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Abstract—The trend in life sciences research, particularly in 
molecular evolutionary systematics, is toward larger data sets 
and ever-more detailed evolutionary models, which can generate 
substantial computational loads. Over the past several years we 
have developed a grid computing system aimed at providing 
researchers the computational power needed to complete such 
analyses in a timely manner. Our grid system, known as The 
Lattice Project, was the first to combine two models of grid 
computing – the service model, which mainly federates large 
institutional HPC resources, and the desktop model, which 
harnesses the power of PCs volunteered by the general public. 
Recently we have developed a “science portal” style web interface 
that makes it easier than ever for phylogenetic analyses to be 
completed using GARLI, a popular program that uses a 
maximum likelihood method to infer the evolutionary history of 
organisms on the basis of genetic sequence data. This paper 
describes our approach to scheduling thousands of GARLI jobs 
with diverse requirements to heterogeneous grid resources, which 
include volunteer computers running BOINC software. A key 
component of this system provides a priori GARLI runtime 
estimates using machine learning with random forests. 

Keywords—volunteer computing; BOINC; grid computing; Globus; 
The Lattice Project; science portal; web interface; scheduling; 
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I. INTRODUCTION 
The trend in life sciences research, particularly in molecular 

evolutionary systematics, is toward larger data sets and 
ever-more detailed evolutionary models, which can generate 
substantial computational loads. In order to complete the many 
Assembling the Tree of Life (AToL) projects [1], we have been 
focused on providing investigators with the computational 
power required to complete phylogenetic analyses in a timely 
manner. Our grid system, known as The Lattice Project, was 
the first to combine two models of grid computing – the service 
model, which mainly federates large institutional HPC 
resources, and the desktop model, which harnesses the power 
of PCs volunteered by the general public [2]. The motivating 
idea is to utilize powerful dedicated institutional resources 
when it is convenient or advantageous to do so, but also to rely 
heavily on the abundance of freely available, otherwise idle 
volunteer computing resources. In this paper we will describe a 
new web interface for performing phylogenetic analyses, as 
well as sophisticated scheduling techniques that allow us to 
make efficient use of conventional computing resources in 

service grids as well as the dynamic, heterogeneous resources 
that make up desktop grids. First, however, we provide some 
background on the needs of AToL projects and others working 
in the field of molecular evolution; The Lattice Project, our 
grid computing system developed to address these needs; and 
GARLI, our featured phylogenetic analysis program. 

II. BACKGROUND 

A. Grid, Public, and GPU Computing for the Tree of Life 
Our research group has been charged specifically with 

developing a system that can be used by AToL projects and 
others to complete large phylogenetic analyses in a timely 
manner. Such analyses typically consist of a heuristic search 
through an inexhaustibly large multidimensional space. 
Programs that perform such analyses seek to improve speed 
(time to results), performance (quality of solutions), and 
include support for different evolutionary models. These 
programs can run for hours, weeks, or months depending on 
the size of the input data and the complexity of the model, and 
it is frequently necessary to perform multiple searches for the 
“best tree”, or solution with the highest likelihood, as well as 
hundreds or thousands of bootstrap searches which assess 
confidence in the best tree by sampling the original data with 
replacement [3]. Such jobs can also be memory intensive, 
requiring multiple gigabytes of memory. 

In order to process this massive amount of computation as 
quickly as possible, we leverage our grid computing system, 
which is composed of computing resources at the University of 
Maryland and neighboring institutions, as well as a dynamic 
pool of volunteer computing resources distributed throughout 
the world. These resources total well over 5000 CPU cores, and 
will scale up with demand. In addition to distributing the 
computation, we have also endeavored to speed up the analysis 
programs themselves. Hence, we have invested significant time 
developing BEAGLE (Broad-platform Evolutionary Analysis 
General Likelihood Evaluator) [4], a library that uses graphics 
processing units (GPUs) to speed up the likelihood calculations 
at the heart of most phylogenetic analysis programs. As we will 
describe further on, we have also emphasized building intuitive 
user interfaces to the system. Our system delivers all of the 
needed computational power to the research community, but is 
also feature-rich and easy to use. 



B. The Lattice Project 
The Lattice Project is a grid computing system that 

represents nearly a decade of work. Our first grid computing 
system built from commodity tools [5] completed a 15 CPU 
year simulation study of phylogenetic bootstrap and posterior 
probability values [6] in just a few months. Subsequent 
development yielded a system that combines multiple types of 
grid middleware (software that resides between the operating 
system and the applications). Specifically, our system allows 
grids based on Globus (the current state of the art in service 
grid middleware [7]) and on BOINC [8] to inter-operate [9], 
thus permitting incorporation of a much wider range of 
resources. BOINC (Berkeley Open Infrastructure for Network 
Computing) is open-source middleware designed for so-called 
public computing, i.e., grids incorporating computers 
volunteered by individuals, as in the well-known SETI@home 
project [10]. The current incarnation of our system, The Lattice 
Project [11], encompasses clusters, institutional desktops 
aggregated into Condor pools [12], and PCs using BOINC. It 
has been used recently in studies of conservation biology [13], 
pandemic influenza [14], human evolution [15], protein 
binding [16], quantifying lineage divergence [17], phylogenetic 
analyses of various organisms (e.g., Lepidoptera [18-20]; 
arthropods [21-22]; plants [23-34]; and rotifers [25]), and in 
total has performed computation in excess of 20,000 CPU 
years. Our BOINC project has involved 11,142 volunteers and 
23,192 public desktop computers in 121 different countries. 

C. GARLI 
GARLI (Genetic Algorithm for Rapid Likelihood 

Inference) is an open-source phylogenetic inference program 
that uses the maximum likelihood (ML) criterion. Actively 
developed by Derrick Zwickl [26, 27], it is loosely based on 
earlier genetic algorithm work by Paul Lewis [28]. GARLI 
uses an evolutionary algorithm to search for the likelihood 
optimum in the joint space of tree topologies, branch lengths 
and model parameter values. The program was developed with 
the goals of increasing both the speed of ML inference and the 
size of the datasets that can reasonably be analyzed. This is 
achieved primarily through algorithmic techniques that allow 
for accurate discrimination between trees while performing 
only a small fraction of the computation required by older 
methods. The program is being adapted to accommodate novel 
analysis features of AToL projects by allowing more data 
types, partitioned models, efficient analysis of incomplete data 
sets, and topological recombination. The GARLI service 
available through The Lattice Project allows a user to submit 
large numbers of GARLI jobs, which in turn execute on our 
grid resources. For BOINC, we developed a special version of 
GARLI that includes features such as checkpointing and 
BOINC client progress bar updates. 

III. GARLI WEB INTERFACE 
For several years, the primary means of grid job submission 

in our system was through a command line interface on a 
UNIX machine. We thought that since researchers were used to 
running these programs from the command line, interfacing 
with the grid this way would feel natural to them. Thus, grid 
users would upload input data to this UNIX machine, submit 

their jobs to a particular grid service, and download their 
results from this machine when the jobs were finished. We also 
provided utilities that allowed a user to query the status of jobs 
in the system, and cancel jobs that were no longer needed. 

The command line interface is still perfectly useable, but 
requires some basic knowledge of UNIX, which is an 
impediment for many biologists. Given the popularity of 
science portals such as CIPRES [29] and the Oslo Bioportal 
[30], we knew that a web-based interface to our services would 
generate considerably more interest, and would be easier for 
the majority of people to use. Hence, we developed software 
that takes an XML description of grid application arguments 
and options and automatically generates a Drupal [31] web 
interface for that application (Fig. 1). Building within the 
Drupal framework affords a number of advantages, such as 
built-in authentication and authorization, form validation, and 
easy theming and integration with other Drupal content. Drupal 
also has a large number of actively developed modules that 
provide additional functionality such as the ability to 
masquerade as other web site users, CAPTCHAs, and so on. 
We have developed our software as a Drupal module so others 
can plug it in to their Drupal site if they wish, and we intend to 
integrate our interface generation software with our lower-level 
Grid Services Generator [32] eventually. 

 

Figure 1. Screenshot of the GARLI web interface showing job creation at 
http://www.molecularevolution.org/software/phylogenetics/garli/garli_create_job. 



A. Using the GARLI Web Interface 
An investigator may use the GARLI web interface in a 

guest mode, in which they provide their email address for 
identification, or as a registered user which allows for more 
sophisticated job tracking features. The form allows one to 
upload any necessary input files (genetic sequence data, 
starting tree, or constraint file) and specify the desired 
application parameter settings. Our basic interface is similar to 
others in providing these features. What makes it uniquely 
powerful, however, is the ability to submit up to 2000 job 
replicates with a single submission. Before any jobs are 
scheduled, the system uses a special GARLI validation mode to 
ensure there are no problems with the data files and parameters 
specified. Each replicate is then scheduled to run in parallel on 
a separate processor in our grid system. The user is notified via 
email about important status updates (such as job completion or 
job failure). After all the job replicates are finished, the system 
automatically runs some post-processing on the results and 
makes them available in a single zip file for the user to 
download. 

B. The Power of Distributed Computing 
When a portal user submits a large number of jobs, the grid 

system breaks these up into smaller batches and may schedule 
each of these batches to a different grid computing resource. 
Whereas other science portals generally allow you to use only 
one processor or maybe a small handful, and often restrict how 
long a job may run for, our system currently has no such 
limitations. Eventually we may need to impose such limits on 
use, but on balance we expect to be able to offer significantly 
more computing power than other science portals. This is 
because we our resource base will automatically scale up to 
meet with demand by attracting more volunteer computers that 
run BOINC. The following section describes our grid resources 
in more detail. 

IV. GRID RESOURCES 
With regard to including resources, our approach is simple: 

we believe that there is a place for every computer to 
participate in a grid. We argue that the large heterogeneity in 
types of research problems is best met with heterogeneous 
computational resources. For example, some problems may 
require a closely coupled parallel computing environment (e.g., 
a cluster with low latency, high bandwidth interconnections 
between nodes). Other problems are easily broken up into 
wholly independent processes, the results of which can be 
united to form a composite result (e.g., a parameter sweep). 
These are often called “embarrassingly parallel” problems, and 
are appropriately handled by desktop computing resources. 
Hence, our system includes a variety of these resource types. 

Resource building is one of the principal activities 
associated with creating and expanding a grid system, and as 
such it has been one of our highest priorities. Beyond simply 
aggregating CPU power, resource building usually involves 
collaboration between different people and organizations. Such 
people may not know anything about grid computing, in which 
case we take the time to explain the goals of the project, the 
benefits of being involved with it, and the technical details that 

enable these groups to effectively contribute their local 
resources to the project. However, it is important to define what 
constitutes a local resource, how one can be created, and the 
policies and procedures that govern its use. 

We define a local resource as an established computing 
resource administered in one domain and capable of 
functioning independently from the grid system. Users of a 
local resource submit and monitor compute jobs using a local 
resource manager (LRM), often simply called a "scheduler". 
Pools of computers running Condor software or dedicated 
clusters running Portable Batch System (PBS) software are 
common local resources. A typical grid system contains a 
grid-level scheduler, which assigns a computational job 
submitted at the grid level to an eligible local resource, where 
the job is then subsequently scheduled locally. This sort of 
hierarchical functionality is what makes grid computing 
appealing: it is the ability to use many different resources 
simultaneously and efficiently, wherein the grid system handles 
user authentication and authorization, job scheduling and 
monitoring, and data placement. The Lattice Project provides 
these features, thus enabling researchers to perform a large 
amount of computation in a short amount of time without 
having to worry about low-level details. In addition, the user 
gains access to computational resources outside of their 
administrative domain. 

We have attempted to be all-inclusive with regard to the 
types of resources that can be integrated into our system. 
Currently we support resources federated with Condor, PBS, 
Sun Grid Engine (SGE) [33], or BOINC. Once a scheduler is 
installed on a local resource, that resource must be tied into the 
grid system by installing Globus components on a resource 
node that has the capability to submit jobs to the local 
scheduler. One of these components is called a scheduler 
adapter (formerly job manager). There exists a different 
scheduler adapter for each resource type. This is typically a 
collection of scripts responsible for translating a generic job 
description in Globus Resource Specification Language (RSL) 
or Job Submission Description Language (JSDL) format into a 
resource-specific job description (e.g., a Condor or PBS submit 
file). We have customized and extended the stock versions of 
the PBS and Condor adapters that come bundled with the 
Globus Toolkit, and have assembled an SGE adapter from 
various sources. We wrote our BOINC scheduler adapter 
completely from scratch. Another important resource-specific 
component is the scheduler provider, which collects 
information about the current state of a resource – e.g., number 
of free CPU cores, total RAM, total disk space, and so on. This 
information is used for job scheduling and monitoring. 

As for some specific details about our computing resources, 
we support three major computing platforms: Linux, Windows, 
and Mac OS. Four different institutions are currently tied in to 
The Lattice Project: University of Maryland, Bowie State 
University, Coppin State University, and the Smithsonian 
Institution. Our resources include four Condor pools, four 
computing clusters, and an international pool of BOINC 
clients. As users of the grid system increase, so will demand for 
resources. The BOINC client pool can easily grow to meet this 
demand, but it will be necessary to continue to seek out other 
resources and new institutional partners. These resources are 



already paid for; they are simply underutilized. Additionally, 
computing resources in a grid system with an intelligent 
grid-level scheduler are used more efficiently than if each 
resource was used independently. For example, jobs with large 
memory requirements can be sent to clusters with large 
memory nodes, and tightly coupled jobs (e.g., MPI jobs [34]) 
can be sent to clusters with fast interconnects. Pleasingly 
parallel jobs can be sent to a Condor or BOINC pool, and so 
on. The following section discusses grid-level scheduling in 
more detail. 

V. GRID-LEVEL SCHEDULING 
The scheduling component of any grid system is likely to 

be one of the most important and logically complex, since to a 
large extent it determines the overall efficiency of the system. 
This component is often called a meta-scheduler because it 
performs scheduling at the level above local resources. The 
scheduler must be informed about the present state of remote 
resources, a function performed by the Globus Monitoring and 
Discovery Service (MDS). For example, consider a Globus 
installation for which MDS has been configured to monitor the 
status of a Condor pool. In that case, the Condor scheduler 
provider will periodically parse the output of the Condor 
command “condor_status” to discover the total number of 
nodes in the pool, the number of nodes that are actually free 
(not bound to a machine owner or another computational 
process), and other information about the pool. This 
information is stored in XML format in the Globus container 
memory space and is valid for a short lifetime, typically on the 
order of minutes. The information in this MDS database can be 
periodically propagated to another MDS database running in 
another Globus container process. Using this mechanism, we 
aggregate all of the data about remote grid resources in a 
central MDS database, and query it to make scheduling 
decisions. Next we describe the scheduling algorithm in detail. 

A. General Scheduling Algorithm 
First, the scheduler needs to know which resources are 

reporting. If a remote installation goes offline, any jobs sent 
there will fail, so we cannot safely assume that our resources 
are always up and running. Thus, if we cease to receive MDS 
information from a certain resource, we mark the resource as 
“offline” and make sure no new jobs are scheduled there. Then 
the question becomes: of the resources that are reporting, to 
which one do we send a particular job? We recognize that a 
given job may not run on all resources, so the scheduler 
matches on various attributes to narrow down the possibilities. 
For example, the system keeps track of which CPU architecture 
and operating system combinations each application is 
compiled for (e.g., Intel/Mac OS X), and compares this list 
against the platforms each resource is advertising. Likewise, if 
the job has a minimum memory requirement, we filter out 
resources that do not meet the minimum memory criterion. 
Other resource requirements are also considered if necessary, 
such as MPI-capability and the presence or absence of software 
dependencies (e.g., Java). One can imagine any number of 
additional filtering and ranking criteria, especially around 
complex issues like policy – determining which users may 
access a particular resource, which users have priority over 

other users, when a particular resource may be used and for 
how long, and so on. We have not yet placed any such policy 
restrictions on resource use at the grid level, though it may be 
necessary to do so in the future. However, it is important to 
stress that when grid jobs run at the local resource level, they 
are always subject to the local policies that govern use of that 
resource by the local grid user account. 

From the final set of eligible resources, the scheduler 
chooses a resource based on three criteria: current load on the 
resource, resource speed, and resource stability. The scheduler 
attempts to keep jobs from backing up on any single resource 
by spreading work around fairly evenly; however, such a naïve 
algorithm does not use resources very efficiently because it 
does not take into account resource speed. We can correct for 
resource speed if we can somehow measure it consistently, 
which is challenging for large, heterogeneous, often dynamic 
computing resources. Our procedure for actually accomplishing 
this varies, but the basic method is to run a short GARLI job on 
each unique individual machine that is part of a resource, and 
average the runtimes we collect. We compare this averaged 
runtime to the runtime from a “reference computer”, which is 
arbitrarily assigned a speed of 1.0. If the job runs in half the 
time on the resource we are benchmarking, that resource is 
assigned a speed of 2.0 – in twice the time, a speed of 0.5 – and 
so forth. The final criterion, stability, refers to the likelihood 
that a particular job will be interrupted after some period of 
time. A “stable” resource will accommodate long-running jobs, 
whereas “unstable” resources will be suitable for shorter jobs. 
Thus, in order to choose a resource for a job, one must have an 
accurate, a priori job runtime estimate, which we discuss in the 
following section. 

VI. GARLI RUNTIME ESTIMATES WITH RANDOM FORESTS 

A. Motivation 
Having accurate GARLI runtimes in advance of actual job 

scheduling is essential for a number of reasons. First, as 
mentioned above, it prevents long-running jobs from ending up 
on a resource where they do not have a chance of completing. 
Interruptions can occur because of interference from human 
users or other computational processes, limits on resource use, 
technical failures, and a variety of other reasons. Currently we 
simply designate a resource as either stable, or unstable – if it is 
unstable, we do not send it jobs estimated to take longer than n 
hours, where n is currently set to 10. 

Second, having a runtime estimate allows us to deal with 
BOINC-specific scheduling issues. For example, we can 
programmatically specify reasonable workunit deadlines, 
which are needed on a volunteer computing platform to 
periodically reissue work if results are not received in a timely 
manner. To date, we have had to fill in this value manually for 
each batch of work we run through BOINC, which is not 
feasible if we wish to use public computing for the wide variety 
of GARLI jobs submitted via the web interface. In a similar 
vein, accurate runtime estimates allow the BOINC scheduler to 
hand out the proper amount of work when a client makes a 
work request, thus leading to greater efficiency since the client 
may not need to check in as often. 



Third, if we find that someone has submitted jobs that are 
very short, e.g. a few minutes, we can ratchet up the number of 
search replicates each individual GARLI job will perform. 
Otherwise, for very short running jobs, the overhead of 
submitting each one independently substantially and negatively 
impacts performance gains from parallelization. 

Fourth, in combination with other data, runtime estimates 
help us provide researchers with an idea of how long it will 
take for their jobs to complete, which is of great use in project 
planning and time management. 

B. Challenges and Solutions 
GARLI is a particularly challenging program to compute 

runtime estimates for. For one thing, the size of the input data 
can vary from modest (a few taxa, short sequences) to massive 
(hundreds or thousands of taxa, sequences thousands of 
characters in length). Furthermore, the program supports a 
variety of evolutionary models, some much more 
computationally intense than others. For example, amino acid 
and codon models tend to take substantially longer than 
nucleotide models to analyze the same data. Finally, since the 
program is genetic algorithm-like, there are numerous options 
for controlling the behavior of the algorithm itself that can have 
an impact on runtime. Our solution is to isolate all of the 
variables of interest and let a machine learning algorithm 
estimate, for a particular combination of input parameters, how 
long the job is going to take based on training data collected 
from previous GARLI runs. There are many machine learning 
methods for classification and regression [35]. The particular 
method we use is random forests, which we provide additional 
background on in the following section. The runtime estimate 
provided by the random forests model is scaled by the resource 
speed value described previously. This approach is in contrast 
to machine learning techniques for runtime prediction that are 
based solely on historical workload traces [36, 37].  

An alternative to computing runtime estimates would be to 
modify GARLI to terminate after a predetermined period of 
time (e.g., one hour). After the job terminates, intermediate 
output would be collected and a new job would be sent out, 
picking up at the point where the previous job had left off via a 
checkpointing mechanism. We intend to explore this approach 
eventually, but we anticipate significant overhead resulting 
from terminating jobs and rescheduling them, and moving large 
amounts of data around in this process. 

C. Random Forests 
Random forests [38-41] is a machine learning technique 

developed by Breiman and Cutler to perform classification and 
regression using an ensemble of tree-based statistical models 
(hence, “forest”) instead of just one, thus producing more 
accurate results. Final predictions are obtained by a voting 
scheme using the ensemble. Bagging [38] is an early example 
of this technique in which each tree is constructed from a 
bootstrap sample [42] drawn with replacement from the 
training data. Bagging reduces prediction error for unstable 
predictors, such as trees, by reducing the variance through 
averaging [38, 43]. Minimizing the correlation between the 
quantities being averaged can favorably enhance this effect, so 

random forests seek to effect such correlation reduction by a 
further injection of randomness. Instead of determining the 
optimal split of a given node of a constituent tree by evaluating 
all allowable splits on all covariates, as is done with single tree 
methods or bagging, a subset of the covariates drawn at random 
is employed. Breiman [40, 41] argues that random forests (a) 
display exceptional prediction accuracy, (b) that this accuracy 
is attained for a wide range of settings of the single tuning 
parameter employed, and (c) that overfitting does not arise due 
to the independent generation of ensemble members. 

To estimate GARLI runtimes, we generated random forests 
made up of 1 × 104  individual trees constructed by 
sub-sampling nine predictor variables at each node. Variable 
importance was assessed by measuring the increase in group 
purity when partitioning data based on a variable. We used the 
R package randomForest [44, 45]. 

D. Model Building 
In order to construct a model with random forests, it is 

necessary to decide which analysis parameters will be included. 
Based on a combination of our experience using GARLI, 
program documentation, and correspondence with the program 
author, we isolated all of the parameters that could possibly 
affect runtime, and excluded those that we do not allow users to 
modify via the GARLI web interface. Unlike other machine 
learning methods, random forests do not require variable 

Figure 2. Importance of phylogenetic analysis parameters in predicting 
GARLI runtime as determined by random forest analysis and measured in 
terms of percent increase in mean square error. 

 

 



(attribute) selection. Rather, they allow use of all possible 
variables, and the importance of each variable is quantified. 
This is illustrated in our model where the most important 
analysis parameter affecting runtime is use of a substitution 
rate heterogeneity model, with a difference in mean square 
error of 89.7%, followed by data type (nucleotide, amino acid, 
or codon) at 72.4%. In contrast, the number of rate categories 
has almost no importance. All analysis parameters and their 
effect on runtime prediction, as measured by percent increase 
in mean square error, are shown in Figure 2. 

Approximately 150 GARLI jobs were used as training data; 
these represent a great diversity of “real” jobs that had been 
previously submitted by researchers using the grid system. The 
values of the nine predictor variables were recorded from each 
job, along with runtime, the response variable (measured in 
seconds). These values were arranged in a matrix and used to 
build a model with randomForest, which for this amount of 
data takes very little time to compute. The percentage of 
variance explained by these nine variables is approximately 
93%, an excellent result. The model itself, stored as an R 
object, can subsequently be used to make a runtime prediction 
for a new set of predictor values. In our cross-validation 
testing, predicted runtimes matched the actual runtimes closely 
enough to greatly improve scheduling effectiveness. Because 
the model is an ensemble of 1 × 104  individual regression trees, 
it is not easily depicted here. 

It should now be clear why random forests is a reasonable 
choice for this problem: (a) its runtime estimation performance 
is excellent, (b) it automatically produces a measure of variable 
importance, which allows us to better understand how 
parameters impact runtime, (c) it easily incorporates categorical 
and continuous variables in the analysis, and (d) it does not 
take much computational time to build or update the model. 

E. Integration with the Grid-level Scheduler 
After building the model, we programmed the system to use 

the model to produce a runtime estimate for each GARLI job 
submitted. More specifically, the system collects the values of 
the nine predictor variables and produces a runtime estimate 
via the predict() function in the randomForest package. This 
runtime estimate is subsequently used to do the things 
mentioned previously: (a) determine whether to send this job to 
a stable or unstable resource, scaling the runtime estimate used 
to make this decision by the speed of each resource, (b) give an 
accurate BOINC runtime estimate and wall clock deadline, (c) 
increase the number of search replicates in the case of very 
short-running jobs, and (d) provide the researcher a time 
estimate of how long it will take their submission to complete.   

Since our training data did not cover the entire spectrum of 
possible values for the nine predictor values, and since GARLI 
itself is under constant development, we would like to 
continuously update the model based on information collected 
from incoming jobs. To do this, we simply fork off a single job 
replicate on our reference computer, which is actually a cluster 
of homogeneous machines, and add the observed runtime and 
values of the predictor variables to the matrix we use to build 
the model. Then we simply rebuild the model, which is 

immediately available for use with incoming jobs. In this 
manner the model is continually improved. 

VII. CONCLUSION 
We have described various aspects of The Lattice Project, a 

grid computing system specializing in molecular phylogenetic 
analyses. In particular, we have described a web interface that 
allows researchers to submit large numbers of GARLI jobs 
quickly and easily; the computing resources those jobs run on; 
and mechanisms for scheduling those jobs. Finally, we have 
described a novel method that produces runtime estimates for 
GARLI jobs using random forests. Such runtime estimates are 
critical in order to use our grid computing resources efficiently. 
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