will be executed until the script is finished. This allows you to
perform multiple operations in a single workflow without the limitations of the
client-side approaches.

Lua scripting avoids some of the complicated workarounds of the other approaches,
particularly when you have complex logic in your workflow.

For example, think of a token bucket rate limiting algorithm. You are attempting
to limit the number of requests by a particular client in a given time period by
giving them a certain number of tokens. These tokens are replenished at a certain
rate. Rather than proactively replenishing the token bucket, you can calculate
the number of tokens a client should have when they make a request by storing
both the current number of tokens and the last time they were replenished.
When checking to see if the current request should be allowed, you can check the
previous refill time to see if additional tokens should be added to the bucket. Then,
you can see if any tokens exist in the bucket for the current request.

For a high-traffic workflow, the race conditions by issuing multiple sequential
commands can be problematic. Further, using transactions with the WATCH
command can result in a lot of contention. You can push this compute logic to the
Redis OSS server via Redis OSS scripting.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

29

-- Key name for the bucket data
local bucketKey = KEYS[1]
-- Current timestamp
local now = redis.call(‘TIME’)[1] -- Get current time in
seconds
local refillRate = 60 -- Time (in seconds) after which tokens
are refilled
local tokensToAdd = 5 -- Number of tokens added per refill
local maxTokens = 100 -- Max number of tokens in the bucket

-- Fetch current state
local bucket = redis.call(‘HMGET’, bucketKey, ‘tokens’,
‘lastRefill’)
local tokens = tonumber(bucket[1])
local lastRefill = tonumber(bucket[2])

-- Refill tokens if necessary
if lastRefill then
 local elapsed = now - lastRefill
 local refills = math.floor(elapsed / refillRate)
 if refills > 0 then
 tokens = math.min(tokens + refills * tokensToAdd,
maxTokens)
 lastRefill = lastRefill + refills * refillRate
 redis.call(‘HMSET’, bucketKey, ‘tokens’, tokens,
‘lastRefill’, lastRefill)
 end
else
 -- Initialize if not set
 tokens = maxTokens
 lastRefill = now
 redis.call(‘HMSET’, bucketKey, ‘tokens’, tokens,
‘lastRefill’, lastRefill)
end

-- Attempt to take a token
local tokenTaken
if tokens > 0 then
 tokens = tokens - 1
 redis.call(‘HSET’, bucketKey, ‘tokens’, tokens)
 tokenTaken = true
else
 tokenTaken = false
end

-- Return whether a token was taken and the remaining tokens
return {tokenTaken, tokens}

The Lua script below shows how this can be implemented:Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

30

This is somewhat complex, but let’s break it down. First, we take the name of the
key given from the command to check. This key has two properties: (1) tokens and
(2) lastRefill. We calculate the time since the last refill. If the time since the last
refill is greater than the refill rate, we add tokens to the bucket. Then, we check
if there are any tokens in the bucket. If there are, we take one and return true. If
there are not, we return false. We also return the number of tokens remaining in
the bucket.

This is an operation that would be difficult to handle without Redis OSS scripting.
But be careful with the power provided by Redis OSS scripts. Remember that the
Redis OSS server will block as your script executes, so you want to ensure the script
is efficient. Use the same principles we learned above to make efficient use of Redis
OSS data types and commands.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

31

Advanced patterns
With the basics out of the way, let’s look at some advanced tips and
patterns in Redis OSS. These tips and patterns are not necessary for
every use case, but they can be incredibly useful in the right situation.
Further, they help you to build an understanding of how Redis OSS
works and how to use it effectively.

Scaling Redis OSS
As your Redis OSS needs grow, you’ll need to think about how to scale your Redis
OSS deployment. There are a number of ways to scale Redis OSS, and the right way
for you will depend on your specific use case.

The first, and simplest, way to scale Redis OSS is to increase the size of your Redis
OSS instance. This is the typical approach if memory is your bottleneck. As your
application usage grows, your memory needs will grow accordingly. Increasing
the size of your Redis OSS instance is the easiest way to handle this. When using a
managed provider like Amazon ElastiCache, scaling your instance size is a simple
operation with minimal downtime.

For other situations, increasing your instance size may not work for your needs. It
may be because you’ve reached the maximum size of a Redis OSS instance. A more
likely reason is that you’re hitting a compute or network bottleneck, rather than a
memory bottleneck. In these cases, you’ll need to look at more advanced scaling
options.

To determine the best pattern for scaling in this situation, it’s helpful to understand
your application. Specifically, you’ll want to know if you have a read-heavy
workload or a write-heavy workload. Read-heavy workloads can be scaled by using
read replicas, while write-heavy workloads can be scaled by using sharding.

If you don’t know your workload, you can look to the CloudWatch metrics for your
ElastiCache cluster. The SetTypeCmds shows the number of write commands in
your cluster, while the GetTypeCmds shows the number of read commands. Once
you’ve identified your workload, you can look to the appropriate scaling pattern.

Read replicas are a great way to scale a read-heavy workload. A read replica is
a copy of your primary Redis OSS instance that is kept in sync with the primary
instance. Data is copied to replicas asynchronously from the primary instance. You
can use the read replica to offload read operations from your primary instance. This
can be a great way to reduce the load on your primary instance and improve the
performance of your read operations.

In ElastiCache, you have “cluster mode disabled” if you are using read replicas with
no sharding of your cluster. Your primary instance can have up to five read replicas.
When you add replicas, your cluster will have a primary endpoint that you can use
for both read and write operations, as well as a single reader endpoint that load
balances among the read replicas.

For write-heavy workloads, sharding your cluster is a better fit. When sharding
your Redis OSS cluster, you are splitting your dataset across multiple Redis OSS
instances. Each instance is responsible for a different portion of the dataset. This
alleviates write pressure as different shards can handle writes for different parts of
the dataset. You can also use sharding to increase the size of your dataset beyond
the maximum size of a single Redis OSS instance.

When you have sharded your ElastiCache cluster, you have ‘cluster mode enabled’.
You can have up to 500 shards in a cluster, and each shard can have its own read
replicas. When working with an ElastiCache cluster with cluster mode enabled,
you’ll have a single configuration endpoint to connect to. The cluster will handle
routing your requests to the appropriate shard, so you won’t need to devise your
own sharding strategy. To enable this, you must use a client that supports cluster
mode.

ElastiCache provides a number of options for scaling your Redis OSS deployment,
and you should use the right one for your needs. Think carefully about your Redis
OSS scaling strategy to ensure that you’re solving the scaling problem you actually
have.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

33

UNLINK instead of DEL
One surprising source of performance issues with Redis OSS is when dealing
with large collections. Operations that were fast when dealing with smaller
collections can become slow when dealing with larger collections. This is why we’ve
emphasized understanding your data types and their intended operations, with an
eye to time complexity of the relevant commands.

Even with that knowledge in hand, the behavior of the DEL command can still
be surprising. The DEL command removes a key from the keyspace. If you have
a collection like a list, set, or hash, the DEL command has to traverse the entire
collection to remove the key. With a large collection, this can be a slow operation.

The UNLINK command is a newer command in Redis OSS that provides a more
efficient way to remove keys from the keyspace. The UNLINK command marks
the key for deletion, and the values won’t be read by other clients. However, the
actual work of evicting the key and its elements from memory is done in a different
thread. Recall that Redis OSS is single-threaded, so this allows the lightly used
background threads to do the work of removing the key from memory.

If you’d like to do this for all operations, you can use the lazyfree-lazy-user-
del parameter in your ElastiCache parameter group. This will cause all DEL
operations to be handled by the UNLINK command. For more on this, see the
ElastiCache parameter group documentation.

Locking with Redis OSS
A common use case for Redis OSS is as a lock manager. Perhaps you have a
distributed system where you need to ensure that only one client can perform
a certain operation at a time. Redis OSS provides a nice, centralized primitive to
provide this in your application.

For a simple implementation of locking, you can use the SET command with the NX
option. This will set a key in Redis OSS if it does not already exist. If the key does
exist, the command will return None. Then, when you are finished performing the
work, you can remove the key with the DEL command.

Our basic lock implementation looks as follows:

def acquire_lock(lock_name, lock_timeout):
 return client.set(lock_name, ‘locked’, ex=lock_timeout,
nx=True)

def release_lock(lock_name):
 client.delete(lock_name)

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

34

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html

We can rely on Redis OSS built-in expiration to help with deadlocks or failed clients,
which greatly simplifies lock implementation. While this setup may work for some
situations, you may need to customize it further.

One thing to note is that, when releasing the lock, we aren’t checking to see if
the lock is currently held by us. This can work when the lock name itself is unique
-- such as a job ID for a queue processor -- but it’s not great if the lock is more
contentious, such as a singleton lock for making calls to downstream systems. As
our client goes to release the lock, it’s possible the original lock will have already
expired while a new lock has been acquired by another client. In this case, our
original client will be releasing the lock of the new client.

To handle this, we can ensure the lock value contains a value known only by our
client. This can be a client identifier or a random string of bytes generated by the
lock requester. Then, when releasing the lock, we can check to see if the lock value
is the same as the value we expect. If it is, we can release the lock. If it’s not, we can
assume the lock has already been released and we can move on.

Our updated lock implementation would look as follows:

def acquire_lock(lock_name, lock_timeout, lock_value):
 return client.set(lock_name, lock_value, ex=lock_timeout,
nx=True)

def release_lock(lock_name, lock_value):
 if client.get(lock_name) == lock_value:
 client.delete(lock_name)

While this helps a bit, notice that we could hit a race condition when releasing a
lock. It’s possible that a new lock could be set between the time we check the lock
value and the time we release the lock. Again, this could cause us to release the
new lock instead of the old lock. Here, you could look to scripting or transactions,
as discussed in the previous section.

Another potential issue is around fault tolerance. If this is an important workflow,
we might be nervous about having our locking mechanism be a single point of
failure. To handle this, we could add a read replica to our Redis OSS cluster for
when the primary instance fails. However, in strict situations, you need to worry
about the primary instance failing before it replicates lock information to the read
replica.

This is a great situation to use MemoryDB. With MemoryDB, your writes are durably
committed across multiple AZs before being acknowledged. This will ensure the
status of your lock is not lost during an instance failure. If you need this kind of
consistency in managing your distributed locks, look at using MemoryDB to avoid
complex failure modes.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

35

Saving memory with small hashes
For most Redis OSS deployments, memory is the most expensive resource. As your
Redis OSS usage grows, you’ll look at ways to save memory, whether through faster
expiration of keys, compression of values, or other techniques. When that fails, you
may increase your Redis OSS instance size or add more instances to your cluster.

One trick to reducing your Redis OSS data usage involves grouping a number of
unrelated string keys into a single hash key. Due to the internals of how Redis
OSS is structuring hashes under the hood, a single hash key with 100 fields will
use significantly less memory than 100 separate string keys. You can find more
information about the Redis OSS internals here.

Let’s see how this would work in practice. Recall in our section on core modeling
patterns that we were caching user records for our application. In doing so, we used
a key pattern of user:${userId} to store the user record. This meant every user
record was stored as a separate string key in Redis OSS.

Let’s switch that to group user records together in a hash by the prefix of their user
ID. The key name will be user:${userIdPrefix}, where userIdPrefix is all but the
last two characters of the user ID. Then, the user record will be stored in the hash as
a field with the last two characters of the user ID as the field name. For a user with
the ID of 1234, the key name will be user:12 and the field name will be 34.

The implementation of this would look as follows:

def get_user_key(user_id):
 return f’user:{user_id[:-2]}’

def get_user_field(user_id):
 return user_id[-2:]

def get_user(user_id):
 user_key = get_user_key(user_id)
 user_field = get_user_field(user_id)
 user = client.hget(user_key, user_field)
 if user is None:
 user = get_user_from_database(user_id)
 client.hset(user_key, user_field, user)
 return user

This small change can save 40% or more of the memory used by your user records.
Note that there is a small tradeoff in additional CPU usage, as Redis OSS will
need to operate on the entire hash when getting or setting a single field. If your
application is more constrained on memory than on CPU, this tradeoff is likely
worth it.

Note that you will lose some functionality with this approach. Most specifically, you
can’t expire fields within a hash individually, you can only expire the entire hash.
If this is a problem for your application, you should stick with the string-based
approach to storing your data.

Finally, when designing the number of elements in your hash, pay attention to the
underlying configuration of your Redis OSS cluster. For Redis OSS versions before
7.0, the hash-max-ziplist-entries parameter controls the maximum number
of elements in a hash before it is converted into a true hash under the hood. For
Redis OSS 7.0 and later, the hash-max-listpack-entries parameter controls this
behavior. You should ensure the number of elements in your constructed hashes is
below this threshold to ensure you’re getting the memory savings you expect.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

36

https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/memory-optimization/#using-hashes-to-abstract-a-very-memory-efficient-plain-key-value-store-on-top-of-redis

Negative result caching
The last advanced tip is around negative result caching. This is a pattern that is
often overlooked but can be a great way to protect your downstream systems.

As noted, one of the reasons to use caching is to reduce the load on your
downstream systems. This can be a system-of-record database that you control, or
it can be a different service that you’re calling over the network. In either case, you
want to reduce the load on that system as much as possible.

In the read-aside cache pattern, we showed how to store the results of an operation
to the cache. However, in certain cases, the operation might not return a successful
result. This could be due to the absence of the required data, a client-side error, or
a server-side error. When that error occurs, you may be tempted to return to your
client without storing the result in the cache. However, if a subsequent request is
made that will have the same negative result, you’ll be hitting your downstream
system again.

To help with these, you can store the negative result in the cache itself. To
implement this, we can update our read-aside cache function as follows:

def get_user(user_id):
 user = client.get(f’user:{user_id}’)
 if user is None:
 user = get_user_from_database(user_id)
 if user is not None:
 client.set(f’user:{user_id}’, user, ex=3600)
 else:
 client.set(f’user:{user_id}’, ‘null’, ex=60)
 return user

In this case, we’ll store the null user record in our cache.

Notice that you may want to set a shorter expiration time for the negative result
than for the positive result. This is because the negative result is likely to be less
stable than the positive result. You may even want to vary the expiration time
based on the type of error that occurred. For example, if the error was a client-side
error based on data given to you by the requester, you may cache it longer as this is
unlikely to be fixed. However, if there is a server-side error, you may want to cache
it for a shorter period of time -- long enough to give the system time to recover,
but not so long that you’re serving stale data.

In any case, be sure to consider results other than the happy path when working
with a cache. You can save your downstream systems a lot of work by caching
negative results.

Introduction

Redis OSS resources
and bottlenecks

What is a cache? When
should I use one?

Read-aside caching pattern

Extending the read-aside
pattern for changing data

Conclusion

What is Redis OSS?
Why choose Redis OSS
as my in-memory cache?

Benefits of Amazon
ElastiCache and Amazon
MemoryDB

Core data modeling patterns

Working with TTLs

Efficient resource usage
in Redis OSS

Memory pressure and
object sizes

CPU conservation and
blocking the main thread

Optimizing network usage

Working with Redis OSS
collection types

Hashes

Lists

Sets

Working with advanced
data types

Sorted sets

HyperLogLog

Working with multiple
operations

Pipelining

Transactions

Scripting

Advanced patterns

Scaling Redis OSS

UNLINK instead of DEL

Locking with Redis OSS

Saving memory with
small hashes

Negative result caching

37

Conclusion
In this ebook, we’ve looked at basic data modeling patterns, like the
read-aside pattern, and at core data types in Redis OSS. We saw how to
use them in your application and when they’re useful. We also looked
at more advanced data types, like sorted sets and HyperLogLogs, to see
when they can be used in your application. Finally, we reviewed some
advanced patterns about scaling your cluster, implementing distributed
locking, and saving memory.

Redis OSS is a powerful, fast, and flexible key-value store that can be
used in a variety of ways. Used correctly, it can be an elegant way to
delight your end users as you can reduce latencies or provide advanced
features like leaderboards. We hope this ebook has given you a good
understanding of how to use Redis OSS effectively in your application.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

