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SUMMARY. We illustrate data analytic concerns that arise in the context of relating genotype, as rep- 
resented by amino acid sequence, to phenotypes (outcomes). The present application examines whether 
peptides that bind to a particular major histocompatibility complex (MHC) class I molecule have charac- 
teristic amino acid sequences. However, the concerns identified and addressed are considerably more general. 
It is recognized that simple rules for predicting binding based solely on preferences for specific amino acids 
in certain (anchor) positions of the peptide's amino acid sequence are generally inadequate and that binding 
is potentially influenced by all sequence positions as well as between-position interactions. The desire to 
elucidate these more complex prediction rules has spawned various modeling attempts, the shortcomings of 
which provide motivation for the methods adopted here. Because of (i) this need to model between-position 
interactions, (ii) amino acids constituting a highly (20) multilevel unordered categorical covariate, and (iii) 
there frequently being numerous such covariates (i.e., positions) comprising the sequence, standard regres- 
sion/classification techniques are problematic due to the proliferation of indicator variables required for 
encoding the sequence position covariates and attendant interactions. These difficulties have led to analyses 
based on (continuous) properties (e.g., molecular weights) of the amino acids. However, there is potential 
information loss in such an approach if the properties used are incomplete and/or do not capture the mech- 
anism underlying association with the phenotype. Here we demonstrate that handling unordered categorical 
covariates with numerous levels and accompanying interactions can be done effectively using classification 
trees and recently devised bump-hunting methods. We further tackle the question of whether observed as- 
sociations are attributable to amino acid properties as well as addressing the assessment and implications 
of between-position covariation. 
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1. Introduction 

A wide variety of biomedical problems can be viewed as at- 
tempts at relating genotype to phenotype. This is apparent 
from the loose definitions of genotype, the class to which an 
organism or entity belongs based on its genes, and phenotype, 
the class to which an organism or entity belongs based on its 
physical characteristics (Lewontin, 1992). A common illustra- 
tion is provided by studies seeking to relate viral or bacte- 
rial mutations (genotypes) to resistance. The ultimate spec- 
ification of an organism's genotype is given by its complete 
DNA sequence or genome. Necessarily, we deal with partial 
genotypes corresponding, e.g., to select genes or markers. The 
sequence itself can be based on either nucleotides or amino 
acids; here we focus on the latter. Also of interest are bio- 
physicochemical properties of individual amino acids, exam- 
ples of which include molecular weight, volume, hydrophobic- 

ity, and polarity. The physical characteristics denoting phe- 
notype have the familiar typology, being nominal, ordinal, or 
continuous variables. 

So, given the objective of relating genetic-level information 
to  physical properties, why can't standard regression method- 
ologies be employed? What is it, if anything, that distin- 
guishes this setting? We contend that the nature of genotype 
data, in particular when represented by amino acid sequence, 
precludes use of many familiar regression techniques. It is the 
occurrence of several unordered categorical covariates, each 
having (potentially) numerous levels, that mandates alterna- 
tive approaches. To make these concerns concrete, we imme- 
diately turn to a simple motivating example that is the sub- 
ject of our subsequent analyses. We emphasize the simplicity 
of this illustration-only eight covariates (sequence positions) 
are featured; the difficulties cited would amplify appreciably 
with longer sequences, which are commonplace. 
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Table 1 
Selected data 

obs bind posl pos2 pos3 p o d  pos5 pos6 pos’l pos8 molwtl molwt2 molwt8 

1 1 S 
2 1 S 
3 1 S 
4 1 Y 

307 0 S 
308 0 T 
309 0 P 
310 0 Y 

S 
M 
M 
S 
P 
P 
Y 
S 

M 
L 
L 
I 
F 
T 
P 
R 

105.09 
105.09 
105.09 
181.19 
105.09 
119.02 
115.13 
181.19 

105.09 149.21 
149.21 131.17 
149.21 131.17 
105.09 131.17 
115.13 165.19 
115.13 119.02 
181.19 115.13 
105.09 175.20 

Milik et al. (1998) are concerned with predicting the amino 
acid sequences of peptides that bind to the particular class I 
major histocompatibility complex (MHC) molecule, Kb. Here, 
the peptides of interest are eight-mers-molecules composed 
of an ordered sequence of eight amino acids-which may re- 
sult from proteolysis of invading viral particles. Some of these 
peptides bind to class I MHC molecules, which in turn present 
them on the surface of the infected cell. There these complexes 
are recognized by cytotoxic T lymphocytes that destroy the 
infected cell. Hence, MHC binding is essential for any peptide 
to induce an immune response, and the problem of identifying 
peptides that bind to particular MHC molecules is of utmost 
immunologic importance (Gulukota, 1998). Here the peptide’s 
amino acid sequence constitutes genotype, and its binding 
is the phenotype. Select data giving peptide amino acid se- 
quence and corresponding binding to Kb as a binary (yes/no) 
outcome are given in Table 1. The single letter designations 
are the standard abbreviations for the various amino acids. 
The complete dataset has 310 such observations and is avail- 
able from http://newfish.mbl.edu/Lab/Resources. Barplots 
giving specific amino acid frequencies for binding and non- 
binding peptides are given in Figure 1. It is important to 
note that the data is obtained by random sampling from a 
large ( >lo7) library of synthetic peptides, so there is no evo- 
lutionary history linking the peptides. Scott and Smith (1990) 
provide details about the construction of such libraries. 

Studies (Rammensee, Friede, and Stefanovic, 1995) revealed 
that peptides binding class I MHC molecules typically have 
specific amino acids at specific positions, called anchor po- 
sitions, in the sequence. However, the use of simple rules for 
predicting binding based solely on such anchor position prefer- 
ences (so-called motifs) are inadequate; binding is known to be 
influenced by both the presence of secondary anchor positions 
and interactions between amino acids within the peptide. It is 
this search for more complex structure that spawns the associ- 
ation problem that we will examine further, both with regard 
to analyzing this particular dataset as well as discussing re- 
lated statistical issues. Analogous to  Milik et al. (1998), this 
is undertaken without using any structural information about 
the MHC-peptide complex (see Zhang, Anderson, and DeLisi 
(1998) for such an approach that uses known crystal struc- 
tures of class I MHC molecules to construct pocket models). 

In the next section, we outline shortcomings with stan- 
dard regression tools applied to  such data. In Section 3, we 
introduce tree-structured and bumphunting methods that 
hold promise for overcoming these difficulties. Section 4 de- 
scribes two statistical concerns surrounding amino acid se- 

quence data-sequence position covariation and the role of 
amino acid properties. Section 5 returns to the peptide data 
for detailed analysis, while section 6 presents some concluding 
discussion. 

2. Standard Method Difficulties 
By standard methods, we mean the suite of estimation, in- 
ference, and diagnostic machinery subsumed by the general- 
ized linear model (GLM) framework (McCullagh and Nelder, 
1989) as well as various extensions thereof, such as generalized 
additive models (Hastie and Tibshirani, 1990). In analyzing 
the peptide-binding data, Milik et al. (1998) employ artificial 
neural networks (ANNs) using amino acid property variables. 
Our immediate concern is not the choice of regression method 
(ANNs) but rather the use of the property variables in lieu 
of genotype. This was done since the use of the amino acids 
themselves would require (approximately) 19 indicator vari- 
ables for each of the eight positions, and it was contended that 
the resultant large numbers of covariates would (i) be unman- 
ageable and (ii) lead to overfitting. We now demonstrate that 
similar concerns-the inability to readily handle unordered 
categorical covariates with numerous levels-applies to stan- 
dard methods. 

For a continuous outcome, a classical approach for deal- 
ing with unordered categorical covariates would be multiway 
ANOVA. For example, if peptide binding had not been di- 
chotomized, we could entertain an eight-way ANOVA, with 
dimensions corresponding to the eight sequence positions. 
However, since this represents z208 cells, all but very low- 
order models will be inestimable due to sparseness. And, as 
will be seen below, there is interest in at least second-order 
interaction terms-ven this low an order proves problem- 
atic. Furthermore, many studies will feature much longer se- 
quences. Thus, there is a clear need for model/variable selec- 
tion methods, which we discuss later. 

Binding, as provided, is binary. So, one natural modeling 
framework is logistic regression. There are 20 naturally occur- 
ring amino acids. Here the number of distinct amino acids at 
each of the eight positions is 18, 20, 20, 20, 20, 20, 19, and 
20, respectively. Arguably, the default starting model would 
include each position. This entails estimating 149 coefficients 
corresponding to the respective indicators. Immediately we 
see that just assimilating the resultant output will be difficult. 
Simple tasks such as appraising individual position and/or 
amino acid importance, grouping amino acids with similar ef- 
fects within position, and comparing across positions become 
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Figure 1. Frequencies for amino acids at each of the positions stratified by binding status, 

daunting when just the output coefficients span several pages. 
Remember, too, that this is a simple model for a very small 
(eight positions) problem. 

The most consequential shortcoming arises in accommo- 
dating between position interactions. For the MHC-peptide- 
binding example, it is necessary to consider such interactions 
because the nature of binding and the structure of partic- 
ular amino acids can effect adjacent and/or second nearest 
neighboring amino acids’ ability to bind to MHC (Gulukota 
et al., 1997). This suggests that models including at least 
select third-order interactions be entertained. Such consider- 
ations are commonplace when analyzing sequence-phenotype 
associations, where the situation is compounded by the need 
to include interactions between nonadjacent positions. This 
arises, e.g., in determining quantitative trait loci (Fridyland 
and Speed, personal communication). When dealing with nu- 
cleotide or amino acid sequence data, fitting difficulties ensue 
due to the combinatorial explosion in the number of indi- 
cators needed to encode these interactions. For a set of se- 

quences of length k of an n-level residue (n  = 4 nucleotides 
or n = 20 amino acids) with each level represented at  all po- 
sitions, we have (a) (k)(n. - 1)2 terms for all second-order 
interactions, (b) ( k  - l)(n - 1)2 for adjacent second-order in- 
teractions, (c) (:) (n - 1)3 for all third-order interactions, and 
(d) ( k  - 2 ) ( n  - 1)3 for adjacent third-order interactions. Here, 
for the very small ( k  = 8) peptide example further limited to 
adjacent second-order interactions, we require, according to 
(b) above, 2527 terms (the exact number is 2451 since some 
positions do not exhibit all n = 20 possible amino acids) and, 
by (a), 10,108 (exact 9711) terms to encode all second-order 
interactions. In either case, fitting proves prohibitive for all 
standard software packages due to insufficient dynamic mem- 
ory (on a Sun Ultra 5 Model 360 with 128 MB RAM). This 
breakdown is not remedied by either employing forward s t e p  
wise selection or attempts at memory expansion. Clearly, all 
(~384 ,104  terms) or adjacent ( ~ 4 1 , 1 5 4  terms) third-order in- 
teractions cannot be handled. 
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As suggested by Milik et al. (1998), it is to avoid such diffi- 
culties that properties of the amino acids are used in place of 
genotype. These property variables are ordered and so can be 
handled much more readily. Even entertaining nonlinearities 
and interactions, we would be unlikely to  spend more than 
a few degrees of freedom per variable. Further, the result- 
ing models will be more succinct and so more readily inter- 
pretable. However, there are potential losses associated with 
making recourse to a property variable representation. Prin- 
cipally, if the collection of property variables does not capture 
how the amino acids affect phenotype, then there is obvious 
and crucial information loss. That this can occur is exempli- 
fied by (i) Milik et al. (1998) opting to augment their prop- 
erty variable set with indicators for particular amino acids, 
(ii) Kidera et al. (1985) itemizing some 188 properties with 
the implication that using an exhaustive list is problematic, 
and, (iii) in light of the above arguments regarding the need 
for interaction between amino acids at neighboring positions, 
there being an attendant need to consider properties of in- 
teracting amino acids that may not correspond to the usual 
multiplicative terms(s) of individual properties. 

Indeed, it may well be that the simple amino acid informa- 
tion itself, as given by the linear sequence (position) represen- 
tation, is deficient since it omits essential spatial information 
deriving from the three-dimensional structure of the peptide- 
MHC complex (see Zhang et al., 1998). While such matters 
are beyond the scope of the present article, we do, however, re- 
turn to contrasting property- and amino acid-based analyses. 
Any property necessarily derives from a many-to-one mapping 
from the amino acids. This is manifest for discrete properties 
such as charge but also occurs for continuous properties. For 
example, in Table 1, we observe that the position 8 amino acid 
for the third peptide (row 3) is leucine (L), with a molecular 
weight of 131.17 (last column, row 3). This coincides with the 
molecular weight for isoleucine (I), the amino acid at posi- 
tion 8 for the fourth peptide (row 4). We address questions 
regarding whether the effect of amino acids on phenotype is 
via property variables in light of these relationships. But first 
we describe the utility of tree-structured and bump-hunting 
methods for handling unordered categorical covariates, with 
obvious applicability to genotype-phenotype analyses. 

3. Handling Unordered Categorical Covariates 
3.1 P e e - S t m c t u r e d  Methods  
The definitive reference describing tree-structured methods 
is “Classification and Regression Trees” by Breiman et al. 
(1984), hereafter denoted as CART. A more recent overview 
of numerous extensions and refinements to  the basic paradigm 
is provided by Segal (1995). While the methodology handles 
many differing problem types and is supported by interactive 
companion software (e.g., Therneau and Atkinson, 1997), 
our emphasis here will be on how tree-structured techniques 
handle unordered categorical covariates. 

CART tree construction involves four components. These 
are (1) a set of binary (yes/no) questions, or splits, phrased 
in terms of the covariates that serve to partition the covariate 
space (a tree structure derives from splitting recursively; the 
subsamples created by assigning cases according to these 
splits are termed nodes); (2) a split function q5(sl t )  that can 
be evaluated for any split s of any node t ,  which is used 
to compare competing splits; (3) a means for determining 

appropriate tree size; and (4) statistical summaries for the 
nodes of the tree. 

Item (1) deals with handling covariates. Allowable splits 
are defined as follows: (a) each split depends on the value 
of only a single covariate; (b) for ordered (continuous or 
categorical) covariates, xj , only order-preserving splits of the 
form “IS xj 5 c ?” for c E domain(zj) are considered; and 
(c) for unordered categorical covariates, all possible splits into 
disjoint category subsets are allowed. 

So, for the covariate type of interest, i.e., unordered 
categorical, no constraints on possible subdivisions are 
imposed. If such a covariate has M categories, then there are 
2*-’ - 1 splits to examine, leading to combinatorial explosion 
for large M .  However, by generalizing a result from Fisher 
(1958), CART (Sections 8.8 and 9.4) establishes a theorem 
that reduces this to  an eminently feasible M - 1 splits: If 
we rank the levels of the unordered categorical covariate 
by mean response value, then we only need examine splits 
that preserve this ranking. When dealing with the amino 
acid alphabet, in polymorphic (variable) settings such as the 
peptide-binding example, we have M = 20 so that, without 
recourse to  Fisher’s result, we would need to evaluate a 
prohibitive 524,287 splits per position as opposed to 19. 

It is by appropriately defining the split function q5 (item 2) 
that classification is effected. Choice of suitable split functions 
is discussed extensively in CART (Chapter 4). Here we are 
interested in the two-class (binder, nonbinder) problem. Let 
g be some impurity function and define the impurity of a node 
t by i ( t )  = C;=l g ( p j t ) ,  where p j t  is the proportion of cases 
in t that belong to class j. Requirements for g are (i) g(0) = 
g(1) = 0, (ii) g ( p )  = g ( l  - p ) ,  and (iii) g”(p) < 0 (i.e., g is 
concave). Two natural candidates for g are the Gini diversity 
index g ( p )  = p(1 - p )  and the information index (which is 
equivalent to  the binomial deviance) g ( p )  = -plog(p), which 
are almost equivalent (Therneau and Atkinson, 1997) as is 
evidenced in Section 5.4. For a split s partitioning t into t L  
and t R ,  the split function is then defined as 

4(s, t )  = i(t) - PL+L) - P R ~ ( ~ R ) ,  (1) 
where p~ is the proportion of node t cases assigned to t L  
and p~ = 1 - p ~ .  The best split s* maximizes (I), giving 
the greatest reduction in impurity. Recursive application 
to the resultant daughter nodes (t>,th) and so on gives 
rise to progressively smaller nodes of decreasing impurity 
or increasing homogeneity. Thus, here we will (hopefully) 
be creating nodes that contain predominantly binding (or 
nonbinding) peptides-the classification objective . 

For future reference, in connection with appraising anchor 
positions in the face of between position correlation, we 
introduce surrogate and competitor splits. A surrogate split 
best reproduces the optimal split S* but on a different 
covariate and has utility for handling missing observations 
and determining covariate importance (see CART, Section 
5.3). The first competitor split is just the split that has the 
second best (to s*) reduction in impurity (l), again based on 
a different covariate. 

3.2 B u m p - H u n t i n g  Methods  
By casting classification as function optimization, Friedman 
and Fisher (1999) (FF) develop flexible procedures that 
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Table 2 
Bump-hunting: Amino acids 

(a) Box summaries 

Dataset (%I (So) Box support 

Training 54.4 70.4 0.74 
Test 66.3 74.7 0.84 

Overall binding Box binding 

(b) Defining variables 

Remove variable 
Box definition Binding (%) Support 

POS8 {C, p, S )  66.3% 1.00 
pos5 74.2% 0.86 

Table 3 
Bump hunting: property variables 

(a) Box summaries 

Overall binding Box binding 
Dataset (%I (%I Box support 

Training 54.4 85.9 0.59 
Test 66.3 94.3 0.67 

(b) Defining variables 

Remove variable 

Box definition Binding Support 

vo15 > 0.527 
flex1 > 0.855 
pol8 > 0.685 

66.3% 
83.7% 
89.3% 

1.00 
0.77 
0.72 

appropriately handle unordered categorical covariates and 
perform well in high dimensions. We give a brief outline of 
their development and estimation strategy before applying 
this methodology to the peptide-binding problem. Bump- 
hunting resembles tree-structured methods in seeking covari- 
ate-defined subregions over which the outcome is extreme. 
The methods differ in that tree methods are recursivethe 
subregions are related via a tree structurewhereas no such 
constraint is imposed by bump hunting, increasing flexibility. 

Given a target function f ( x ) ,  where x represents a vector of 
covariates, the goal of finding maxima off  can be generalized 
to seeking subregions of the covariate space within which the 
average value of f is much larger than the overall average. 
The search corresponds to the hunt and the elevated f 
average values the bumps. Let S, be the set of all possible 
values for the jth covariate, which may be ordered real 
values (continuous or discrete) or unordered categories. The 
entire covariate space can be then be represented by the p 
dimensional outer product S = S1 x . . .  x S,. We seek a 
subregion R of the covariate space S, R c S, for which 

where f is the overall average and p ( x )  is the (unknown) joint 
covariate density. Designate the support of the subregion R by 
QR: PR = J x E ~  p ( x ) d x .  There is typically a trade-off between 
f~ and PR-larger subregion averages will be associated with 
smaller support and vice versa. 

For our two-class problem, define the indicator outcome 
y = I{class = binder} and take f ( x )  = E[y 1 x] = Pr(y = 
1 1 x ) .  Thus, the regions sought correspond to those with a 
relatively large proportion of binders. We now define what 
constitutes the allowable regions and indicate how they are 
obtained. FF favor rules that can be readily described and 
interpreted even if this sacrifices power. Accordingly, they 
require that the solution region R be specified by simple 
statements involving individual covariates. These rules have 
the form R = Uf=,Bk so that the solution region is the union 
of a set of simply defined subregions Bk. Let Vjk represent a 
subset of the possible values of the j t h  covariate, xj. Then 

the entire covariate space. Thus, each box can be described 
eachBk istakentobeabox,Bk = ' U 1 k X 0 2 k X . . . X V p k ,  within 

via the intersection of subsets of values of each covariate, 
X E B k  = n;='=,(X, E V j k ) .  

For ordered covariates, the allowable subsets are contiguous 
intervals, V j k  = [ a j k , b j k ] ,  so that the projection of a box 
onto just the continuous covariates yields a hyperrectangle. 
For unordered categorical covariates, any subset of levels 
is allowable. Hence, we have flexibility akin to CART'S in 
handling unordered categorical covariates. 

In order to obtain good boxes, a two-phase strategy 
is employed. Initially, a box is produced by iteratively 
removing unimportant (e.g., low proportions of binders) 
regions of the covariate space. This stage is termed top- 
down peeling. Constraining that each successive region 
removed only eliminate a small portion (510%) of the total 
sample mitigates against greediness deriving from optimizing 
without look ahead (see also Hastie, Tibshirani, and Eisen, 
2000). However, additional improvements are pursued by 
readjusting (enlarging) the boundaries of the resultant box. 
This constitutes the second stage, termed bottom-up pasting. 
Complete algorithmic details are deferred to FF. Our peptide- 
binding application focuses on single box solutions, given 
in Tables 2 and 3, which illustrate the flavor of bump-hunt 
output and are further discussed in Section 5.3. 

4. Issues for Amino Acid Sequence Data 
In this section, we briefly discuss two concerns pertaining to 
amino acid sequence data. These are (i) assessing covariation 
between sequence position and (ii) assessing the importance 
of properties of the amino acids. These issues, along with 
the techniques described in Section 3, are then featured in 
reanalyzing the peptide binding in the following section. 
4.1 Position Covariation 
As collinearity is to linear models, masking is to trees. 
Loosely, masking refers to the phenomenon whereby a selected 
split precludes an alternative, almost-as-good split from 
emerging. The variable associated with this unseen split is 
said to be masked. Both CART and Therneau and Atkinson 
(1997) provide detailed information on masked variables by 
outputting lists of surrogate splits (see CART, Section 5.3). 
We will appeal to surrogates when interpreting the results 
of tree-structured analysis of the peptide-binding data below. 
But, additionally and relatedly, we investigate measures of 
correlation between the amino acid position variables using 
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methods of Bickel et al. (1996), which we briefly describe next. 
In general, such correlation is anticipated with sequence data 
due to linkage disequilibrium-the nonrandom association of 
alleles at different loci due to  processes including coancestry, 
gene flow, genetic drift, and selection. 

Categorical covariates require customized measures of 
correlation, several of which have been proposed. We focus on 
the P-statistic of Bickel et al. (1996), defined and interpreted 
as follows. Consider a set of n sequences that are aligned and 
of the same length, 1 .  For the peptide-binding data, we have 
n = 310 and 1 = 8. Define 

- &(a) = n '#{sequences with amino acid a at 

ljij (a, b )  = n '#{sequences with amino acid a at 
position i) 

- 

position i ,  amino acid b at position j }  

where the (double) sum in (2) is over all amino acids a, b at 
positions i , j ,  respectively. The P-statistic is then given by 

where Pij(a, b) is the Mij statistic obtained by replacing 
the 20 letter amino acid alphabet at positions i and j with 
binaries {a ,  not a }  and {b, not b} ,  respectively. As described 
by Bickel et al. (1996), Mi,? is the likelihood ratio statistic 
for testing the hypothesis of independence of positions i 
and j against arbitrary covariation and, in large samples, is 
roughly equivalent to the usual Pearson chi-squared statistic 
for testing independence. P,,j(a, b) is the likelihood ratio test 
specialized to the alternative that it is the amino acid pair 
(a ,  b) that drives the dependence. P;,j, the maximum of the 
Pi,j(a, b) ,  is intended to detect situations where only one pair 
of amino acids exhibits covariation but without prespecifying 
which pair. 

Evaluation of the significance of the M- or P-statistics 
makes recourse to permutation. A large number of permuted 
data sets of the same structure and with the same marginal 
probabilities for each amino acid at each position are created 
by independently permuting the amino acids at each position. 
By computing M or P on each dataset, we can obtain a 
permutation test significance level in the standard fashion. 
As per Bickel et al. (1996), we adopt this permutation 
approach since (i) the asymptotic chi-squared approximations 
are known to be poor with the sparse tables that almost 
necessarily arise with sequence data and (ii) we are interested 
in simultaneous inference for all possible pairs of positions so 
the large number of permuted data sets provides protection. 

The importance of assessing position covariation in this 
manner is at least twofold: (i) we can elicit relationships 
among the positions themselves that can then inform model 
specification-necessary in light of the software breakdowns 
described in section 2 when no constraints were imposed 
on first-order interactions, and (ii) we can gauge how much 
additional predictive ability will derive from considering 
an expanded set of positions beyond putatively established 
markers. We highlight this second feature in the next section 
with reference to the anchor positions. 

4.2 Association via Property Variables 
Model selection/comparison concerns arise in the context 
of relating genotype to phenotype in at least two obvious 
ways. First, within a particular modeling methodology is 
the phenotype-genotype association via property variables, 
i.e., does a set of amino acid-derived property variables 
explain as much of the relationship as the amino acids 
themselves? Is it, e.g., the hydrophobicity of the amino acids 
that influences binding? Since the relationship between an 
amino acid position variable and a property position variable 
is many-to-one, we can't obtain a meaningful answer to the 
above question by allowing the variables to compete head- 
to-head in conjunction with some variable selection scheme. 
However, we could (i) fit a model using property variables, 
then (ii) fit a subsequent model to residuals from (i) using 
amino acid variables. If this second fit revealed structure, we 
could infer that the property variables did not fully capture 
association with the outcome. But should no structure emerge 
(i.e., a null model result from step (ii)), then any claim 
that the property variables do explain association would 
need to be tempered by power (to detect a nonnull model) 
considerations. 

Tree-based models allow further comparison. The set of 
possible splits utilizing a property variable is a small subset 
of the set of possible splits utilizing an amino acid variable. 
By quantifying how far the optimal split based on a property 
variable is from the optimal split based on an amino acid 
variable, we can, under a null assumption that all splits are 
equally likely, assess whether association is via the property 
variable. We operationalize the distance between splits on 
unordered categorical covariates (amino acids) and continuous 
covariates (properties) by how many moves (transpositions) 
from one resultant node to the complementary node of an 
unordered categorical covariate split are necessary to yield 
a split achievable on a continuous covariate. This is best 
illustrated by example. 

Consider a nine-level unordered categorical covariate and 
let a derived property variable take ordered values one 
through nine. Consider, too, a split of the unordered categori- 
cal covariate that partitions the nine levels (3,6). Using the 
labels corresponding to the property variable, the following 
possibilities arise: 

Moves required to Number of such 
Illustrative partition achieve order part it ions 

The sum of entries in the rightmost column is 84 = (:), 
the number of (3,6) partitions. 

For an unordered categorical covariate with n levels, the 
maximum number of moves required is L(n/3)J. The number 
of splits or partitions requiring zero, one, and two moves to 
achieve order is n - 1, (n3 - 7n - 24)/6, and (n5 - 5n4 + 5n3 - 
55n2 - 1026n + 480)/120, respectively. We apply this result 
to the peptide-binding data in the following section. 
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Full Tree /I Training data Predictions: test data 

~~:A,c.D.E.F.G.H.I.K.L,N.~.R.v 
pas1 :Q.S.T.Y I ‘\ 

\ w:E,P.s,T,v 

pwS:A,F,I,L.M,N.Y 

\ 

Figure 2. Initial large classification tree for predicting 
peptide binding grown using the training data. The predicted 
class (based on simple majority rule) at each node (ellipses, 
internal; rectangles, terminal) is given by the 0 (nonbinding) 
or 1 (binding) given within each node, while the ratio below 
gives number misclassified/node size. Numerals above each 
node are used for identification purposes. 

5. Peptide Binding Revisited 
5.1 Classafication Trees 
Tree-structured classification, as described in Section 3.1, 
was applied to the peptide-binding data. Training and test 
sets having the same dimensions as those used by Milik et 
al. (1998) were obtained via random selection. We present 
results using data priors, unit misclassification costs, and the 
information index (deviance) as split function. Results were 
not sensitive to the (random) selection of training and test 
datasets or the choice of split function. Alternative priors 
and/or costs were not explored since we had no basis for 
specifying these differently. 

The initial large tree grown on the training data and using 
solely the eight amino acid position variables is depicted 
in Figure 2. The predicted class (based on simple majority 
rule) at each node (ellipses for internal nodes, rectangles for 
terminal nodes) is given by the zero (nonbinding) or one 
(binding) indicated within each node, while the ratio below 
gives number misclassified/node size. Numerals above each 
node are used for identification purposes. Thus, the topmost 
node (node 1) contains 223 cases, of which the majority 
(131 = 223 - 92) are binders, there being 92 misclassifications 
(nonbinders). The splits are indicated on the branches of the 
tree. So, e.g., node 1 is partitioned on the basis of position 8, 
with those cases having amino acids F, I, L, M, or Y in the 
eighth position being assigned to  the right daughter node. The 
large initial tree is grown in order to capture all potentially 

pos8:A,C,D,E,G,H,K,N,P,Q,R,S,T;V;W 
pos8: F, f ,L, M,Y 

\ 

posl :A,C,D,E,F,G,H,I,K,L,N,P,R,V posS:E,P,S,T,V \ 
\ 

/ posl:Q,S,T,Y / posJ:A,F,;,L,M,N,Y 

Figure 3. 
data using the selected tree. 

Results from classifying the independent test 

important splits. This is then collapsed back up using cost- 
complexity pruning, with selection from the resultant nested 
sequence of trees being based on either cross-validation or 
an independent test sample (see CART for motivation and 
details of this approach). 

Basing treesize selection on CART’S “1 SE rule,” the best 
pruned subtree is one with four terminal nodes-it is the 
smallest tree within one standard error of the minimally 
attained deviance, this holding irrespective of whether test 
data or 5- or 10- fold cross-validation with the training sample 
data is used. Figure 3 presents the best four-terminal node 
tree with predictions from running the test set shown. For the 
test set data so classified, we achieve a sensitivity of 86% and 
a specificity of 94%. The overoptimistic values corresponding 
to reusing the training data for prediction purposes for this 
four terminal node tree are 85 and 99%, respectively. 

The explanation for the apparent data loss corresponding 
to the node 3 split (node 3 sample size = 50; nodes 6 and 7 
sample size = 45 = 44 + 1) is that the splits are determined on 
the training data. Ambiguity in classifying test data can arise 
when a split does not utilize levels represented in the test 
data; note that only 12 of the 20 possible position 5 levels 
are present in node 3 training data. This ambiguity can be 
resolved using surrogate splits. So doing improves sensitivity 
(94%) while not appreciably impacting specificity (92%). 

Thus, we obtain good performance using a very simple 
classification scheme. This contrasts with ANN and standard 
method results. Further, the tree method illuminates the 
predictive structure of the data, as is further discussed in 
connection with position covariation (Section 5.4). 
5.2 Property Variables 
The predictive ability of some 12 (amino acid) property 
variables was also investigated. These included volume, bul- 
kiness, flexibility, polarity, aromaticity, and charge, as consid- 
ered by Milik et  al. (1998), as well as additional measures of 
hydrophobicity and mass. Using the same training and test 



Analysis of Peptide-Binding Data 639 

Predictions: test data 

\ pol8<0.11115 
pol8>0.11115 

\ 

\ arom5<'0.2778 / arom5>0.2778 
\ vo15<0.5539 / vo15>0.5539 

Figure 4. 
data using the tree based on property variables. 

Results from classifying the independent test 

datasets and the same tree growing, pruning, and selection 
strategy as above, again a tree with four terminal nodes 
(Figure 4) was selected. 

One interesting point illustrated by comparing the property 
and amino acid trees concerns greedy splitting. As noted, 
by virtue of the many-to-one mapping of amino acids 
to properties and the unconstrained nature of splits on 
unordered categorical covariates, any property-based split can 
be reproduced by an amino acid split. However, the converse is 
not true. We might anticipate that the amino acid tree would 
be superior since appreciably more splits are being evaluated. 
Indeed, for the training data, this is the case for the first 
split: there are 25 (= 17 + 8) misclassifications for the amino 
acid tree and 27 (= 17 + 10) for the property tree. However, 
when we make overall comparisons between the selected, four- 
terminal node trees, there are more misclassifications with the 
amino acid tree (21 = 0 + 17 + 3 + 1) than for the property- 
based tree (20 = 5 + 1 + 5 + 9). While it is the case that 
the split criteria deliberately (see CART, Section 4.2) do not 
minimize misclassification totals, these results highlight the 
fact that one-step look-ahead does not necessarily produce 
overall optimal results. 

Node 1 is split based on polarity at position 8. This split 
closely approximates the node 1 split based on amino acids, 
which also used position 8 (Figure 3): only one test sample 
and two training sample cases are assigned differently and 
the deviances are correspondingly comparable. Given the 
multitude of possible amino acid-based splits (219 - l), it 
may appear that this agreement suggests that the binding- 
genotype association is captured via a property variable, 
polarity, which we next explore. 

In terms of amino acids, the position 8 polarity split 
corresponds to assigning C, F, I, L, M, and W to one daughter 
node in contrast with the amino acid split of F, I, L, M, 
and Y.  So, in terms of moves as defined in Section 4.2, two 
moves are required to map the unordered (amino acid) split 
to the ordered (property) split. Using the formulas presented 
there with n = 20, corresponding to the 20 letter amino 
acid alphabet, there are 19,983 splits two moves removed 
from an ordered split, 1306 splits one move removed, and 
19 splits zero moves (i.e., already ordered) removed. Thus, 
the probability due to chance of observing this degree of 
agreement is (19,983+ 1306+ 19)/(219 - 1) = 0.04. Of course, 
the notion of chance here presupposes that all splits are 
equally likely. This is not the case asymptotically with, in null 
situations, extreme end-cut splits being favored (see CART, 
Section 11.8). While tempting to conclude that the above 
pvalue nonetheless suggests a possible role for amino acid 
polarity in peptide binding, further consideration (Section 
5.4) in terms of surrogate and competitor splits diminishes 
this possibility. We do note, however, that the importance 
of polarity in the context of DNA and protein evolution was 
demonstrated by Xia and Li (1998). 
5.3 Bump H2mtzng 
Results from using the bump-hunting approach of Section 
3.2 are presented in Tables 2 and 3 for amino acid and 
property variables, respectively. The software does not allow 
a prescribed training set to be specified. Rather, the relative 
sizes of training and test sets are provided. This explains 
the slight discrepancy between the proportion binding in the 
training set here (54.4%) and at node 1 of the classification 
tree (58.7%). Like the classification tree analyses, the bump- 
hunting results were not sensitive to random selection of 
alternative training sets. 

As indicated in Section 3.2, we focus on a single box 
solution. Part (a) of Table 2 gives box summaries for both 
the training and test datasets, while part (b) of Table 2 
gives the box definition. From part (a), we note that the 
solution box has support of 0.74 for the training data and 
0.84 for the test data. In other words, 74% of the training 
and 84% of the test data are contained within the selected 
box. Further, the percentage of binders in this (large) box is 
70.4% (training) and 74.7% (test), appreciably greater than 
the overall percentages of 54.4 and 66.3%, respectively. 

From Table 2, part (b), we see that the solution box is very 
simply defined, involving just two positions, 8 and 5. These 
positions also figured prominently in the classification tree 
and are, in fact, two of the three anchor positions. However, 
the levels (i.e., specific amino acids) involved in the box 
definition display minimal overlap with the tree. Note that 
the overbar notation represents set complement. Thus, the 
box is defined by 

f position 8 E {A, D, E, F, G, H, I, K, L, M, N, 
Q, R, T, V, W, Y> 

position 5 E {A, C, D, E, F, G, H, I, K, L, M, X E B =  

N, Q, R, S, T, V, Y } .  
This contrasts with the definition of the classification tree's 
sole terminal node that is classified as binders, 

position 8 E {F, I, L, M, Y }  
position 5 E {A, F, I, L, M, N, Y } ,  x E node 7 = 
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for which the training and test sample percentage binders are 
99 and 95.5%, respectively. We discuss these differences after 
presenting the bumphunting results for property variables. 

The remainder of Table 2, part (b), is interpreted as 
follows: If the solution box was to be enlarged by sequentially 
removing the defining variables, the change in box support 
and percent binders would be as given, i.e., if position 5 is 
eliminated, the box support increases to 0.86 but the percent 
binders decreases (very slightly) to 74.2%. Thus, position 5 
does not meaningfully add to the solution. Further removal of 
position 8 reverts to  the entire sample, so we have support 
of 1.00 and percent binders equal to the overall test set 
percentage (66.3%). 

An interesting contrast is obtained using property 
variables, the results for which are presented in Table 3. In 
comparison with the amino acid variable box, we obtain a 
smaller box (training support 0.59; test support 0.67) having 
appreciably higher percent binders (training set 85.0%; test 
set 94.3%). Given (i) the flexibility with which unordered 
categorical covariates are purportedly handled and (ii) the 
fact that the property variables derive from the amino acid 
variables, that such an improved binding percentages are 
obtained using property variables is attributable to algorithm 
limitations in handling unordered categorical covariates. 

Further comparing the property box with the classification 
tree based on properties, we again see an overlap of variables. 
The box is defined using volume at position 5, flexibility at 
position 1, and polarity at position 8. The classification tree 
has two terminal nodes classified as binders, the larger of 
which (support 0.49 [training set], 0.56 [test set]) is defined 
using volume at position 5 and polarity at position 8 and has 
binding percents of 99% (training set) and 88% (test set). 
Thus, there is much greater concordance between tree and 
bump-hunting results for property variables than there is for 
amino acid variables. 

5.4 Anchor Positions and Position Couariation 
We return to consideration of one of the motivating concerns: 
the elicitation of more complex rules for binding than afforded 
by solely using the anchor positions. Here the anchor positions 
are 3, 5, and 8. The latter two figure prominently in both the 
classification tree and bump-hunt rules. There is a suggestion 
of a role for position 1 in that (i) the classification tree using 
amino acid variables features a position 1 split and (ii) the 
property variable box obtained using bump-hunting features 
a position 1 property (flexibility). However, before inferring a 
role for this nonanchor position, it is important to appraise 
position covariation and, in the tree context, surrogate splits. 

The results of applying the Bickel et al. (1996) per- 
mutation-based assessment of pairwise position covariation 
can be summarized as follows. For nonbinders, there are 
no significantly covarying sites, in accord with the random 
sampling of synthetic feptides. Conversely, for binders, 
almost all (24) of the &) = 28 pairs of sites significantly 
(and comparably) covary using a simultaneous pvalue of 
p = 0.05. Implications of this are that (i) there are 
likely alternative split and box descriptions based on other 
positions that provide competitive classifications and (ii) 
the ability to elicit rules based on positions beyond the 
anchors is diminished. These conclusions are reinforced by 
a consideration of surrogate and competitor splits. 

The amino acid-based classification tree (Figure 3) features 
only one split (node 2) using a nonanchor position (position 
1). But the best surrogate and competitor splits for this node 
are both based on positions 5 and 3, respectively, both anchor 
positions. Further, (i) the competitor splits are comparable 
in terms of impurity improvement to the optimal (selected 
position 1) split, and (ii) if we adopt the Gini split criterion 
instead of using the information index, position 5 is used 
for the optimal split. Conversely, for the two splits that use 
anchor positions (node 1, position 8; node 3, position 5), the 
primary competitor and surrogate splits are again based on 
anchors, i.e., position 5 for node 1 and position 3 for node 3. 

We now turn to examination of surrogates and competitors 
for the classification tree based on property variables (Figure 
4) and revisit the node 1 split on position 8 polarity, 
the subject of Section 5.2. The definition of surrogate and 
competitor splits stipulate that they be based on a different 
covariate to the optimal split. There are numerous (12) 
property variables per position. Without exception (for each 
node), the top (first four) competitor and surrogate splits 
use the same position as the optimal split. Further, these 
splits are either highly competitive or strong surrogates with 
concordances (overlap) exceeding 96%. So a tree with very 
similar performance could be obtained by splitting node 1 on 
either volume or hydrophilicity at position 8. As indicated, 
this mitigates against claims that polarity is the important 
property regarding binding association. 

Analogous diagnostics for appraising alternative variable 
selections/model formulations are available for the bump- 
hunting methodology. These are based on relative frequency 
distributions: ratios of the within-box to overall density for 
each covariate are plotted (FF, Section 16.2). As anticipated 
from the strong position covariation, these pIots (not shown) 
demonstrate that alternative box definitions, using other 
positions and levels (specific amino acids), would yield similar 
support and percent binders. 

6. Discussion 
The thrusts of this article have been to (i) demonstrate 
that specialized techniques are needed to  handle multilevel 
unordered categorical covariates, as constituted by amino acid 
sequence data, and that standard methods are deficient for 
this purpose and (ii) illustrate this and other analysis issues in 
the context of peptide binding. Despite the focus on peptide 
binding, we believe that the tree and bump-hunt methods 
featured here have great generality in terms of analyzing 
phenotype-genotype association. For example, we have used 
these approaches in determining which combinations of point 
mutations in the tuberculosis rpoB gene are associated with 
resistance (quantified by minimum inhibitory concentration) 
to the antituberculin rifampin. Another setting where tree 
methods, albeit extended via bagging (Breiman, 1996) , 
are useful and standard approaches are inadequate is in 
detection of quantitative trait loci. Using both simulation 
and real-world examples, Fridyland and Speed (personal 
communication) present successful tree bagging applications, 
in contrast with failures of standard regression techniques. An 
important note here is that the genotype information, while 
still unordered categories, is not highly multilevel. Rather, 
there are only a few alleles at each locus. What makes such 
problems challenging for standard regression/classification 
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methods is the combinatorial explosion deriving from the need 
to identify interactions (between loci) of order 23 with 220 
(frequently hundreds) loci where there is little, if any, prior 
knowledge regarding important loci and weak main effects. 

Arguably (Ripley, 1996; Hastie, 1998) artificial neural 
networks (ANNs) are overused in some domains. We believe 
this to be the case for many peptide-binding applications 
where the combination of relatively small sample sizes, 20- 
level unordered categorical covariates, and the desirability 
of interpretable illumination of predictive structure makes 
ANNs seemingly inappropriate. For instance, it is difficult t o  
assess the respective contributions of anchor and nonanchor 
positions. Unlike Milik et a1.k (1998) resorting to a property 
representation, citing overfitting and management concerns 
when using ANNs with amino acids themselves, others 
(Gulukota et al., 1997; Honeyman et al., 1998) have used 
ANNs with amino acid inputs. While direct comparisons 
are clearly necessary, the fact that the latter authors obtain 
sensitivities and specificities 580% on an independent test 
sample, as well as not gaining any insight into position 
importance and/or interactions, supports use of tree or bump- 
hunt approaches. 

The salient feature of tree methods regarding unordered 
categorical covariates is the flexible, indeed exhaustive, and 
automated handling of groups of levels. This is appealing 
in that it bypasses the need for computing, examining, and 
grouping individual regression coefficients corresponding to 
the myriad indicators needed. Further, variable integrity is 
preserved, interactions accommodated, and easy interpreta- 
tion/prediction facilitated via the associated tree scheme. 

An often noted deficiency of tree-structured methods is 
that, by virtue of fitting piecewise constant response surfaces, 
they perform poorly with respect to prediction when faced 
with smooth response surfaces. This, in part, motivated 
Friedman’s (1991) multivariate adaptive regression spline 
(MARS) extension of regression trees. However, here such 
concerns are moot. The very notion of a smooth response 
surface presupposes the existence of ordered covariates- 
otherwise there is nothing to be smooth with respect to. So, 
when dealing solely with genotype information represented by 
unordered categorical covariates, the above criticism does not 

Finally, both more experience with and software refinement 
of the recently devised and highly promising Friedman and 
Fisher (1999) bump-hunt methodology is indicated. For 
example, the performance differences exhibited when using 
amino acid versus property variable sets (Tables 2 and 3) 
reflect implementation limitations. The many-to-one mapping 
from amino acids to their properties means that we ought not 
do worse using amino acids, as is seemingly the case. 

apply. 

ACKNOWLEDGEMENTS 
This work was supported by NIH grants A140906 and 
AI39932. The authors thank Mariusz Milik for providing data 
and Phil Spector for providing software. Professors Bickel, 
Friedman, Hastie, and Tibshirani and two anonymous referees 
provided very helpful comments. 

RESUME 

Nous illustrons des questions survenant dans le contexte de la 
relation du “gknotype” , reprksentC par la sCquence des acides 

aminks, au phenotype (apparences). La prCsente application 
recherche si des peptides lies B un complexe majeur 
d’histocompatibilitk (CMH) de classe I, ont des skquences 
particulikres d’acides aminks. Cependant, la question 
identifike et ktudike est nettement plus gknerale. I1 est admis 
que des rkgles de prediction de la liaison reposant seulement 
sur certaines positions prkfkrentielles (pivots) d’acides aminks 
specifiques au sein de la sequence peptidique sont en general 
inadaptkes, et que la liaison est potentiellement influencCe 
par toutes les skquences de position aussi bien que par 
les interactions inter-positions. Le dksir de clarifier ces 
rkgles de prkdiction plus complexes a engendre des essais 
variks de modklisation, dont les limites ont motive les 
mkthodes proposkes ici. Etant donnk (i) qu’il est nkcessaire 
de modkliser les interactions inter-positions, (ii) que les 
acides aminks constituent une covariable catkgorielle non 
ordonnke B grand nombre (20) de modalitks, et (iii) qu’on 
observe frkquemment de nombreuses de ces covariables (i.e. 
positions) comprenant la skquence, les techniques standard de 
rkgression/classification sont problkmatiques en raison de la 
prolifkration des variables indicatrices nkcessaires au codage 
des covariables de position et des interactions concernkes. 
Ces difficult& ont conduit h des analyses baskes sur des 
caracthres continus (les poids molkculaires par exemple) des 
acides aminks. Cependant, une perte potentielle d’information 
existe dans une telle approche si les caractkres utilisks 
sont incomplets et/ou s’ils ne reflbtent pas totalement le 
mecanisme sous-jacent B l’association avec le phknotype. Nous 
dkmontrons ici que le traitement de covariables catkgorielles 
non ordonnees B nombreuses modalitks associkes B des 
interactions peut Btre rkalish efficacement B l’aide d’arbres 
de classification et des mkthodes recemment construites de 
detection de collision. Nous abordons aussi la question de 
savoir si les associations observkes sont attribuables aux 
proprietks des acides amines, ainsi que l’examen de l’kvalua- 
tion de la covariation inter-positions et ses implications. 
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