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Abstract— Assessment of the reliability of a given phylogenetic hypothesis is an important step in phylogenetic analysis.
Historically, the nonparametric bootstrap procedure has been the most frequently used method for assessing the support
for specific phylogenetic relationships. The recent employment of Bayesian methods for phylogenetic inference problems
has resulted in clade support being expressed in terms of posterior probabilities. We used simulated data and the four-taxon
case to explore the relationship between nonparametric bootstrap values (as inferred by maximum likelihood) and posterior
probabilities (as inferred by Bayesian analysis). The results suggest a complex association between the two measures. Three
general regions of tree space can be identified: (1) the neutral zone, where differences between mean bootstrap and mean
posterior probability values are not significant, (2) near the two-branch corner, and (3) deep in the two-branch corner. In
the last two regions, significant differences occur between mean bootstrap and mean posterior probability values. Whether
bootstrap or posterior probability values are higher depends on the data in support of alternative topologies. Examination of
star topologies revealed that both bootstrap and posterior probability values differ significantly from theoretical expectations;
in particular, there are more posterior probability values in the range 0.85-1 than expected by theory. Therefore, our results
corroborate the findings of others that posterior probability values are excessively high. Our results also suggest that
extrapolations from single topology branch-length studies are unlikely to provide any general conclusions regarding the
relationship between bootstrap and posterior probability values. [Bayesian analysis; Markov chain Monte Carlo sampling;

maximum likelihood; phylogenetics.]

The goal of phylogenetic analysis is to infer the his-
torical relationships among entities (e.g., genes, organ-
isms) based on the information contained in their heri-
table characteristics (e.g. DNA sequences, morphology).
These inferences are conditional on a particular statisti-
cal model, which attempts to describe relationships in
the data. Along with deriving relationships, many re-
searchers wish to assess such inferences using a statis-
tic that is interpreted in terms of confidence, reliability,
support, or robustness. This is an important step in phy-
logenetic reconstruction because it gives a quantitative
measure of how well inferences are jointly supported
by the data and the chosen model. The purpose of the
research described here was to characterize the relation-
ship between two such statistics used in phylogenetics:
the proportion of bootstrap replicates and the posterior
probability.

The Bootstrap

The nonparametric bootstrap (henceforth referred to
simply as the bootstrap) is a computer-based statistical
technique that uses data resampling to estimate values
of interest (Efron, 1979; Efron and Tibshirani, 1993) and
was first applied to phylogenetic analysis by Felsenstein
(1985). In the context of phylogenetic analysis, the boot-
strap starts by sampling, with replacement, individual
characters (e.g., an individual nucleotide site across all
taxa in the set) from the original data sample D, which are

used to construct a new bootstrap sample of the original
size, D*. The bootstrap sample is then analyzed to infer

a phylogenetic tree T* using any method of choice (e.g.,
maximum likelihood, maximum parsimony, neighbor
joining). The process is repeated for a specified number
of replicates B and summarized. Although the bootstrap
can be applied to any parameter of interest, in phyloge-
netic analysis the bootstrap is almost exclusively applied
to tree topology, t. The proportion of times a particular
phylogeneticrelationship is observed across B replicates,
Proot, can be interpreted as a probability, which is used
as a measure of “confidence” in, or “support” for, the
phylogenetic relationships inferred from the data. More
explicitly, Felsenstein and Kishino (1993) suggested that
1 — Pyoot is the probability of falsely favoring a relation-
ship that is not present under the null hypothesis (i.e.,
type I error). Although use of the bootstrap in phylo-
genetic analysis has been somewhat controversial (re-
viewed by Sanderson, 1995), it has been the most widely
applied statistical assessment of inferred phylogenetic
relationships.

Posterior Probabilities

An important development in phylogenetic analysis
has been the application of Bayesian methods, partic-
ularly when coupled with Markov chain Monte Carlo
(MCMC) methods (Rannala and Yang, 1996; Yang and
Rannala, 1997; Larget and Simon, 1999; Mau et al., 1999;
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Newton et al., 1999). The Bayesian approach involves
determining the posterior probability of interest given
a prior probability, likelihood function, and data. The
intractability of direct mathematical determination of
posterior probabilities has lead to the application of
stochastic estimation procedures such as MCMC. A
MCMC approach can be generally described as an
algorithm-led trip through parameter space, where pa-
rameter space is defined in terms of topology, branch
lengths, substitution rates, and other parameters. The al-
gorithm involves a series of proposed parameter modifi-
cations, each of which is accepted or rejected as a function
of the resulting change in likelihood. When the process
reaches stationarity, the frequency with which individual
parameter values are observed is an accurate estimation
of the posterior probability.

In contrast, methods based on an objective criterion
(e.g., maximum likelihood, maximum parsimony, min-
imum evolution) are little concerned with parameter
values observed during the journey through parameter
space. Instead, they use a particular algorithm (e.g., com-
plete enumeration, branch-and-bound, various heuris-
tics) to reach a final destination, the best tree as deter-
mined by the objective criterion. In the Bayesian/ MCMC
approach there is no particular destination. Rather, it is
the journey itself that is of greatest interest. More detailed
explanations of Bayesian analysis and MCMC methods
asapplied to phylogenetic inference have been presented
elsewhere (e.g., Larget and Simon, 1999; Huelsenbeck
et al., 2001; Lewis, 2001).

Application of Bayesian/MCMC methods in phylo-
genetic analysis results in posterior probability values,

which give the probability of a tree, P(T), given the data,

D, or P(T | D). A tree, T, is characterized by the topol-
ogy, T, and associated branch lengths, 8; thus, T = (z, B).
Our focus is on the posterior probability values, P(z | D),
which are interpreted as the support of the data for a spe-
cific topology.

Bootstrap versus Posterior Probability Values

The exact relationship of bootstrap values, Pyot, to
posterior probability values, P(r | D) is an open and im-
portant question in phylogenetic analysis. While the the-
ory of each measure is largely independent, it has been
posited that they should be equivalent (Efron et al., 1996).
However, several observations suggest that these statis-
tics may differ (e.g., Buckley et al., 2002; Leaché and
Reeder, 2002; Suzuki et al., 2002; Whittingham et al.,
2002; Wilcox et al., 2002; Alfaro et al., 2003; Douady et al.,
2003). Therefore, a need exists for additional studies fo-
cusing on the behavior and relationship of the bootstrap
and posterior probability measures. Unfortunately, an
analytical solution is not readily apparent. Here, we de-
scribe our work to characterize the relationship of Pygot to
P(7 | D) using simulation and hypothesis testing. Our ex-
perimental design, described in more detail below, com-
pares the means from many replicate Ppoot and P(z | D)
estimates, and hence we compared the expected values
of these statistics. Specifically, we tested the null hy-

pothesis that the expectations of the two measures are
equal,

Hy: E(Ppoot) = E[P(z | D)],
compared with the general alternative,

Hy: E(Ppoot) # E[P(z | D)].

We also examined an additional topological model, a
star topology, as has been done by others (e.g., Gaut and
Lewis, 1995; Suzuki et al., 2002). The motivation was to
compare bootstrap and posterior probability values with
a theoretical expectation and to corroborate or not the
finding of Suzuki et al. (2002) that P(z | D) values are
excessively high.

METHODS
Model Space

We examined a model space that has been useful in
exploring other aspects of phylogenetic analysis: the so-
called four-taxon case (Huelsenbeck and Hillis, 1993;
Gaut and Lewis, 1995). A tree with four terminal taxa
has five branches (four external branches and one inter-
nal branch) and can be viewed as a two-dimensional ma-
trix, with the abscissa representing the lengths of three
branches (two external and the internal) and the ordi-
nate representing the lengths of two branches (the other
two external) (Fig. 1). A tree with four terminal taxa has
three possible resolved unrooted topologies: the model
topology (z1) from which the data are simulated and two
alternative (incorrect) topologies (z, and 73).

A single internal branch divides (defines) the nontriv-
ial partition (Fig. 2). Hence, Pyt and P(r | D) for the
internal branch (partition) are of interest. In our study,
the topology 1 is the result of the long-branch attraction
problem. The model space design is similar to that of
Gaut and Lewis (1995), with branch lengths in units of
proportion of expected nucleotide substitutions ranging
from 0.02 to 0.74 in increments of 0.02. This design yields
a model space of 372 = 1,369 elements (Fig. 1). All analy-
sis parameters were chosen to achieve a balance among
realism, relevance, variance and statistical power, and
computational complexity.

Sequence Simulations

For each element in the model space, we generated
1,000 replicate data sets, each containing four simulated
DNA sequences with branch lengths corresponding to
the parameters of the four-taxon case. Sequence length
was 1,000 nucleotides, a length similar to that consid-
ered in many molecular systematics studies. Sequences
were generated using a general time reversible model
(Tavaré, 1986) with substitution rates across sites follow-
ing a continuous I' distribution (Wakeley, 1993; Yang,
1993). The parameter values were based on maximum
likelihood estimates from 10 vertebrate mitochondrial
genomes (Cummings et al., 1995, 1999; Otto et al., 1996):
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FIGURE1. Analytical model space presented as a two-dimensional
diagram. The abscissa represents the lengths of three branches (two
external and the internal: branches 1, 3, and 5), and the ordinate repre-
sents the lengths of two branches (the other two external: branches 2
and 4) following the numbering described in Figure 2. Branch lengths
are proportional to the expected difference accumulated along the
branch. The regions referred to as the neutral zone (A), the near two-
branch corner region (B), and the two-branch corner region (C) are
shown. Branch lengths are not drawn to scale.

Three-branch Length

rate parameters T <+ C =193, T+ A=042,T < G =
0.28,C <« A =058 C« G=0.13,and A <+ G =1.00;
" distribution shape parameter o = 0.44; base frequen-
cies T=0.25,C=0.28, A =0.34, and G = 0.13. To gen-
erate data sets for a star topology, we simulated se-
quences with expected external branch lengths equal and
an internal branch length of zero. Simulated DNA se-
quences were generated using a slightly modified ver-
sion of the program evolver, part of the PAML package
(Yang, 1997).

Phylogenetic Analyses

We used each set of simulated sequences as data to in-
fer the phylogenetic relationships by two methods: max-
imum likelihood bootstrap using the program PAUP*
4.0b9 and 4.0b10 (Swofford, 2002) and Bayesian analy-
sis using the program MrBayes 2.01 (Huelsenbeck and
Ronquist, 2001). The phylogenetic analyses were paired
so that both maximum likelihood and Bayesian analy-
ses were performed on the same set of sequences for
each replicate in each element of the model space. With
the paired design of the experiment, we eliminated one
possible source of variance, i.e., variance due to differ-
ent simulated sequences between maximum likelihood

T.: Model Topology

AU 3

C

T,: Attractive Topology T: Other Topology

A B A C

C D D B

FIGURE 2. Three possible fully resolved topologies from four taxa.
71 is used in the simulations (model topology); 1, is the result of long-
branch attraction overwhelming the signal for the model topology (at-
tractive topology); and t; is the other topology. The numerals denote
branches defining the model space: three branches (1, 3, 5) and two
branches (2, 4).

and Bayesian analyses. The likelihood model parame-
ters included six nucleotide substitution categories and
an among-site rate heterogeneity parameter, which used
a I" distribution model with four discrete rate classes rep-
resented by the mean of each class. Yang (1994) showed
that four discrete rate classes produces a near-optimum
fit when approximating a continuous I" distribution rate
model for DNA sequences.

For the maximum likelihood analyses, values of the I'
distribution shape parameter «, nucleotide substitution
rates, and base frequencies were estimated from the data
for the original simulated sequence D, and the estimated
values were then applied in the analysis of the bootstrap
samples, D*. Branch-and-bound searching was used in
all cases, ensuring that the tree with the highest likeli-
hood was evaluated and thus eliminating another pos-
sible source of variance, i.e., variance due to not finding
the tree of maximum likelihood. The number of boot-
strap replicates, B, for each simulated sequence set was
2,000, a number giving a precision of 0.01 at Pyoor = 0.95
(Hedges, 1992), and the percentage cutoff value in PAUP*
was set to 0.

The decision to use parameter estimates from the tree
with the highest likelihood from the original data in sub-
sequent bootstrap replicates was a thoughtful design de-
cision by the authors. We believe that this method rep-
resents the best current practice procedure and is based
on the observation that likelihood surfaces are flat and
that likelihood values are relatively insensitive to moder-
ate changes in parameter values. Furthermore, the max-
imum likelihood tree represents the best point estimate
of the phylogeny for the data, and the estimates of model
parameters values associated with the maximum likeli-
hood tree represent the best estimates of these values for
the data. However, it is also possible to reestimate the
likelihood model parameters for each individual boot-
strap replicate, a procedure that requires much more
computation. We investigated the difference between us-
ing the estimate of the model parameters for the original
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data and reestimating these parameters for each individ-
ual bootstrap replicate. The experiment used a paired
design to compare the bootstrap values obtained using
these two procedures for 1,000 simulated samples for a
single point in the model space, the element in the upper
left corner of Figure 1.

For the Bayesian analyses, values of the I' distribu-
tion shape parameter «, nucleotide substitution rates,
and base frequencies were estimated from the data as
necessary at each chain step. Initial exploratory investi-
gations were conducted to determine appropriate chain
length, burn-in, and sampling frequency of the Bayesian
analyses using the program BOA 1.0.0 (Smith, 2001)
in conjunction with the R statistical computing system
(Ihaka and Gentleman, 1996). The exploration examined
multiple simulated sequence sets from the extremes of
the model space (each of the four corners in Fig. 1)
and a broad range of chain lengths and burn-in levels.
The negative log (—In) likelihood values were evaluated
for convergence of the joint posterior probability using
the Brooks, Gelman, and Rubin diagnostic (Gelman and
Rubin, 1992; Brooks and Gelman, 1998), which is based
on within-chain and between-chains variance. Values
of the diagnostic corrected scale reduction factor were
<1.01 in <10* chain steps for sequence sets representing
all model extremes, which is consistent with sampling
from a stationary distribution. The sampling frequency
was evaluated graphically by examining autocorrelation
plots of the joint posterior probability. With a lag of <20
steps, autocorrelation values for —In likelihood were sta-
tionary. Each final Bayesian analysis was performed with
four chains (one cold and three heated) of length 5 x 10*
steps, with the last 4 x 10* steps sampled at a frequency
of every 20 steps, yielding 2,000 observations, equal to
the number of bootstrap replicates. The value of the tem-
perature parameter for heated chains was 0.2. Summary
statistics were calculated from the sampled observations
using a Perl program.

Theoretical Expectations for a Star Topology

Bootstrap and posterior probability values across all
three possible resolved topologies have some simple
properties in the case of a star topology, which we used
as a null model. For the bootstrap, the null model expec-
tations include X(Ppoot) = 0.3333 and Z 1 Ti Pooot = 1.
Slmllarly, for posterior probability [Pt | D)] = 0.3333
and Y7, P(r; | D) = 1. However, the maximum values
of each measure among the possible resolved topologies
for each replicate analysis, max(Pyoot) and max[P(z | D)],
are also of interest and are the basis for the values re-
ported by Suzuki et al. (2002). Therefore, it is neces-
sary to know the theoretical expectations for max(Pyoot)
and max[P(z | D)] under the null model. There are ob-
vious constraints on the theoretical maximum values,
0.3333 < max < 1, but the distribution of these maxi-
mum values is less obvious. To determine the distri-
bution, we referred to the relevant theory, which was
first described in terms of harmonic analysis by Fisher
(1929). In more general terms, an equivalent problem is

picking n — 1 points at random along the unit interval
(0,1) and determining the distribution of the longest in-
terval between points (David, 1981:98-100), with n =3
in the present case. We applied this theory to simulate
10* sets of 1,000 expected maximum values each using a
Perl program and compared these values with max(Ppoot)
and max[P(z | D)] based on analyses of 1,000 simulated
data sets representing sequences for star topologies with
an expected proportion of nucleotide substitutions along
each branch of 0.74.

Hypothesis Testing

We chose to test the null hypothesis Hy: E(Ppoor) =
E[P(z | D)], using the statisticd, the magnitude of the dif-
ferences between the mean proportion of bootstrap repli-
cates ¥(Ppoot), and the mean posterior probability values
supporting the internal partition ¥[P(z | D)]. Under the
null hypothesis the expectation for this difference, E(d),
is 0. We used a permutation test (Manly, 1991; Good, 1994;
Maritz, 1995) to assess the significance of this difference.
For each set of 1,000 paired values at each element of the
model space, we randomly exchanged values at a prob-
ability of 0.5 and determined the sum of one group. The
distribution of these values over 10* replicates (original
observation + 9,999 permutations) was used to deter-
mine the probability of the observed value. Permutation
tests were conducted using a Perl program based on the
Fortran program of Manly (1991).

We tested the null hypotheses associated with the anal-
yses of star-topologies, Hy: distribution of max(Pyoot) =
theoretical distribution for maximum values and Hjy:
distribution of max[P(z | D)] = theoretical distribution
for maximum values, compared with the correspond-
ing two-sided alternative hypotheses, H;: distribution of
max(Ppoot) # theoretical distribution for maximum val-
ues and H;: distribution of max[P(z | D)] # theoretical
distribution for maximum values. We used the simulated
sets of expected maximum values to determine the 0.0250
and 0.9750 critical values over a distribution of 1,000 ob-
servations. Values in the distribution of max(Pp.:) and
max[P(r | D)] outside the region defined by the critical
values are considered significantly different from theo-
retical expectations.

Computation

For the part of the study involving the four-taxon
model space, the experiment required a relatively large
number of phylogenetic analyses: 1,369 model space el-
ements x 1,000 replicates per element x 2 phylogenetic
methods = 2.738 x 10° separate phylogenetic analyses,
ignoring the individual bootstrap replicates and MCMC
steps for each simulated sequence set. At this level of at-
omization, each analysis in the problem space is wholly
independent of any other, and parallelization is an obvi-
ous computational model. Similarly, the 1,369 hypothesis
tests can also be performed in parallel. Parallel compu-
tation has been successfully used in previous large-scale
computer-based studies in phylogenetics (Cummings
etal., 1995, 1999; Otto et al., 1996). We developed our own
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Grid computing system using standard software com-
ponents (Myers and Cummings, 2003) to distribute the
independent analyses across multiple computer systems
and geographic locations. The principal part of the sim-
ulations took 15.68 CPU years (wallclock) to complete,
the comparison of bootstrap procedures required an ad-
ditional 88.08 CPU days, and the star topology analyses
required 5.35 CPU days.

RESULTS
Comparing Bootstrap Procedures

We compared the difference between two methods for
the bootstrap procedure: using the estimate of the model
parameter values for the original data, and reestimat-
ing the parameter values for each individual bootstrap
replicate. The absolute difference in ¥ values from 1,000
paired analyses and the associated significance based on
permutation tests were 0.0095 (P = 0.4524) for 7y, 0.0231
(P =0.0070) for 1, and 0.0059 (P = 0.4949) for 3. Al-
though the ¥ values for the two different bootstrap pro-
cedures were not significantly different for the topology
of primary interest, i, the difference in computation
required was substantial. Reestimating the likelihood
model parameters for each individual bootstrap replicate
required ¥ = 124.94 times more CPU time. The remain-
ing results presented for Pyt are based on the procedure
where likelihood model parameters were estimated from
the data for the original simulated sequence, D, and the
estimated values were then applied in the analysis of the
bootstrap samples, D*.

Comparing Bootstrap and Posterior Probability Values

The mean values of Ppoo and P(zr | D) at points in
the model space are the consequence of a combina-
tion of factors, including length of simulated sequence,

T,: Model Topology

T>: Attractive Topology

branch lengths, choice of likelihood model, and under-
lying characteristics of the analytical procedure. There
are three relatively distinct regions in the model space
that can be differentiated based on the difference be-
tween mean bootstrap and mean posterior probability
values, d = ¥(Pyoot) — X[ P (71 | D)] (Fig. 3). First, there is
a broad region encompassing most of the model space
from lower left corner toward the upper right corner, re-
ferred to as the neutral zone (region A in Fig. 1). The
neutral zone, as its name implies, is mixed with respect
to which measure has higher or lower values. The second
region is adjacent to the neutral zone, closer to the two-
branch corner (upper left), referred to as the near two-
branch corner (region B in Fig. 1). The third area is the
two-branch corner (upper left; region C in Fig. 1), where
the effects of long-branch attraction become evident in
phylogenetic analyses. The size of the two-branch corner
is smaller in our study than that observed by Gaut and
Lewis (1995), because we used both longer sequences
and a more parameter-rich likelihood model. However,
in all features of our results are fully consistent with those
of Gaut and Lewis (1995).

The significance of d for each element in the model
space is given in the results of the permutation tests
(Fig. 4). As might be expected, 4 is not significant for 7; in
the neutral zone. However, in the near two-branch cor-
ner (region B in Fig. 1) X[ P(t; | D)] is significantly greater
than %(Ppoot), but in the two-branch corner (region C in
Fig. 1) the opposite pattern is observed with X(Phoot) sig-
nificantly greater than ¥[P(z; | D)].

Over the three possible topologies, both Py and
P(z | D) each sum to 1. Thus, the difference between
the means of the two measures, d, for 17 is reflected
in the value of d for the alternative topologies, 7, and
73. Examining X(Pyoot) and x[P(z | D)] for the other two
topologies leads to further understanding of the differ-
ences observed for ;. For the attractive topology 1,

73: Other Topology

B> 0.1000, @> 0.0100, O~ 0.0010, O> 0.0001, J0.0001 > d > -0.0001, < -0.0001, O < -0.0010, @ < -0.0100, A< -0.1000

FIGURE 3. Difference, d, between the mean proportion of bootstrap replicates ¥(Pyo.t) and the mean posterior probability values supporting
the internal partition [ P(z | D)] for each element in the simulation model space (Fig. 1). Scale for the magnitude of d = X(Ppot) — [P (z | D)] is
presented below plots with shades of magenta depicting those cases where ¥(Pyo) > X[P(t | D)] and shades of cyan depicting those cases where

X(Ppoot) < X[P(z | D)].
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T3: Other Topology

H20.0001, [@<0.0010, O< 0.0100, [J< 0.1000, [1?0.0001, [ < 0.1000, [<0.0100, @< 0.0010, @20.1000

FIGURE 4. Results of permutation tests of Hy: E(Ppoo) = E[P(7 | D)] over the simulation model space (Fig. 1). Scale for the significance
values of results (uncorrected for multiple tests) is presented below plots, with shades of magenta depicting those cases where the magnitude of
%(Pyoot) — X[P(t | D)] > 0 and shades of cyan depicting those cases where ¥(Pyo) — X[P(z | D)] < 0.

the neutral zone is again mixed with respect to which
measure has higher or lower values (Fig. 3). However,
the values of d = X¥(Ppoot) — X[P (1 | D)] in the other re-
gions are the opposite of that observed for 7;. In the near
two-branch corner region (region B in Fig. 1), #(Ppoot) >
%[P (12 | D)],and deep in the two-branch corner ¥(Ppoot) <
¥[P(z2| D)]. The results of the permutation tests show
that few differences between %(Ppoo:) and X[ P(z | D)] are
significantly different in the neutral zone (Fig. 4). In the
near two-branch corner, X(Ppoot) is often significantly
greater than X[ P(z; | D)], and deep in the two-branch cor-
ner X[P(r, | D)] is significantly greater than %(Pyoot)-

For the other topology, 13, the neutral zone is again
mixed with respect to which measure has higher or
lower values (Fig. 3). For much of both two-branch
corner regions (regions B and C in Fig. 1), ¥(Ppoot) >
¥[P(r2| D)], and many of these differences are signifi-
cant; (P < 0.0010) (Fig. 4).

Star Topology

For the null model of a star topology, the values for
%(Ppoot) and X[ P(z | D)] for each topology were very close
to the expected value of 0.3333 (data not shown). The
means of the maximum values among all three topolo-
gies across replicates were also close to theoretical expec-
tations as determined by simulation, ¥ = 0.6111,n = 107:
max(Ppoot) * = 0.6348, s =0.0214; max[P(zr | D)] % =
0.6272, s2 = 0.0277. However, means and variances pro-
vide for only limited comparison. Therefore, we gen-
erated quantile-quantile plots to compare the distribu-
tions (Fig. 5). Quantiles are like percentiles except they
range from 0 to 1 rather than 0 to 100. In the quantile—
quantile plots presented in Figure 5, the quantiles of the
theoretical distribution as determined by simulation are
compared with the corresponding quantile of the mea-
sure of interest, max(Ppoot) or max[P(z | D)]. In this way
the two distributions can be compared in their entirety.
Both max(Ppoot) and max[P(r | D)] differ significantly

from theoretical expectations over much of their distri-
butions. These differences are the specific focus of the
plots in Figure 6, where the difference between theoreti-
cal expectation and the measure of interest, max(Pyoot)
or max[P(zr | D)], is plotted against the theoretical ex-
pectation. In such a plot, identical distributions would
be represented by a straight line parallel to the ab-
scissa with a value of 0 difference. Values for max(Ppoot)
are significantly greater than the theoretical expectation
for most of the distribution, particularly in the vicin-
ity of the median, the 0.50 quantile, max(Pyoot) = 0.6365,
and again in some later quantiles (Figs. 5, 6). The de-
partures from theoretical expectations are particularly
pronounced for max[P(z | D)] from the 0.456 quantile,
max[P(z | D)] = 0.5865, and above, which are signifi-
cantly greater than theoretical expectations with the
exception of the very highest quantile (Figs. 5, 6). In
the interval of most interest, values in the range 0.95-
1.0, the distribution of max(Ppeot) is much closer to the
distribution for the theoretical expectations, with none
of the values of max(Pyo0t) in this interval significantly
exceeding theoretical expectations (Fig. 6a). In contrast,
the distribution for max[P(z | D)] values in this inter-
val are all significantly higher than the theoretical ex-
pectation, with the exception of the last quantile, 1.0
(Fig. 6b). To put it another way, the observed propor-
tion of Ppoor > 0.95 = 0.014, which is close to theoreti-
cal expectation as determined by simulation, 0.009, but
the proportionof P(r | D) > 0.95 = 0.063, ~ 7.6 times the
theoretical expectation.

DISCUSSION

Given sufficient data, the appropriate likelihood
model, and the appropriate search strategies, the val-
ues of Ppoot and P(z | D) are similar. Over most of the
model space, the means of the two measures were
not significantly different (Fig. 4). However, in the ab-
sence of other information it is difficult to draw general
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are based on 1,000 separate paired analyses. Distribution of theoretical maximum values are based on the means of 10* samples, each representing
1,000 ordered values derived by simulation. Solid lines represent the null hypothesis that the two distributions are equal; dashed lines represent
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conclusions when the two measures differ significantly.
We observed significant differences in the two-branch
corner of the model space where long-branch attrac-
tion affects both measures, albeit differently. In the near
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two-branch corner (region B in Fig. 1), there is a gen-
eral trend for X(Ppoot) < X[P (71| D)], whereas deep in
the two-branch corner (region C in Fig. 1), there is a
general trend for ¥(Ppoot) > X[ P (71 | D)]. The reason why
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FIGURE 6. Plots depicting the relationship of the distribution of maximum values expected under theory to the difference of maximum
values expected under theory — maximum bootstrap values, max(Ppo) (A) and maximum values expected under theory — maximum posterior
probability values, max[P(z | D)] (B). Straight lines represent the null hypothesis that the two distributions are equal; dashed lines represent the

0.0250 and 0.9750 critical values for the two-sided alternative hypothesis.
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X(Pooot) > X[P(z; | D)] deep in the two-branch corner is
because the branch-and-bound search with the maxi-
mum likelihood optimality criterion always found the
topology with the highest likelihood, which was most
often the model topology. The MCMC-guided journey
through parameter space in the Bayesian analysis often
visited the attractive topology in addition to the model
topology, which led to higher values for P(r> | D) and
correspondingly lower values for P(r; | D).

The relationship of ¥(Pyoot) to X[P (71 | D)] when plot-
ted with ¥(Ppoot) along the abscissa and X[ P(z; | D)] along
the ordinate follows a sigmoidal curve (Fig. 7). Previ-
ous studies, each based on a single empirically derived
data set and/or simulation based on an empirically de-
rived tree show a similar relationship between Pyt and
P(tr| D) (Leaché and Reeder, 2002; Whittingham et al.,
2002; Wilcox et al., 2002). However, the points where
Pooot = P(z | D) differ across studies. In our study, the
change point is in the vicinity of ¥(Ppoot) = ¥[P(z | D)] =
0.93; for most points X(Ppoot) > X[P(z | D)] below and
¥(Ppoot) < X[P(z | D)] above this value (Fig. 7b). Among
the reasons for the higher change point in our study com-
pared with those of the other studies may be differences
with respect to attractive alternative topologies and the
amount of information supporting specific relationships.
For the star topology null model, a generally similar sig-
moidal curve, albeit with a lower change point, is evident
in the comparison of the distribution of max(Ppoe) and
the max[P(z | D)] (Fig. 8).

Extrapolation from our four-taxon simulation anal-
yses to the more complex phylogenetic analyses of
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empirical data sets suggests that over most of the param-
eter space the differences between bootstrap and pos-
terior probability values are expected to be nonsignifi-
cant. In contrast, when long branches are separated by
a very short internode (two-branch corner of Fig. 1),
bootstrap and posterior probability values may differ
significantly. However, the extremes in branch length
differences in our study may rarely be encountered in
empirical data sets. Our results contrast with those of the
few empirical analyses, which consistently find Pyt <
P(r | D) (Leaché and Reeder, 2002; Whittingham et al.,
2002; Wilcox et al., 2002; Douady et al., 2003). Instead,
our results show that rather than the values of one met-
ric being consistently greater than those of the other,
the values are most often not statistically different or
that the direction of difference depends on the branch
lengths involved. However, our results based on analy-
ses of star topologies suggest that the consistent obser-
vations of Ppoot < P(7| D) in studies of empirical data
may largely be the result of P(r | D) values being ex-
cessively high. Although there are advantages of basing
studies on empirical data sets, these data sets do not rep-
resent the diversity of branch length differences found
in our simulated data. Furthermore, our results suggest
that extrapolation from these empirical studies are un-
likely to provide any general conclusions regarding the
relationship between bootstrap and posterior probability
values. Simple comparisons between metrics are insuf-
ficient for fully assessing absolute performance; such an
assessment requires a theoretical standard with which
to compare results, as we have done in our analyses of
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FIGURE 7. Plots depicting the relationship of bootstrap (abscissa) to posterior probability (ordinate) from the four-taxon model space for the
entire range of values (A) and for the intervals 0.90-1.0 (B). Points represent paired X(Pyo) and ¥[P(r | D)] values, n = 1,000, from each element
of the model space (Fig. 1) and each of the three topologies: 7, circles; 1,, triangles; 73, squares. Solid lines represent Hy: E(Ppoot) = E[P(z | D)].
Points below the line depict values where #(Pyoo) > X[P (7 | D)]; points above the line depict where values %(Pyo) < X[P (7 | D)]. The dashed
line represents a robust locally weighted regression fit to the points depicted and emphasizes the nonlinear relationship between ¥(Pyoo) and

x[P(z | D)].
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between max(P,.) and max[P(z | D)].

star topologies. Clearly, more empirical and simulation
studies are needed to fully understand the relationship
between bootstrap and posterior probabilities in phylo-
genetic analyses and the relationships of both measures
to theoretical expectations.

Regarding extrapolation from studies of trees of four
taxa to analyses of more taxa, it is important to realize
that four taxa represent the smallest number of taxa that
provide for a nontrivial tree (i.e., a tree with more than
one possible unrooted topology). The utility of the four-
taxon case in exploring problems in phylogenetic analy-
sis is a consequence of this nontriviality, the simplicity of
exploring specific analytical problems, and the ability to
do so in a way that is both easy to convey and to compre-
hend with two-dimensional representations. Felsenstein
(1978) and others (e.g., Huelsenbeck and Hillis, 1993;
Gaut and Lewis, 1995; Suzuki et al., 2002) recognized
these properties of the four-taxon case in problems in-
volving differences in relative branch lengths. Trees with
more than four taxa add only additional partitions to
the single partition of the four-taxon case. Therefore, al-
though most often more than four taxa are considered
in phylogenetic studies, there is no property of the four-
taxon case that is not, by extension, applicable to studies
of more than four taxa. However, the problems of in-
creased analytical complexity and decreased represen-
tational effectiveness make the use of more than four
taxa in studies such as that presented here both superflu-
ous and obfuscating. In other words, everything demon-
strated for a tree of four taxa applies to trees of more
taxa, but the increased tree space is much more difficult
to analyze and visualize effectively.

Suzuki et al. (2002) addressed the relationship between
bootstrap and posterior probability values using simu-
lated data sets for four taxa. Part of their experimental
design involved simulating sequences for a star topol-
ogy under a Kimura model (Kimura, 1980) and analyzing
the data using a simpler Jukes—Cantor model (Jukes and
Cantor, 1969). From analyses of star topologies, Suzuki
et al. showed that posterior probability values were ex-
cessively high compared with bootstrap values based on
neighbor joining and maximum likelihood. However, the
experimental design used confounded the effects of an-
alyzing data with less well-fit models with the effects
attributable to the general properties of the underlying
analytical methods. We separated these two confounded
factors by using an experimental design where the mod-
els used to simulate and analyze the data were very sim-
ilar, thus focusing attention on properties of Pyoor and
P(t | D) values. Such a design is in keeping with the best
current practice procedure where the fit of models is ex-
plicitly assessed and the best-fit model is applied to sub-
sequent analyses. Although maximum likelihood phy-
logenetic analysis is at least moderately robust to model
assumptions (e.g., Fukami-Kobayashi and Tateno, 1991;
Kuhner and Felsenstein, 1994; Yang et al., 1994; Gaut and
Lewis, 1995), both simulation studies (Yang et al., 1994;
Gaut and Lewis, 1995) and studies based on empirical
data (Buckley and Cunningham, 2002) demonstrate the
advantages of using models that better fit the data. In the
present context, the results of Buckley and Cunningham
(2002) are particularly relevant because they demon-
strate improved bootstrap results when more realistic
models are used. The results from our star topology
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evaluations demonstrate that max[P(z | D)] departs sig-
nificantly from theoretical expectations, particularly in
the interval 0.85-1. Therefore, our results provide addi-
tional evidence consistent with the results of Suzuki et al.
(2002), which show that P(z | D) values appear to be ex-
cessively high.

It appears that the exact relationship between Pyoot and
P(t | D) for any data set is complex and involves the na-
ture of the underlying tree space, the fit of the likeli-
hood model to the data, and the details of how the boot-
strap/maximum likelihood search is conducted and the
MCMC/Bayesian analysis is performed.
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A map of a portion of the northern hemisphere showing the general geographic distribution of server and clients composing the Grid system
(Myers and Cummings, 2003) used in the study. The Grid system spanned multiple continents and administrative domains, and included 163
unique clients. At times, computer programs for the project ran on over 135 processors simultaneously. Each client executed Perl code and
architecture-specific binaries. Communication between clients and server used XML-RPC (eXtensible Markup Language-Remote Procedure
Call) via TCP/IP (Transmission Control Protocol/Internet Protocol). Analyses were coordinated through a relational database management
system abstracted behind a Java interface on a server at the Marine Biological Laboratory in Woods Hole, Massachusetts.
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