
W3C Workshop on Semantic Web for Life Sciences, 27-28 October 2004, Cambridge, Massachusetts USA

Abstracting Workflows: Unifying Bioinformatics Task
Conceptualization and Specification Through Semantic Web

Services

Nada Hashmi∗, Sung Lee†, and Michael P. Cummings‡

∗Department of Computer Science, University of Maryland, College Park, MD 20742 USA
†Fujitsu Laboratories of America, College Park, MD 20740-2496 USA

‡Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742 USA

1 Introduction

Bioinformatics tasks often involve large scale data
analysis that requires the integration of results from
numerous computational tools, punctuated with data
format conversions and human interaction. For high-
throughput data analysis, computational tools must be
tied together in a coordinated system that can auto-
mate the execution of a set of analyses in series or in
parallel; that is, a workflow must be created. A simple
example, excluding data format conversion and other
steps, would be as follows.

compose query sequence

execute BLAST to perform pairwise sequence
alignment search of appropriate database

parse accession numbers of sequences meeting
match criterion from BLAST output

compose database retrieval requests

execute database retrieval requests

assemble retrieved sequences

execute ClustalW to perform multiple sequence
alignment

process alignment output to trim non-
overlapping sequence regions

compose Nexus file

execute PAUP* to perform phylogenetic analysis

Thus the methodology for creating workflows re-
lies heavily on the bioinformatics researcher having de-
tailed knowledge and understanding of each tool, and
in what order it should be used relative to other tools.

This mechanistic orientation of bioinformatics work is
in opposition to the logical design of analyses. Con-
ceptually, bioinformatics workflows are conceived in
terms of analytical operations necessary to achieve the
desired final state. The previous example workflow
can be recast to reflect the underlying conceptual ba-
sis, as follows.

query a database of molecular sequences

retrieve a set of sequences matching the query

align sequences in the set

generate a phylogenetic tree based on the align-
ment

Note that in the example workflow listed above
there is no mention of specific tools, data formats and
associated format conversions, or other details. Instead
the emphasis is appropriately on the analytical oper-
ations or functions to be performed rather than the
mechanisms for performing those operations. Empha-
sizing the desired final state, which corresponds more
closely to the objective of the research, provides further
abstraction and reduces the workflow conceptually to
a single functional operation as follows.

generate a phylogenetic tree of sequences homol-
ogous to a reference sequence

Here the function “generate a phylogenetic tree”
subsumes all the required subsidiary analyses and op-
erations. The specification of a reference sequence,
functionally an argument to the operation “generate a
phylogenetic tree”, is one means of placing bounds on
the sequences included (i.e., defining the scope of the
operation).

The principal objective of this paper is to suggest a
resolution to this disparity between how life scientists

1

2 W3C Workshop on Semantic Web for Life Sciences

conceptualize their workflows and how the workflows
are specified in practice. The resolution is through a
process we refer to as workflow abstraction: the descrip-
tion of workflows through specification of primary an-
alytical operations or desired analysis final state. Se-
mantic Web technologies will be used to translate from
the specification of analytical functions or final state
to executable workflows. Thus workflow abstraction
results in a unification of workflow conceptualization
and specification. We believe such a level of abstrac-
tion will be useful to both novice and expert users, and
will provide the means to easily and efficiently create
workflows to further life sciences research.

The rest of the paper is organized as follows: Section
2 provides background and motivation for our work,
Section 3 elaborates our solution for translating work-
flow abstractions into executing workflows, and Sec-
tion 4 discusses various issues that must be considered.
We conclude in the last section.

2 Background and Motivation

An essential characteristic of the current bioinformat-
ics workflow composition methods is that they are ad
hoc: specific workflows are constructed for specific
analysis series in a specific manner. This is a neces-
sary consequence of diverse objectives of life sciences
research. Typically, a workflow in bioinformatics is
performed by a researcher directly executing the re-
quired programs to perform the individual analysis
steps. Researcher-computer interaction can be reduced
in many cases through use of coordinating programs
(e.g., Perl or shell scripts) to invoke some of the re-
quired analysis programs and perform other necessary
operations (e.g., data format conversions, file pars-
ing). However, constructing workflows through use
of scripts results in an inherent conflict: the more pow-
erful the script (i.e., the more primary and subsidiary
analysis programs it invokes) the less suited it becomes
as a component of other workflows. Thus increased
power leads to decreased applicability.

Due to the growing need for mechanisms to au-
tomate workflows, numerous workflow management
systems have emerged that allow users to compose
and execute workflows. Workflow management sys-
tems seek to provide a partial solution to the power
versus applicability conflict, and simultaneously pro-
vide a simple and consistent user interface to facili-
tate workflow construction without the use of scripts
or invocation of individual programs. Tools such as
Pegasys [8], Taverna [7], Wildfire [11] and BioWBI [5]

offer to the user the available tools which are config-
ured into a series and executed at runtime. The user
selects individual tools and configures the options for
each. Thus current workflow management systems
rely heavily on researcher knowledge of the tools and
their logical order in a workflow. However, new tools
and methodologies are continuously being developed,
and researchers may not have the time to become fa-
miliarize with all them.

Although workflow conceptualization is function or
final state-oriented, all of the workflow systems we
have analyzed are resource-oriented. Current work-
flow systems rely on their own built-in workflow
engines which have limited reasoning and automa-
tion capabilities, which makes it difficult to specify
the functions, automatically compose workflows and
ground to available services for execution. These cur-
rent workflow tools offer semi-automated workflow
composition by offering compatible services based on
input/output type matches. Although attempts have
been made to offer descriptions by manually categoriz-
ing the services and sharing related workflows, these
methods do not fully overcome the previously men-
tioned problems, nor do they allow specification of
workflows based on functions or desired final state.

3 A Solution

We have sufficiently established the importance of de-
scribing workflows in terms of the operations or the
desired final state. Although there are many ways of
accomplishing the desired functional descriptions we
feel the Semantic Web offers the necessary technol-
ogy to accomplish this task as well as help facilitate
the overall goal of automating workflow compositions.
The Semantic Web provides meaning appropriate for
both machine and human processing. Of the Semantic
Web technologies, OWL-S is well-equipped and suited
for our purpose. It was created specifically to help in
the automatic web service composition and to monitor
the execution progress; both of which are very impor-
tant in the bioinformatics domain. OWL-S has ground-
ing information to the WSDL files for invocation pur-
poses. OWL-S also provides the use of simple pro-
cesses for providing abstract views of composite pro-
cesses. This plays a key role in subsuming subsidiary
operations described in our example presented in the
introduction.

Our previous work experimented with the idea
of using OWL-S files to offer better semantic type
matches [6]; that is, if tool “A” outputs a protein se-

Hashmi, Lee and Cummings — Abstracting Workflows 3

quence and tool “B” accepts a protein sequence, the
two should be made compatible. Data format conver-
sions should be handled by another agent. We focused
on an agent to convert the data into a semantic object (a
populated ontology) and create a set of rules to handle
data exchange among the tools.

We now wish to extend the idea and further abstract
the resources which are used to execute workflows.
Here we define resources to be the individual pro-
grams and the analysis series composed of individual
programs. Researchers logically create tasks in terms
of functions. These functions are translated into tools
being configured in a particular series. This concep-
tual abstraction insulates the user from the difficulty of
data format conversions and tool compatibility. How-
ever, this abstraction does not compromise power, and
therefore provides both the novice and bioinformatics
expert with an appropriate tool with significant advan-
tages compared to the alternatives.

An alternative to using OWL-S would be to create
an ontology that would provide accurate and elabo-
rate descriptions of the functions. This ontology would
be the layer the user interacts with when composing
workflows. Agents would use the ontology to reason
and automatically compose of workflows for the user
based on simple reasoning heuristics such as use of
subclass or disjoint properties. The scenario described
by Berners-Lee et al. [1] agent performing a scheduling
task is very similar to how ontologies could be used
in our case. However, this would be insufficient for
the actual translation of the abstract workflow into an
executable workflow. Information regarding require-
ments, execution and transaction completion are all
necessary. OWL-S, an OWL ontology to describe ser-
vices, already meets many of these web service needs.

The task of translating from an abstract workflow to
an executable workflow can be accomplished in sev-
eral ways. One simple method would be through
the use of backward composition based on a com-
bination of the “hasInput”, “hasOutput”, “hasEffect”
and “hasPrecondition” properties. Given the function
the user wishes to accomplish, the prerequisite of that
function will lead to the service that requires prior in-
vocation. The semantic input and output descriptions
will further help verify correct compositions. In this
way, each service prerequisite will help compose an
executable workflow. Subsequently, the workflow will
be composed backward and at runtime, reversed for
proper execution. Figure 1 shows the method.

It is also possible to move beyond simple “has-
Input”, “hasOutput”, “hasEffect” and “hasPrecondi-

tion” combination matching to compose workflows.
For example, more sophisticated workflow composi-
tion methods would account for information regarding
resource availability, user preferences, service ratings
and other pertinent information.

4 Prototype Design Choices

Song et al. defined a four-layered architecture to de-
scribe a semantic rich environment called Task Com-
puting [9]. This basic architectural design can be modi-
fied to describe the workflow abstraction using Seman-
tic Web technology (Figure 2).

User interactions are through the abstraction layer.
A GUI-based client can guide the user through enter-
ing the desired functionality and multi-layered service
specification (Multi-tiered Workflow Specification). The
GUI-based client is also used to present discovered
workflows to users (Workflow Presentation).

4.1 Multi-tiered Workflow Specification

Web services in the bioinformatics domain are funda-
mentally different than typical web services. In typ-
ical web services, the outcome is important; e.g. a
ticket is purchased, an address is mapped, etc. How-
ever, in bioinformatics, the method through which the
outcome is reached may be just as important the out-
come itself. A researcher may very well be justifi-
ably concerned with what method was employed for
the database query, multiple sequence alignment and
other similar tasks.

We believe the solution to this problem is to of-
fer multiple layers of user interaction. At the highest
level, the user simply specifies a phylogenetic tree is
desired with some bounds on taxa/sequences to be in-
cluded. At an intermediate level the user has the ability
to select a specific kind of phylogenetic analysis (e.g.,
neighbor-joining, maximum likelihood, Bayesian) and
parameters (e.g., general time-reversible substitution
model, gamma distributed rate variation, invariable
sites). At the lowest level, expert users can specify all
the analysis parameters for every step in each anal-
ysis that constitutes the workflow. These specifica-
tions would often include the particular application
program that the service represents.

For practical implementations, some reasonable de-
fault choices at each step would be offered and users
could choose to change any or all of them to suit their

4 W3C Workshop on Semantic Web for Life Sciences

final state: initial state:

final state:
phylogenysequence

 query

 query
sequence

initial state:

phylogeny

phylogenydatabase
search

sequence
retrieval

sequence
alignment inference

database
search

phylogeny
inference

sequence
retrieval

sequence
alignment

automatic backward compostion

executable workflow

Figure 1: Diagram of workflow composition from user specification of final state through prerequisite matching
cascade of service requirements and order reversal to create the executable workflow.

 service service service service

 semantic semantic semantic semantic
 service service service service

middleware layer

abstraction layer

service layer

realization layer alignment
sequencesequence

retrieval
sequence phylogeny

inference
database
search

workflow discoveryservice discovery workflow composition

multi−tiered workflow specification workflow presentation

Figure 2: A four-layered architecture for workflow abstraction using Semantic Web technology.

Hashmi, Lee and Cummings — Abstracting Workflows 5

particular needs or wishes. Note that even with full
specification there is still a great deal of abstraction,
for example the location of the data, the hardware on
which the programs will run, etc. This alone is a ma-
jor step forward compared to the current state of the
science. In practice, most users will set their own per-
sonal preferences for the individual service choices and
associated options, and so in most cases the interaction
will return to higher levels of abstraction in subsequent
use.

This is the type of solution offered in other domains.
Take the example of exercise equipment, say an ellipti-
cal machine. Users can get on and just push the quick
start button and go without any other interaction, as
the machine picks default settings for incline, resis-
tance and time. Users can also pick a particular pro-
gram (e.g., crosstraining, interval, weight loss). Finally,
the user has the option of picking all the parameters if
desired.

4.2 Workflow Discovery

Workflow Discovery in the middleware layer is re-
sponsible for finding available workflows for the spec-
ified functionality. Workflows are discovered using in-
formation on their specification, the desired function-
ality, and available services. For simplicity, we provide
an example of workflow discovery using only the de-
sired functionality (e.g., phylogenetic analysis).

The example given in Section 3 produces four poten-
tial workflows (Table 1).

If the precondition of service D can be met without
invoking service C, service D alone can achieve the fi-
nal state in workflow 1. Workflow 4 represents the op-
posite case, where all the preconditions have to be met
via invoking other services resulting in a cascade.

We must define the term available workflow. One ap-
proach is to consider a workflow available regardless
of the availability of constituting services. For exam-
ple, workflow 4 would be advertised as available even
when service A is not available. In this case, it is up
to the user to satisfy the precondition of service B. This
approach makes the workflow discovery logic simple.
However, the burden is now on the user to supply the
missing component.

Another possibility is to consider a workflow avail-
able only if all constituting services are available. Thus,
when service A is not available, only workflow 1–3 are
advertised as available. The downside of this approach
is that discovering and maintaining workflows could

be expensive and may not scale well.

Additionally, we have the option of showing the de-
tails of the workflow to the user.

4.3 Workflow Composition

The execution of a workflow depends on the service
composition: explicit or implicit. In explicit composi-
tion, the services that make up the workflow are com-
posed and published as an encompassing service, re-
sponsible for triggering their execution in the right se-
quence. In implicit composition, a utility service such
as satisfyPrecondition is called at the beginning of each
process model for services with preconditions. As a re-
sult, the prerequisite services are executed first, in or-
der to satisfy the preconditions; once all preconditions
are met, the initial service is finally executed. The pre-
condition dependency check is recursively applied un-
til a service with no preconditions is reached.

4.4 Semantic Service Description

Services corresponding to tools and devices in the re-
alization layer can be defined as Web Services with
WSDL, and semantic services can be defined with
OWL-S. A semantic service description is constructed
with a precondition that reflects the prerequisites
needed in order for the service to successfully com-
plete; this precondition is sufficient to construct work-
flows for the desired functionality.

We have considered two ways of defining service
preconditions. For example, a phylogenetic analysis
service, which requires a multiple sequence alignment
as an input, can be first described as follows.

Service: Phylogenetic Analysis (PA)

Input: Optional multiple sequence align-
ment and optional analysis parameters

Output: Phylogenetic Tree

Precondition: Multiple sequence alignment,
if not given as input

Alternatively, the same service can be viewed as the
union of the following two separate services.

Service: Phylogenetic Analysis (PA-1)

Input: Multiple sequence alignment and op-
tional analysis parameters

6 W3C Workshop on Semantic Web for Life Sciences

Table 1: Four potential workflows for example given in Section 3

Workflow 1: Service D
Workflow 2: Service C + Service D
Workflow 3: Service B + Service C + Service D
Workflow 4: Service A + Service B + Service C + Service D

Output: Phylogenetic Tree

Precondition: None

and

Service: Phylogenetic Analysis (PA-2)

Input: Optional analysis parameters

Output: Phylogenetic Tree

Precondition: Multiple sequence alignment

The benefit of the first approach (PA) is that it is con-
cise. However, we believe that it may introduce addi-
tional burden on workflow discovery since the work-
flow discovery engine may have to store more state in-
formation for all branches. The second approach (PA-
1 ∪ PA-2) is more efficient in terms of workflow dis-
covery. However, this approach may lead to an in-
creased number of small semantic services, thus mak-
ing publishing and maintaining services more difficult
for providers. This issue can be resolved through a
utility tool that can automatically generate and publish
PA-1 and PA-2, given PA.

Bioinformatics computational tools such as Phylo-
genetic Analysis, Multiple Sequence Analysis, and
Database Search carry out tasks at the realization layer.
Physical devices (e.g., microarray readers, DNA se-
quencers) that produce data are also potential residents
of this layer, typically through associated computers
that provide points of control and data collection.

4.5 Challenges

Workflows are discovered primarily using properties
defined in semantic service descriptions, such as pre-
conditions, service category and rating, etc. One diffi-
culty would be making sure that definitions can be un-
derstood across independently developed services. We
believe that adopting a well defined standard such as
Life Sciences Identifier (LSID) [4] and popular ontolo-
gies such as GeneOntology [2], BioPAX [3], and Na-
tional Library of Medicine’s UMLS [10] along with the

use of ontology translators can help us address this is-
sue. Natural Language Processing can also be used to
bridge service descriptions.

We presented at least two alternative design choices
for different components. Each design choice has im-
plications — usability versus performance (thus lead-
ing to scalability issues). The challenge is to find a so-
lution that offers a good compromise.

As with any other service oriented architecture, we
have to trust the functionality and capability adver-
tised by each service. However, in order to mitigate
the risks inherent in using external services, we will
consider building a trust model into the workflow ab-
straction.

5 Conclusions

In current practice there is a disparity between bioin-
formatics workflow conceptualization and specifica-
tion. We believe this disparity can be resolved through
a process we refer to as workflow abstraction: the de-
scription of workflows through specification of pri-
mary analytical operations or desired analysis final
state. Semantic Web technologies can be used to trans-
late from the specification of analytical functions or fi-
nal state to executable workflows. Thus workflow ab-
straction results in a unification of workflow concep-
tualization and specification. We believe such a level
of abstraction will be useful to both novice and ex-
pert users, and will provide the means to easily and
efficiently create workflows to further life sciences re-
search.

Acknowledgments

We thank Adam Bazinet, Ryusuke Masuoka, and
Stephen McLellan for helpful comments and sugges-
tions on the manuscript.

Hashmi, Lee and Cummings — Abstracting Workflows 7

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The se-
mantic web. Scientific American, 279:34–43, 2001.

[2] Gene Ontology Consortium.
http://www.geneontology.org/.

[3] Biological Pathways Exchange.
http://www.biopax.org/.

[4] Life Sciences Identifier. http://www-
124.ibm.com/developerworks/oss/lsid/.

[5] Bioinformatic Workflow Builder Interface.
http://www.alphaworks.ibm.com/tech/biowbi.

[6] R. Masuoka, B. Parsia, and Y. Labrou. Task
Computing — the Semantic Web meets perva-
sive computing. Lecture Notes in Computer Science,
2870:866–881, 2003.

[7] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Green-
wood, T. Carver, M. R. Pocock, A. Wipat, and P. Li.
Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, Jun
16, 2004.

[8] S. P. Shah, D. Y. M. He, J. N. Sawkins, J. C. Druce,
G. Quon, D. Lett, G. X. Y. Zheng, T. Xu, and B. F. F.
Quellette. Pegasys: software for executing and in-
tegrating analyses of biological sequences. BMC
Bioinformatics, 5:40, 2004.

[9] Z. Song, Y. Labrou, and R. Masuoka. Dynamic
service discovery and management in Task Com-
puting. In First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous’04), pages 310–318, Boston,
Massachussets, USA, 2003.

[10] Unified Medical Language System.
http://www.nlm.nih.gov/research/umls/.

[11] Wildfire/GEL. http://web.bii.a-
star.edu.sg/∼francis/wildfiregel/.

