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Abstract We describe a scheme for subdividing long-
running, variable-length analyses into short, fixed-
length BOINC workunits using phylogenetic analy-
ses as an example. Fixed-length workunits decrease
variance in analysis runtime, improve overall system
throughput, and make BOINC a more useful resource
for analyses that require a relatively fast turnaround
time, such as the phylogenetic analyses submitted by
users of the GARLI web service at molecularevolu-
tion.org. Additionally, we explain why these changes
will benefit volunteers who contribute their process-
ing power to BOINC projects, such as the Lattice
BOINC Project (boinc.umiacs.umd.edu). Our results,
which demonstrate the advantages of relatively short
workunits, should be of general interest to anyone who
develops and deploys an application on the BOINC

platform.
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1 Introduction

Computing resources volunteered by members of
the general public can greatly benefit scientific
research, as demonstrated by high-profile research
projects in disparate areas such as radio astronomy
(SETI@home; setiathome.berkeley.edu), climate
modeling (climateprediction.net), protein fold-
ing (Rosetta@home; boinc.bakerlab.org/rosetta),
and particle accelerator physics (LHC@home;
lhcathomeclassic.cern.ch/sixtrack), to name just a
few. The most widely-used platform for volunteer
computing is, by far, the Berkeley Open Infrastructure
for Network Computing, or BOINC [1]. Our research
group has made BOINC an addressable computational
resource in The Lattice Project [2, 3], a grid computing
system built on Globus [4] software. In recent years,
our grid system development has increasingly focused
on improving phylogenetic analysis capability [5].
Our primary phylogenetic inference application is
GARLI [6, 7], a popular maximum likelihood-based
program. We have recently made a GARLI web ser-
vice publicly available on molecularevolution.org [8],
which executes GARLI analyses on Lattice Project
computing resources. The Lattice BOINC Project
(boinc.umiacs.umd.edu) is an outstanding resource
for running GARLI analyses: a significant proportion
of volunteer computers have an appreciable amount
of memory, which GARLI analyses often require;
and GARLI automatically checkpoints its state when
running on BOINC, which allows for efficient use of
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the BOINC platform. Indeed, having the capability to
run GARLI analyses on BOINC has been critical to the
successful completion of several phylogenetic stud-
ies [9–11]. However, thus far it has not been feasible
to run GARLI web service analyses on BOINC because
it has been difficult to guarantee complete results
from BOINC in a timely manner. Here we address this
problem by subdividing long-running GARLI analyses
into short, fixed-length BOINC workunits (the term
used for a unit of work on the BOINC platform).
This speeds up analysis completion by reducing the
variance in workunit runtimes, thus making BOINC

a more attractive resource for analyses that require a
relatively fast turnaround time. The remainder of the
paper is organized as follows. In Section 2, we put the
problem in context by providing some background on
phylogenetic analysis and our computing systems. In
Section 3, we provide a more detailed description of
the problem and our proposed solution. In Section 4,
we describe our implementation of the steps required
to subdivide GARLI analyses into fixed-length BOINC

workunits. In Sections 5, 6, and 7, we demonstrate the
efficacy of our implementation with large-scale tests
using the Lattice BOINC Project. Finally, in Section 8
we make some concluding remarks.

2 Background on Phylogenetic Analysis
and Computing Systems

A very common analysis type in evolutionary biol-
ogy, and increasingly in other areas of biology, is the
reconstruction of the evolutionary history of organ-
isms (e.g., species) or elements of organisms that
have evolutionary or genealogical relationships (e.g.,
members of gene families, or sampled alleles in a
population), sometimes simply called operational tax-
onomic units. This phylogenetic inference problem
is especially computationally intensive when based
on statistical methods that use parameter-rich mod-
els, as is commonly done with maximum likeli-
hood and Bayesian inference. The combination of
increasingly sophisticated models and rapidly increas-
ing data set sizes has prompted the development
of strategies that speed up analysis execution. Our
own work has focused on decreasing time to results
through parallelization of maximum likelihood phylo-
genetic inference, which is more amenable to atom-
ization than Bayesian inference because the many

searches that typically comprise an analysis can be
performed separately and concurrently. Specifically,
we have chosen to deploy an open-source program
for maximum likelihood-based phylogenetic inference
— GARLI (Genetic Algorithm for Rapid Likelihood
Inference) [6, 7] — in a heterogeneous-resource grid
computing environment.

As with all phylogenetic inference programs that
analyze more than a small number of operational tax-
onomic units and use an optimality criterion, GARLI

employs a heuristic algorithm to solve the simultane-
ous optimization problem. Specifically, GARLI uses
a stochastic evolutionary algorithm to search for the
point of maximum likelihood in the multidimensional
space consisting of tree topology, branch lengths, and
other model parameters, which we simply call the
best tree. Because of this stochasticity, it is both usual
and recommended to perform multiple searches so as
to avoid results that represent local optima, seeking
instead to obtain results that more nearly reflect the
global optimum. Our system assists with this task by
dynamically adjusting the number of search replicates
performed so as to be reasonably assured of finding
the best tree with a high probability [8]. Furthermore,
in addition to searches for the best tree, one typically
conducts hundreds or thousands of bootstrap replicate
searches to assess uncertainty in the best tree topology.
Depending on the size and complexity of the analy-
sis, and the capability of the computational resources
used, it may take many hours to complete even a
single GARLI search replicate. Thus, running many
search replicates in parallel on a grid computing sys-
tem greatly reduces the time required to complete an
analysis.

Grid computing is a model of distributed comput-
ing that seamlessly links geographically and adminis-
tratively disparate computational resources, allowing
users to access them without having to consider loca-
tion, operating system, or account administration [12].
The Lattice Project, our grid computing system based
on Globus software, incorporates volunteer computers
running BOINC, as well as traditional grid comput-
ing resources such as Condor pools [13] and compute
clusters. The architecture and functionality of the grid
system is described extensively elsewhere [14]; fun-
damentally, however, The Lattice Project provides
access to scientific applications (which we call grid
services), as well as the means to distribute the com-
putation required by these services over thousands of
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processing nodes. In recent years, we have enhanced
the system by developing a web interface to the
GARLI grid service [8], which is currently available at
molecularevolution.org. The GARLI grid service has
been used in over 65 published phylogenetic studies,
with usage having increased dramatically since the
release of the GARLI web service in July 2010 [9–
11, 15–17] (see lattice.umiacs.umd.edu/publications
for the full publication list). As of 18 August 2015,
1,262 GARLI web service users have completed 7,288
analyses comprising well over three million individual
search replicates.

As mentioned previously, however, we have not yet
been able to use our most novel and potentially most
valuable computational resource— our pool of BOINC

clients — for processing GARLI web service analy-
ses. The reasons for this are expounded upon in the
following section.

3 Problem Description and Proposed Solution

Optimal-Length Analyses for Grid Computing There
is substantial overhead associated with managing each
grid-level analysis submission due to the negotiation
of various layers of middleware, latency associated
with file transfers, queue wait times, and so on. Thus,
granularity, the ratio of analysis computation to over-
head, is an important consideration. For example,
fine-grained tasking, the submission of a large num-
ber of short-running analyses, leads to reduced effi-
ciency and reduced overall system throughput, as the
majority of each job lifetime is composed of various
sources of latency rather than actual scientific com-
putation. Conversely, coarse-grained tasking, the sub-
mission of long-running analyses, is not ideal either
because longer jobs are more likely than short-running
jobs to be interrupted by other processes, computer
failures and reboots, and human intervention, which
all lead to wasted computation. In the middle of
these two undesirable extremes exists a conceptually
“optimal” analysis runtime, which maximizes scien-
tific computation by minimizing both unnecessary
overhead and potential for interruption. Determin-
ing a grid-wide optimal runtime is challenging when
one considers the heterogeneity of analyses that are
submitted, the heterogeneity of our grid resources,
and the complexity of the grid meta-scheduling algo-
rithm. Thus, here we specifically consider only GARLI
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Fig. 1 BOINC analysis batch completion dynamics for nine typ-
ical analysis batches as the density of analyses completed by
their relative time to completion. All batches exhibit the typical
heavy-tail distribution

analyses running on our BOINC resource, as we antic-
ipate that such analyses will benefit greatly from
runtime optimization.

Optimal-Length GARLI Analyses for BOINC There
are multiple factors that contribute to variance in
GARLI analysis runtimes on BOINC. These include
factors specific to the BOINC platform, such as vari-
ability as to when result units (instances of a workunit)
are downloaded by volunteer computers, differences
in volunteer computer capabilities and reliability, and
variation in the computing preferences expressed by
volunteers. In addition, the stochastic nature of the
GARLI algorithm leads to variable and indetermi-
nate runtimes for individual GARLI search replicates.
These and other factors produce analysis batch com-
pletion dynamics with a markedly heavy tail (Fig. 1).
The later-completing jobs that comprise this heavy tail
are sometimes referred to as “stragglers” [18, 19]. By
standardizing the length of GARLI workunits, we aim
to improve overall analysis batch turnaround time —
i.e., reduce the straggler effect — by decreasing the
variance in analysis runtimes. The optimal workunit
runtime maximizes analysis batch throughput (while
not taxing system resources, such as storage space,
overly much).

Assuming that a near-optimal runtime for GARLI

analyses on BOINC can be determined, it is possible to
combine multiple short-running GARLI analyses into a
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single fixed-length analysis by increasing the number
of search replicates (or bootstrap replicates) that a sin-
gle GARLI invocation performs. This optimization is
relatively trivial, and we do not discuss it further here;
instead, we focus exclusively on the converse problem
of breaking up a single long-running GARLI analy-
sis into multiple short, fixed-length subunits, which
GARLI enables by providing a lightweight checkpoint-
ing mechanism. If checkpointing is activated, GARLI

periodically writes some small text files to disk that
contain the information needed to restart a run from
that point. This ensures that not much computation
is lost if a volunteer computer is rebooted, for exam-
ple, or if computation is interrupted for some other
reason. (Checkpointing is not currently possible dur-
ing either the initial optimization or final optimization
analysis stages of the program, however.) By setting
various GARLI parameters appropriately, it is possi-
ble to checkpoint the state of a GARLI result unit on
a volunteer computer after a fixed length of time has
elapsed or amount of computation has been performed
(e.g., one hour, or some number of floating point oper-
ations, respectively), terminate the analysis, and send
the intermediate results back to the BOINC server. The
pertinent analysis files and checkpoint files can then
be downloaded by another BOINC compute node (sim-
ply termed a host) to resume computation where it left
off, again for the same fixed length of time or amount
of computation. Though this type of scheme incurs
some additional overhead in terms of required data
movement and storage, communication, and record
keeping, we expect that these costs will be outweighed
by the performance gains, which are potentially sub-
stantial and important in several ways.

Benefits of Fixed-Length Analyses The performance
gains that result from the standardization of GARLI

analysis runtime on the BOINC platform are realized
both for BOINC volunteers, as well as researchers who
use the GARLI web service.

BOINC volunteers tend to prefer uniform-length
workunits, an expectation derived from participation
in BOINC projects that have a practically unlimited
supply of homogeneous workunits (e.g., SETI@home;
setiathome.berkeley.edu). Hence, dividing variable-
length, long-running analyses into short, fixed-length
workunits better meets the expectations of BOINC vol-
unteers and increases their enthusiasm about running

GARLI analyses, which in turn leads to greater vol-
unteer participation and retention. Furthermore, long-
running analyses of unknown runtime create many
opportunities for failure and interruption, as well as
uncertainty and anxiety about when the analyses will
finish, all of which causes some BOINC volunteers to
abort such analyses prematurely. Thus, by shortening
and standardizing the length of GARLI workunits, we
make our system much more appealing to volunteers.
Finally, standard-length workunits afford the opportu-
nity to grant a fixed amount of credit per workunit, an
inherently fair procedure that volunteers tend to favor.

For researchers using the GARLI web service,
GARLI analysis runtime optimization provides per-
formance benefits as well. As already mentioned,
subdividing long-running analyses into shorter-length
workunits increases reliability by decreasing the prob-
ability of premature workunit termination. It also pro-
vides a natural load-balancing mechanism by afford-
ing the most capable BOINC hosts more opportunities
to process more workunits, thus lightening the tail
in Fig. 1 by shifting the distribution toward shorter
completion times. This decrease in the variance of
completion times should result in increased overall
system throughput and decreased time to results for
GARLI web service users.

Related Work There has been some research into opti-
mizing BOINC scheduling policies [20–25], often with
the assistance of simulated grids [26]. However, these
studies attempt to solve a more general scheduling
problem than we do here, and thus model many differ-
ent factors: heterogeneity in host capabilities and com-
puting preferences, variation in workunit properties
and deadlines, requirements of multiple simultane-
ously connected BOINC projects, and so on. One such
study [23] specifically focused on optimizing schedul-
ing policies for “medium-grained” tasks (tasks that
take minutes or hours), which is relevant to our present
work because we target tasks of this length. Although
we do not change or optimize any BOINC scheduling
policies ourselves, we do benefit from any such opti-
mizations that already exist, especially ones targeted at
relatively short tasks. Complementary strategies have
also been described, such as one that uses a cloud of
dedicated resources to process the small fraction of
tasks that do not complete on a volunteer grid in a rea-
sonable amount of time [27]. Here we take the current
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BOINC scheduling policies as a given and demon-
strate that reducing workunit runtimes leads to faster
turnaround time for analysis batches.

4 Implementation of Fixed-Length GARLI
Workunits

To implement this scheme, we divide each GARLI

analysis into at least three workunits: the initial
workunit, which performs the initial optimization
phase of the analysis; 1 to n main workunits, which
perform the bulk of the search; and the final worku-
nit, which performs the final optimization phase of
the analysis. As mentioned previously, checkpointing
is not available during the initial or final optimization
phases, so we are unable to precisely control the run-
time of the initial or final workunits. However, these
program phases are typically short, and do not account
for more than 10 % of the overall program execution
time. The main workunits, on the other hand, com-
prise the majority of the runtime, and their maximum
execution time can be precisely controlled.

To divide program execution into phases, a
workphasedivision option was added to GARLI

version 2.1. When workphasedivision=1,
GARLI automatically checkpoints and terminates
immediately after initial optimization is complete,
and immediately before final optimization begins.
Additionally, the stoptime parameter, which is a
positive number of seconds after which an analysis
should be terminated, was redefined in GARLI version
2.1 to be relative to the time an analysis was most
recently restarted, as opposed to its very beginning.
Thus, by setting stoptime=3600, for example,
one may cause a GARLI main workunit to termi-
nate after one hour of runtime. (Note: stoptime
is ignored during the initial and final optimization
phases.)

GARLI Checkpoint Files and BOINC Homogeneous
Redundancy Unfortunately, GARLI checkpoint files
are not portable between operating systems, and may
not even be portable between 32 bit and 64 bit vari-
ants of the same operating system. This presents a
major implementation obstacle, as one may not sim-
ply mix and match execution hosts indiscriminately.
To deal with this issue, we made use of a BOINC fea-
ture called homogeneous redundancy (HR), which was

originally developed to ensure that multiple instances
of the same workunit (termed result units) would run
on the same “class” of host. This guaranteed that
the numerical output from multiple result units would
match exactly, which was required to use a voting
scheme to verify that results were computed correctly.
Depending on how a particular application was com-
piled and what computations it performed, host classes
could be more or less broadly defined. Maximally
inclusive host classes are desirable because having
more hosts available to run any particular workunit
improves overall system throughput. BOINC currently
defines two HR types: a coarse-grained type in which
there are four host classes (Windows, Linux, Mac-
PowerPC, and Mac-Intel), and a fine-grained type in
which there are 80 host classes (four operating system
and 20 CPU types). For our testing, we enabled coarse-
grained HR for GARLI, along with a BOINC feature
called homogeneous app version (HAV) that ensured
consistent use of either the 32 bit or 64 bit version
of GARLI. These settings did not completely eliminate
errors related to checkpoint portability, but allowed
testing to proceed with a sufficiently low error rate
(less than 2 %).

With normal use of HR, each BOINC workunit may
have a different HR class; it is the various result units
associated with a particular workunit that must have
the same HR class. Thus, the HR class for a given
workunit is not usually determined until its first result
unit is assigned to a particular host. In our scheme,
the main and final workunits associated with a par-
ticular GARLI analysis must have the same HR class
as that of the initial workunit, so we needed to set
the HR class of the main and final workunits at the
time of their creation. To accomplish this, we used
a new argument to the BOINC create work pro-
gram. In addition, we added the hr class static
tag to the BOINC configuration file, which suppresses
the mechanism that clears the HR class of a worku-
nit if a result unit fails when there are no other
result units for that workunit in progress or already
completed.

Modifications to Grid System Components The
implementation of this scheme was relatively complex
and involved changes to several different grid system
components. The component that was the most heav-
ily modified was the BOINC job manager, the Perl
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script responsible for transforming a generic Globus
job description into appropriate BOINC workunits [2].
The BOINC job manager checks the GARLI con-
figuration file for workphasedivision=1; upon
finding it, the script creates the initial workunit and
writes three separate workunit templates and assim-
ilator scripts for the analysis, one for each workunit
type (initial, main, and final). The workunit templates
specify the input and output files for each worku-
nit, which vary depending on the workunit type; they
also specify that input and output files associated
with initial and main workunits are not allowed to be
deleted immediately after such workunits complete,
unlike files associated with regular GARLI workunits.
The appropriate assimilator script is invoked when
a workunit of a particular type completes success-
fully. The initial assimilator script sets restart=1
in the GARLI configuration file, which causes the main
and final workunits to restart from checkpoint files.
It also moves the checkpoint files and the standard
output (associated with the canonical result of the ini-
tial workunit) from the BOINC upload directory to the
download directory, so these can be used as additional
input files to the first main workunit. Finally, the initial
assimilator script creates the first main workunit using
the correct templates and other parameters, and sets
its HR class to that of the initial workunit. The main
assimilator script parses the GARLI log file to deter-
mine if the analysis is ready for final optimization; if
so, it creates the final workunit; if not, it creates the
next main workunit. The final assimilator script copies
the final output files to the location where Globus

expects them, removes all intermediate output files
that may be resident on disk from associated initial or
main workunits, and updates the BOINC database.

Numerous changes were made to other grid
system components as well; a few examples fol-
low. The BOINC scheduler event generator (SEG),
a Globus component that periodically queries the
BOINC database for the status of jobs [14], was mod-
ified to include final workunits in its queries, but to
exclude initial and main workunits from such queries.
The BOINC validator, a daemon that verifies that
GARLI results returned by BOINC clients include a
valid tree file [14], was modified to ignore results from
initial or main workunits. The BOINC assimilator, a
daemon that processes successfully completed worku-
nits [14], was modified so that the number of the main
workunit was passed to our custom assimilator scripts,
among other minor changes.

Although not discussed here in detail, we made
additional modifications to support analysis batches,
which allowed multiple initial workunits to be cre-
ated simultaneously and to be associated with one
another as a batch of analyses. Each initial workunit
still generates its own main and final workunits that
are tracked and updated independently of those asso-
ciated with other initial workunits in the batch. This
functionality allowed us to quickly and easily sub-
mit batches of thousands of workunits, which was the
order of magnitude required to properly evaluate the
performance of this scheme.

The development described up to this point
was sufficient to enable large-scale testing of the

Table 1 Attributes of large-scale BOINC tests of fixed-length vs. full-length GARLI workunits

Date of test Test type Result units Hosts granted Hosts Result units

per WU credita,b reportinga,b in progressa

14 Jan 2015 fixed-length one ∼ 1, 300 3,813 37

21 Jan 2015 full-length one ∼ 1, 325 3,755 26

31 Jan 2015 fixed-length one ∼ 1, 300 3,715 165

02 Feb 2015 full-length one ∼ 1, 400 3,724 123

05 Feb 2015 fixed-length two ∼ 1, 350 3,698 331

08 Feb 2015 full-length two ∼ 1, 420 3,732 145

13 Feb 2015 fixed-length two ∼ 1, 430 3,724 172

15 Feb 2015 full-length two ∼ 1, 480 3,695 134

aConditions at the time of submission
bTallied over the previous 30 days
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Fig. 2 Total analysis time, in hours, for fixed-length and full-
length analysis batches that used one result unit per workunit.
A cumulative distribution plot gives the proportion of analy-
ses completed by total analysis time, and a density plot gives

the density of analyses completed by total analysis time. Each
line shown is derived from a series of at most 2,000 points
(1,000 from each test replication), where each point represents
an individual GARLI analysis

fixed-length workunit paradigm, and to compare it to
the normal, “full-length” paradigm in which a single
BOINC workunit executes an entire GARLI analysis
from start to finish. We describe this testing in the
following sections.

5 Fixed-Length vs. Full-Length GARLI Workunit
Tests

We decided that a comparison of the new “fixed-
length workunit” paradigm to the standard “full-
length workunit” paradigm was best accomplished
with large-scale BOINC testing — i.e., we would

assess runtimes and other performance character-
istics using thousands of analyses, which would
exercise the BOINC client pool in a realistic man-
ner. For these tests, we analyzed an 82-taxon, 13-
mitochondrial-gene data set with GARLI using a codon
model. If uninterrupted, the runtime of this analy-
sis on an average computer was approximately 10
to 15 hours, and the 1024 MB memory require-
ment was low enough that the majority of clients
could participate. We used the following GARLI

settings: randseed=42; availablemem=1024;
and stopgen=30000. Additionally, for fixed-length
analyses, we set stoptime=3600, which caused
main workunits to terminate after one hour. BOINC

Fig. 3 Total analysis time, in hours, for fixed-length and full-
length analysis batches that used two result units per workunit.
A cumulative distribution plot gives the proportion of analy-
ses completed by total analysis time, and a density plot gives

the density of analyses completed by total analysis time. Each
line shown is derived from a series of at most 2,000 points
(1,000 from each test replication), where each point represents
an individual GARLI analysis
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Table 2 Results of large-scale BOINC tests of fixed-length vs. full-length GARLI workunits

Date of test Test type Result units Analyses included Mean analysis Median analysis Standard

per WU in results time (hr) time (hr) deviation (hr)

14 Jan 2015 fixed-length one 966 37.0 35.2 14.3

21 Jan 2015 full-length one 962 33.4 24.2 24.6

31 Jan 2015 fixed-length one 968 26.1 25.5 5.5

02 Feb 2015 full-length one 959 21.1 17.8 11.5

05 Feb 2015 fixed-length two 978 27.1 25.2 9.5

08 Feb 2015 full-length two 994 26.7 18.0 21.7

13 Feb 2015 fixed-length two 920 28.0 26.8 7.4

15 Feb 2015 full-length two 977 19.4 16.7 10.0

workunit wall clock deadlines were set to two days
for initial and final workunits, and six hours for main
workunits. Full-length workunits were given a dead-
line of one week, which roughly corresponded to the
total wall clock time allocated to fixed-length worku-
nit series (two days for the initial workunit, plus
six hours for each of approximately 12 main worku-
nits, plus two days for the final workunit). Each test
began with the submission of 1,000 workunits (either
1,000 initial workunits or 1,000 full-length worku-
nits). Other test attributes, including the date of the
test, the number of result units per workunit, and the
status of the hosts in the BOINC pool at the time of
submission are given in Table 1.

The purpose of this series of tests was, first
and foremost, to compare the performance of series
of fixed-length workunits to standard, full-length
workunits. Secondarily, we also sought to measure

the effect of using task replication, a strategy that
has been previously shown to be effective in improv-
ing grid performance [28]. Performance advantages of
task replication result from two associated properties:
i) increase in reliability as each additional replicate
decreases the probability of no result returning; and ii)
shorter time to completion because the first completed
result among replicates can be used immediately. A
cost of task replication is the waste associated with
not using later-arriving, but valid, results. Here we
examine the minimum possible task replication of two
result units per workunit. For each combination of
fixed-length or full-length, and one result unit or two
result units, we performed two large-scale tests to
increase the overall precision of our assessment; this
totaled eight tests (Table 1).

For evaluation purposes, we measured total analy-
sis time as follows. For a fixed-length workunit series,

Table 3 Attributes of large-scale BOINC tests to determine optimal-length GARLI workunits

Date of test Main WU Main WU Hosts granted Hosts Result units

length (minutes) deadline (minutes) credita,b reportinga,b in progressa

19 Feb 2015 30 180 ∼ 1, 460 3,687 233

22 Feb 2015 60 360 ∼ 1, 520 3,695 133

24 Feb 2015 120 720 ∼ 1, 580 3,707 123

26 Feb 2015 240 1,440 ∼ 1, 545 3,721 123

02 Mar 2015 240 1,440 ∼ 1, 620 3,776 24

05 Mar 2015 120 720 ∼ 1, 630 3,771 69

07 Mar 2015 60 360 ∼ 1, 630 3,772 45

10 Mar 2015 30 180 ∼ 1, 635 3,794 76

aConditions at the time of submission
bTallied over the previous 30 days
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Fig. 4 Total analysis time, in hours, for analysis batches of
different main workunit lengths. A cumulative distribution plot
gives the proportion of analyses completed by total analysis
time. Each line shown is derived from a series of at most 2,000
points (1,000 from each test replication), where each point
represents an individual GARLI analysis

total analysis time was measured as the time inter-
val beginning when the initial workunit was created,
and ending when valid results from the final workunit
were returned to our BOINC server. For a full-length
workunit, total analysis time was measured simply
as the time interval beginning when the workunit
was created, and ending when valid results from the
workunit were returned to our BOINC server. In Figs. 2
and 3, we compare the total analysis time of fixed-
length and full-length analysis batches; Fig. 2 includes
the tests that used one result unit per workunit, and
Fig. 3 includes the tests that used two result units per
workunit.

The one-result unit comparison (Fig. 2) shows the
general pattern that we expected to observe: the
variance in total analysis time is lower in the fixed-
length workunit scheme. Thus, while the fixed-length
scheme takes longer to complete ∼ 70 % of the
analyses, it completes all of its analyses ∼ 2.3× more
quickly than the equivalent number of full-length
analyses.

The effect of task replication, in this case doubling
the number of result units per workunit (Fig. 3), is also
apparent: the analysis batches complete more quickly,
as faster hosts in the pool are given the opportunity
to process more work. The effect is greatest for the
full-length analysis batches, which complete ∼ 3.3×
more quickly in the two-result unit tests. Comparing
the fixed-length scheme to the full-length scheme in
the two-result unit case, however, we observe a per-
formance pattern that is similar to the one-result unit
case, as the performance of the fixed-length scheme
begins to equal or outperform the full-length scheme
at a large proportion of analyses completed.

Thus, here we demonstrate two ways of improving
performance: i) using a series of fixed-length worku-
nits instead of a single full-length workunit, which
incurs no additional cost in terms of BOINC client
resources; and ii) using task replication by doubling
the number of result units per workunit, which incurs
twice the cost in BOINC client resources. Supporting
summary statistics for these tests are given in Table 2.

6 Optimal-Length GARLI Workunit Tests

The next round of large-scale tests was intended
to approximately determine an efficient length for
GARLI main workunits. For these tests, all of which

Table 4 Results of large-scale BOINC tests to determine optimal-length GARLI workunits

Date of test Main WU Main WU Analyses included Mean analysis Median analysis Standard

length (minutes) deadline (minutes) in results time (hr) time (hr) deviation (hr)

19 Feb 2015 30 180 896 35.3 34.8 10.2

22 Feb 2015 60 360 945 29.6 28.1 11.6

24 Feb 2015 120 720 898 30.6 29.9 12.3

26 Feb 2015 240 1,440 888 30.3 25.9 16.3

02 Mar 2015 240 1,440 964 32.5 30.4 16.1

05 Mar 2015 120 720 979 30.3 28.1 12.6

07 Mar 2015 60 360 963 33.7 32.1 13.8

10 Mar 2015 30 180 963 38.0 38.1 10.3
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Table 5 Attributes of final large-scale tests of fixed-length vs. full-length GARLI workunits

Date of test Test type Result units Hosts granted Hosts Result units

per WU credita,b reportinga,b in progressa

23 Mar 2015 full-length one ∼ 1, 610 3,865 3

31 Mar 2015 fixed-length one ∼ 1, 480 3,875 270

aConditions at the time of submission
bTallied over the previous 30 days

were fixed-length, we used the same 82-taxon, 13-
mitochondrial-gene data set as before, together with
the same GARLI settings, except that we varied
stoptime so as to test main workunit lengths of
30 minutes, 60 minutes, 120 minutes, and 240 min-
utes. As before, the wall clock deadline for initial
and final workunits was set to two days; for main
workunits, the deadline was scaled proportionally to
the main workunit length (Table 3). Each test began
with the submission of 1,000 initial workunits. Other
test attributes, including the date of the test, the main
workunit length and wall clock deadline, and the status
of the hosts in the BOINC pool at the time of sub-
mission are given in Table 3. For each main workunit
length evaluated, we performed two large-scale tests
to increase the overall precision of our assessment; this
totaled eight tests (Table 3).

For our evaluation, we measured total analysis time
as in our previous round of testing. Figure 4 compares
total analysis time of analysis batches of varying main
workunit lengths.

We observe, in general, that varying the main
workunit length does not impact the performance
characteristics of analysis batches especially greatly,
at least at the main workunit lengths we tested. As
before, we observe less variance in analysis time with
shorter main workunit lengths. Once we go as low
as 30 minutes, however, we notice some deleterious
effects of overhead associated with generating the
increased number of workunits and input files that
are required. Indeed, each successive halving of main
workunit runtime incurs twice as much file system and
database storage cost, and doubles the processing load
on our servers. Thus, as the 60-minute and 120-minute
runtimes performed comparably, we would choose a
main workunit runtime of 120 minutes (two hours)
to minimize overhead costs. A two-hour runtime is
certainly in keeping with our a priori expectation of
a reasonable main workunit length, an expectation
based on many years of interaction with our BOINC

volunteers. Supporting summary statistics for these
tests are given in Table 4.

Fig. 5 Total analysis time, in hours, for fixed-length and full-
length analysis batches. A cumulative distribution plot gives the
proportion of analyses completed by total analysis time, and a
density plot gives the density of analyses completed by total

analysis time. Each line shown is derived from a series of at
most 1,000 points, where each point represents an individual
GARLI analysis
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Table 6 Results of final large-scale tests of fixed-length vs. full-length GARLI workunits

Date of test Test type Result units Analyses included Mean analysis Median analysis Standard

per WU in results time (hr) time (hr) deviation (hr)

23 Mar 2015 full-length one 900 91.9 77.3 56.1

31 Mar 2015 fixed-length one 893 79.4 80.1 18.6

7 Final Fixed-Length vs. Full-Length GARLI
Workunit Test

The final round of large-scale tests was intended
to measure the performance of the fixed-length
scheme against the full-length scheme with a
longer GARLI analysis. For these tests, we used
the same 82-taxon, 13-mitochondrial-gene data
set as before, along with the same GARLI set-
tings, except that we set stopgen=60000 and
enforcetermconditions=0, which together
roughly doubled the length of the analysis. For the
fixed-length test, we set stoptime=7200, which
was the best-performing main workunit runtime
determined from the previous round of tests. BOINC

wall clock deadlines were set to two days for initial
and final workunits, and 12 hours for main workunits.
Full-length workunits were given a deadline of one
week. Each test began with the submission of 1,000
workunits (either 1,000 initial workunits or 1,000
full-length workunits). Other test attributes, including
the date of the test, the number of result units per
workunit, and the status of the hosts in the BOINC

pool at the time of submission are given in Table 5.
For our evaluation, we measured total analysis time

the same way as in our previous rounds of testing.
Figure 5 compares the total analysis time of fixed-
length and full-length analysis batches.

We observe the same pattern that we did in previous
tests: the variance in total analysis time is signifi-
cantly reduced in the fixed-length workunit test. Thus,
while the fixed-length scheme takes longer to com-
plete ∼ 50 % of the analyses, it completes all of its
analyses ∼ 1.8× more quickly than the equivalent
number of full-length analyses. Thus, we note that
the relative performance of the fixed-length paradigm
improves as overall analysis length increases. Sup-
porting summary statistics for these tests are given in
Table 6.

8 Conclusion

As the preceding test results demonstrate, the reduc-
tion in analysis time variance achieved by subdividing
long-running GARLI analyses into short, fixed-length
BOINC workunits results in faster completion times
for analysis batches. Furthermore, taking a number
of factors into consideration, we arrived at a best-
performing main workunit length of two hours. We
also demonstrated how the relative performance of
the fixed-length workunit scheme improves as overall
analysis length increases. Although with a highly het-
erogeneous pool of consumer-grade computers there
will always be some degree of variance in analysis
completion times, our results suggest that the heavy
tail on analysis batches (i.e., the straggler effect;
Fig. 1) can be substantially reduced by subdividing
analyses into short workunits. Furthermore, there is a
marked performance improvement with 2× task repli-
cation (Table 2; Fig. 2 cf. Fig. 3), although it requires
twice as much computation. We would expect these
results to generalize to other BOINC applications as
well. Thus, other BOINC projects, even those whose
applications checkpoint, may be motivated by these
results to shorten their workunits. In our case, we
are optimistic that this reduction in runtime variance,
along with strategies such as submitting more than the
required number of analyses and using the first results
that become available, will make BOINC a viable and
effective resource for processing GARLI web service
analyses.
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Kacsuk, P., Lovas, R.: Boosting gLite with cloud aug-
mented volunteer computing. Futur. Gener. Comput. Syst.
43–44, 12–23 (2015)

28. Kondo, D., Chien, A.A., Casanova, H.: Scheduling task par-
allel applications for rapid turnaround on enterprise desktop
grids. J. Grid Comput. 5(4), 379–405 (2007)


