

Applying Permuation Tests to Tree-Based Statistical Models:

Extending the R Package rpart

CS-TR-4581, UMIACS-TR-2004-24

Michael P. Cummings1∗, Daniel S. Myers1 and Marci Mangelson2

1Center for Bioinformatics and Computational Biology,
Institute for Advanced Computer Studies, University of Maryland, MD 20724

2Brigham Young University, Provo, UT 84602

Abstract

Tree-based statistical models are useful for evaluating relationships between predictor and response
variables and for generating predictions when the response is unknown. However, current methods of
constructing tree-based models do not provide a probabilistic assessment of the models produced. Here
we describe our work to use permutation tests to quantitatively estimate the probability of tree-based
statistical models. We have extended the rpart (recursive partitioning) package of the R system for
statistical data analysis. This extension, rpart.permutation, executes the permutations in parallel, using
MPI (Message Passing Interface) to greatly decrease the time necessary to complete the analysis.

∗Author for correspondence: mike@umiacs.umd.edu

1

2 CS-TR-4581, UMIACS-TR-2004-24

Introduction

Tree-Based Statistical Models

Numerous methods have been developed in the fields
of statistics and machine learning to deal with su-
pervised learning classification problems and regres-
sion problems. Tree-based statistical models [6],
also referred to as Classification and Regression
Trees (CART) [4] or as decision trees, are one such
method. Tree-based statistical models operate by re-
cursively creating bi-partitions of a given data set so
as to best create homogeneous collections of a nomi-
nal or ordinal response variable (classification), or to
best separate low and high values of a continuous re-
sponse variable (regression). Each bi-partition may
be considered as a question of the following form:

Is the observation xi ∈ A? Where A is a region of
the variable space.

Answering such a question for all observations
produces two groups: those observations for which
the answer is yes (those in region A) and those ob-
servations for which the answer is no (xi 3 A, those
in the complement of A).

The recursive bi-partitioning process continues
until stopping criteria (variously defined) are met.
The result of this process is a classification or a re-
gression tree, which is a hierarchical series of data
bifurcations depicting the split definitions and de-
scribing the data subsets defined by each split.

Several criteria are used to choose among the
possible bi-partitions in classification and regression
contexts. Different criteria may result in slightly dif-
ferent trees for some data sets. The conceptual bases
for specific criteria are often interrelated, and include
concepts such as impurity, entropy/information, de-
viance/likelihood, least squares, and least average
deviation. There are excellent expositions of split
criteria, their mathematical foundations, and their
implications [4, 6, 18].

Regardless of the chosen splitting criterion, at
each level of recursive splitting, the search through
possible bi-partitions is exhaustive. For each of n
distinct values of ordinal or continuous predictor
variables, there are n − 1 possible partitions. For
each unordered categorical variable (nominal vari-
able) there are 2n−1 − 1 possible partitions, which

can be a very large number. For example, in an anal-
ysis of peptide binding to the Major Histocompati-
bility Complex (MHC) class I molecule there were as
many as 20 amino acids observed at a site across the
protein sequences examined [17]. This many levels
results in ∼ 5.24× 105 partitions to be evaluated for
each of these single variables.

While the optimality of each individual bi-
partition is assured through exhaustive evaluation
of alternative splits, the global tree structure may
not be optimal in terms of minimizing error over
the whole tree. Most algorithms for tree-based sta-
tistical analysis (i.e., those implemented in CART,
S-PLUS, rpart, and other programs) are one-step
optimal (greedy), meaning they look for the best
split only at the node under consideration during the
growing process, without consideration of the effect
of these splits on further partitioning of the data.
The alternative procedure (finding globally optimal
trees) requires recursively evaluating every candi-
date split at each level of recursion. In the absence of
an algorithmic shortcut, the resulting combinatorial
explosion often renders this procedure prohibitively
demanding from a computational perspective.

Although all current methods for generating tree-
based statistical models of which we are aware pro-
vide evaluative-predictive models, none provide a
probabilistic assessment of the models. Here we pro-
vide a means to quantitatively estimate the proba-
bility of tree-based statistical models.

Permutation Testing

The null hypothesis we wish to test is that the rela-
tionship of predictor variables to the response vari-
able is random (i.e., no causal or correlative associa-
tion between predictor and response variable exists).
An appropriate means to test this null hypothesis is
through a permutation where we construct a data
set corresponding to the null hypothesis by holding
the predictor variables constant and permuting the
response variables. This procedure randomizes the
association between the two sets of variables. Ana-
lyzing the permuted data, we obtain a model for a
random instance of the data. By generating many
such permuted datasets and determining a model
for each, we can determine the frequency of models
equal to or better than that which we observed from
the original data. This frequency is our P -value, the

Applying Permutation Tests to Tree-Based Statistical Models: Extending the R Package rpart 3

probability of observing a model equal to or better
than that which we observed by chance alone.

The P -value for a permutation test is calculated
from the sorted distribution of results from analysis
of the permuted data. Specifically, let us conduct
n permutations of the original model as described
above. Let b denote the number of times that the
generated models attained an accuracy better than
or equal to the accuracy of the original model. The
P -value for the hypothesis test is thus (b+1)/(n+1).
The 1 added to the numerator and denominator is
for the original model.

There is a wide range of applications for permu-
tation testing because it is based on the empirical ob-
servations at hand, and thus subsumes any idiosyn-
crasies embodied by the original data. Permutation
tests require no assumptions about underlying distri-
butional model of either the data or the statistics ex-
amined. Furthermore permutation tests are statisti-
cally valid for the regression and classification prob-
lems to which they are applied here through rpart.
Another attractive feature of permutation tests is
statistical power, which is usually equal to the most
powerful parametric alternatives where these can be
applied [2]. Permutation tests are also exact in that
the P -values estimated are accurate with precision
determined by the number of permutations evalu-
ated [11, 13, 14]. Permutation tests have been ap-
plied in the field of genetics to determine the prob-
ability of association between genetic markers and
quantitative trait loci (QTLs) [5, 9].

Adding a permutation test to tree-based sta-
tistical models

We implemented permutation testing of tree-based
statistical models in the R statistical language [12].
R has an excellent package for tree-based statisti-
cal models, rpart (recursive partitioning) [18]. Our
package is an an extension of rpart, and is called
rpart.permutation. In rpart.permutation we provide
a function that accepts a model object as returned by
rpart and performs permutation testing as described
above. It augments the complexity parameter table
of the rpart object with three new columns: a P -
value for the relative error, a P -value for the cross-
validation error, and the number of permutations
used to generate those P -values (see below).

There is one implementation detail that should

be noted. When rpart returns a tree, it returns error
values for several possible depths of that tree (num-
bers of splits). For example, a call to rpart might
return a tree with 7 splits, and rpart might provide
error values for the 0, 1, 5, 6, and 7-split subtrees.
The specific number of splits at which subtree er-
ror information is returned, however, can vary from
dataset to dataset. In particular, when a dataset is
permuted subtree error information for each subtree
present in the original model may not be present
in the complexity parameter table for every permu-
tation, because of stochasticity associated with the
permutation. Therefore, it may be necessary to con-
duct more than n permutations in order to ensure
that every subtree in the original model has at least
n associated new models. Moreover, this means that
some subtrees may have more than n associated new
models. To make this process somewhat more trans-
parent, we report the exact number of permutations
associated with each P -value to the user.

Performance evaluation of parallel implemen-
tation in rpart

Given that one may wish to conduct a large num-
ber of permutations (e.g., 104) for a single test, and
that such a large number of permutations can take
a long time to compute, we have included support
to parallelize the processing across distributed mem-
ory platforms using the Rmpi [20] and snow [19] R
packages. (Rmpi provides MPI bindings for R, and
snow uses those bindings to provide a high-level in-
terface to a network of workstations.) As each indi-
vidual permutation in a permutation test is wholly
independent of all other permutations, permutation
testing constitutes a parallel computing opportunity
that is well-suited to distributed memory computing
environments. We have also used both the Rmpi and
snow R packages to create a parallel implementation
of the randomForest R package [15].

We conducted performance testing of our paral-
lel implementation on a local computing cluster us-
ing an unpublished dataset from our own research.
Performance testing on a computing cluster showed
reasonable results, although with a deviation from
perfect linear speedup (see Figure 1). This devia-
tion is due to the subtree-error-information problem
described above. Each node in the parallel execu-
tion is assigned a certain number of permutations
to compute for all subtrees in the original model

4 CS-TR-4581, UMIACS-TR-2004-24

0 10 20 30 40

0
10

20
30

40

Number of processors

Th
ro

ug
hp

ut

Figure 1: Plot showing the relationship of the num-
ber of processors and throughput (number of per-
mutations / unit time).

(roughly number of permutations / number of pro-
cessors). Because of the subtree-error problem, how-
ever, subtree-error values may not distribute uni-
formly across computing nodes. As an example, sup-
pose we have two computing nodes, and we want
100 permutations for the one- and two-split subtrees
of a two-split tree. At some point in the compu-
tation, node one may have 40 permutations of the
one-split tree and 60-permutations of the two-split
tree, while node two may have 60 permutations of
the one-split tree and 40-permutations of the two-
split tree. Overall, there are enough permutations
of both trees, but the nodes are not aware of this
fact and will keep computing until they have at least
50 each split, which results in an inefficiency. This
problem could be corrected by a more intelligent
load-balancing strategy.

Examples

In this section we show several examples of the ap-
plication of permutation tests to tree-based statis-
tical models. We begin by permutation testing a
classification tree built on the famous Iris dataset

setosa: 50
versicolor: 50
virginica: 50

virginica: 0
versiolor: 0

setosa: 0
versicolor: 50
virginica: 50

virginica: 45
versicolor: 1

virginica: 5
versicolor: 49
setosa: 0

petal length < 2.45 cm

setosa: 50
(petal width < 0.8 cm)

petal width < 1.75 cm

setosa: 0

Figure 2: Tree-based statistical model for the Iris
data. The number of observations for each species
(Iris setosa, I. versicolor, and I. virginica) is given
at each node. The definitions are given for each split
(with equivalent definitions in parentheses).

data(iris)
fit <- rpart(Species~., data=iris, cp=0)
print(fit$cptable)

CP nsplit rel error xerror xstd
1 0.50 0 1.00 1.21 0.04836666
2 0.44 1 0.50 0.66 0.06079474
3 0.00 2 0.06 0.08 0.02751969

Figure 3: Summary of the rpart results for the Iris
data. Column headings in the complexity parameter
table: CP, cost-complexity; nsplit, number of splits
(partitions); rel error, relative error; xerror, error
estimate based on cross-validation; xstd, standard
deviation of xerror.

[1, 10]. The four predictor variables are measure-
ments (in centimeters) for sepal length, sepal width,
petal length, and petal width. The response variable
is species designation (Iris setosa, I. versicolor, and
I. virginica). The problem is to construct a model
that accurately classifies the 150 observations into
species. Figure 2 shows the tree-based statistical
model for these data.

First, for comparative purposes, we present the
standard complexity parameter table output from
rpart (Figure 3).

Next, the results from a model using 104 permu-
tations and distributing the work over 10 processors
are given in Figure 4. Note that that the P -values
for all splits in the model indicate statistically sig-

Applying Permutation Tests to Tree-Based Statistical Models: Extending the R Package rpart 5

nificant relationships between the predictor variables
and the response variable.

It is instructive to contrast these results with
those when no significant relationship exists between
predictor variables and response variable. To pro-
vide such an example, we take the Iris data and
eliminate the original relationships between the pre-
dictor variables and the response variable by ran-
domization. As expected, the P -values for all splits
in the model are not significant (Figure 5).

For our final example, we use glass identifica-
tion data from the University of California, Irvine
Machine Learning Repository [3]. The nine predic-
tor variables consist of one physical property mea-
surement (refractive index), and content measure-
ments for eight elements (sodium, magnesium, alu-
minum, silicon, potassium, calcium, barium, iron).
The problem is to construct a model that accurately
classifies the 214 observations into seven different
types of glass.

Here again the P -values for all splits in the
model indicate statistically significant relationships
between the predictor variables and the response
variable (Figure 6). Also note that the total number
of permutations required to achieve a minimum of
104 permutations evaluated for each model split was
> 22, 824.

Conclusions

Permutation tests can be appropriately applied to
tree-based statistical models and provide an estimate
of the probability associated with such models. We
have developed a package in R, permutation.rpart,
for executing permutation testing on rpart model
objects using parallel computing. The permutation
test for tree-based statistical models described here
has been applied effectively in several studies in in-
cluding an examination of cytidine-to-uridine editing
of RNA in plant mitochondria [7] and resistance to
the antibiotic rifampin in Mycobacterium tuberculo-
sis [8].

Program Availability

Our extension to the R package rpart,
rpart.permutation, provides a convenient means to

perform these permutation tests and is available
through the Comprehensive R Archive Network
(CRAN) [16].

Acknowledgments

We thank Adam Bazinet and Maile Neel for com-
ments on the draft versions of this document, and
Kurt Hornik for help properly packaging the re-
lease of our extension for CRAN (Comprehensive R
Archive Network).

References

[1] E. Anderson. The irises of the Gaspe Peninsula.
Bulletin of the American Iris Society, 59:2–5,
1935.

[2] P. J. Bickel and W. R. Van Zwet. Asymp-
totic expansion for the power of distribution
free tests in the two-sample problem. Annal.
Statist., 6:987–1007, 1978.

[3] C. L. Blake and C. J. Merz. UCI repos-
itory of machine learning databases. Uni-
versity of California, Irvine, Deptartment of
Information and Computer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[4] L. Breiman, J. H. Friedman., R. A. Olshen,
and C. J. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Pacific Grove,
CA, 1984.

[5] G. A. Churchill and R. W. Doerge. Empirical
threshold values for quantitative trait mapping.
Genetics, 138:963–971, 1994.

[6] L. A. Clark and D. Pergibon. Statistical Models
in S. Chapman and Hall, London, 1993.

[7] M. P. Cummings and D. S. Myers. Simple sta-
tistical models predict C-to-U edited sites in
plant mitochondrial RNA. BMC Bioinformat-
ics, 5:132, 2004.

[8] M. P. Cummings and M. R. Segal. Few amino
acid positions in rpoB are associated with most
of the rifampin resistance in Mycobacterium tu-
berculosis. BMC Bioinformatics, accepted.

6 CS-TR-4581, UMIACS-TR-2004-24

data(iris);
fit <- rpart(Species~., data=iris, cp=0);
fit <- doPermutationTest(iris, 5, fit, Species~., 10000, 10);
print(fit$cptable);

CP nsplit rel error xerror xstd Rpvalue Xpvalue nreps
1 0.50 0 1.00 1.17 0.0507346 NA NA NA
2 0.44 1 0.50 0.61 0.0601609 0 0 14334
3 0.00 2 0.06 0.11 0.0319270 0 0 10000

Figure 4: Summary of the rpart.permutation results for the Iris data showing P -values for each split in
the tree model. Column headings in complexity parameter table are the same as in Figure 3, with some
additions: Rpvalue, P -value for relative error; Xpvalue, P -value for error estimate based on cross-validation;
nreps, number of permutations used to determine P -value.

data(iris);
iris[,5] <- sample(iris[,5]);
fit <- rpart(Species~., data=iris, cp=0);
fit <- doPermutationTest(iris, 5, fit, Species~., 10000, 10);
printcp(fit)

CP nsplit rel error xerror xstd Rpvalue Xpvalue nreps
1 0.080000 0 1.00 1.13 0.052795 NA NA NA
2 0.033333 1 0.92 1.08 0.054991 0.86292 0.42292 21418
3 0.020000 7 0.71 1.11 0.053722 0.82960 0.90200 10000
4 0.010000 9 0.67 1.08 0.054991 0.73181 0.82621 11462
5 0.000000 10 0.66 1.07 0.055384 0.72490 0.78418 10796

Figure 5: Summary of the rpart.permutation results for the randomized Iris data showing P -values for each
split in the tree model. Column headings in the complexity parameter table are the same as in Figure 4.

Applying Permutation Tests to Tree-Based Statistical Models: Extending the R Package rpart 7

glass <- read.table(’data/glass.data.noid’, header=T, sep=’,’)
fit <- rpart(type ~., data=glass, cp=0);
fit <- doPermutationTest(glass, 10, fit, type ~ ., 10000, 10);
printcp(fit);

CP nsplit rel error xerror xstd Rpvalue Xpvalue nreps
1 0.60259194 0 1.00000 1.01293 0.090181 NA NA NA
2 0.12644549 1 0.39741 0.41587 0.064638 0 0 11960
3 0.03361436 2 0.27096 0.35616 0.064941 0 0 10144
4 0.02193767 3 0.23735 0.37248 0.066945 0 0 10036
5 0.01677633 4 0.21541 0.34312 0.063244 0 0 10396
6 0.00939699 5 0.19863 0.31991 0.057153 0 0 11126
7 0.00639936 6 0.18924 0.32062 0.056851 0 0 12034
8 0.00512931 7 0.18284 0.31600 0.053265 0 0 12850
9 0.00502811 8 0.17771 0.31834 0.053366 0 0 14004
10 0.00363930 11 0.16262 0.32041 0.054418 0 0 17480
11 0.00226887 13 0.15535 0.32032 0.054558 0 0 20652
12 0.00181853 14 0.15308 0.32402 0.056124 0 0 22076
13 0.00044297 15 0.15126 0.32416 0.056126 0 0 23140
14 0.00027278 16 0.15082 0.32486 0.056113 0 0 22824
15 0.00000000 17 0.15054 0.32526 0.056110 0 0 18280

Figure 6: Summary of the rpart.permutation results for the glass identification data showing P -values for
each split in the tree model. Column headings in the complexity parameter table are the same as in Figure
4.

[9] R. W. Doerge and G. A. Churchill. Permutation
tests for multiple loci affecting a quantitative
character. Genetics, 142:285–294, 1996.

[10] R. A. Fisher. The use of multiple measurements
in taxonomic problems. Ann. Eugenic., 7:179–
188, 1936.

[11] P. Good. Permutation Tests: A Practical Guide
to Resampling Methods for Testing Hypotheses.
Springer-Verlag, New York, 1994.

[12] R. Ihaka and R. Gentleman. R: a language for
data analysis and graphics. Comput Graph Stat,
5:299–314, 1996.

[13] B. F. J. Manly. Randomization and Monte
Carlo Methods in Biology. Chapman & Hall,
London, 1991.

[14] J. S. Maritz. Distribution-free Statistical Meth-
ods, volume 17 of Monographs on Statistics and
Applied Probability. Chapman & Hall, London,
second edition, 1995.

[15] D. S. Myers and M. P. Cummings. Par-
allel implementation of the machine learn-

ing/statistical method random forest (R pack-
age randomForest). Technical Report CS-TR-
4584, UMIACS-TR-2004-27, Center for Bioin-
formatics and Computational Biology, Institute
for Advanced Computer Studies, University of
Maryland, 2004.

[16] Comprehensive R Archive Network.
http://www.r-project.org.

[17] M. R. Segal, M. P. Cummings, and A. E. Hub-
bard. Relating genotype to phenotype: analysis
of peptide binding data. Biometrics, 57:632–
643, 2001.

[18] T. M. Therneau and E. J. Atkinson. An in-
troduction to recursive partitioning using the
RPART routines. Technical Report Mayo
Foundation, 1997.

[19] L. Tierney, A. J. Rossini, and N. Li.
The snow package: Simple network
of workstations, 2003. http://cran.r-
project.org/src/contrib/PACKAGES.html#snow.

[20] H. Yu. Rmpi package for R, 2003.
http://www.stats.uwo.ca/faculty/yu/Rmpi/.

