
Computing the Tree of Life
Leveraging the Power of Desktop and Service Grids

Adam L. Bazinet and Michael P. Cummings
Center for Bioinformatics and Computational Biology

University of Maryland
College Park, MD 20742 USA

pknut777@umiacs.umd.edu, mike@umiacs.umd.edu

Abstract—The trend in life sciences research, particularly in
molecular evolutionary systematics, is toward larger data sets
and ever-more detailed evolutionary models, which can generate
substantial computational loads. Over the past several years we
have developed a grid computing system aimed at providing
researchers the computational power needed to complete such
analyses in a timely manner. Our grid system, known as The
Lattice Project, was the first to combine two models of grid
computing – the service model, which mainly federates large
institutional HPC resources, and the desktop model, which
harnesses the power of PCs volunteered by the general public.
Recently we have developed a “science portal” style web interface
that makes it easier than ever for phylogenetic analyses to be
completed using GARLI, a popular program that uses a
maximum likelihood method to infer the evolutionary history of
organisms on the basis of genetic sequence data. This paper
describes our approach to scheduling thousands of GARLI jobs
with diverse requirements to heterogeneous grid resources, which
include volunteer computers running BOINC software. A key
component of this system provides a priori GARLI runtime
estimates using machine learning with random forests.

Keywords—volunteer computing; BOINC; grid computing; Globus;
The Lattice Project; science portal; web interface; scheduling;
phylogenetics; GARLI; random forests.

I. INTRODUCTION
The trend in life sciences research, particularly in molecular

evolutionary systematics, is toward larger data sets and
ever-more detailed evolutionary models, which can generate
substantial computational loads. In order to complete the many
Assembling the Tree of Life (AToL) projects [1], we have been
focused on providing investigators with the computational
power required to complete phylogenetic analyses in a timely
manner. Our grid system, known as The Lattice Project, was
the first to combine two models of grid computing – the service
model, which mainly federates large institutional HPC
resources, and the desktop model, which harnesses the power
of PCs volunteered by the general public [2]. The motivating
idea is to utilize powerful dedicated institutional resources
when it is convenient or advantageous to do so, but also to rely
heavily on the abundance of freely available, otherwise idle
volunteer computing resources. In this paper we will describe a
new web interface for performing phylogenetic analyses, as
well as sophisticated scheduling techniques that allow us to
make efficient use of conventional computing resources in

service grids as well as the dynamic, heterogeneous resources
that make up desktop grids. First, however, we provide some
background on the needs of AToL projects and others working
in the field of molecular evolution; The Lattice Project, our
grid computing system developed to address these needs; and
GARLI, our featured phylogenetic analysis program.

II. BACKGROUND

A. Grid, Public, and GPU Computing for the Tree of Life
Our research group has been charged specifically with

developing a system that can be used by AToL projects and
others to complete large phylogenetic analyses in a timely
manner. Such analyses typically consist of a heuristic search
through an inexhaustibly large multidimensional space.
Programs that perform such analyses seek to improve speed
(time to results), performance (quality of solutions), and
include support for different evolutionary models. These
programs can run for hours, weeks, or months depending on
the size of the input data and the complexity of the model, and
it is frequently necessary to perform multiple searches for the
“best tree”, or solution with the highest likelihood, as well as
hundreds or thousands of bootstrap searches which assess
confidence in the best tree by sampling the original data with
replacement [3]. Such jobs can also be memory intensive,
requiring multiple gigabytes of memory.

In order to process this massive amount of computation as
quickly as possible, we leverage our grid computing system,
which is composed of computing resources at the University of
Maryland and neighboring institutions, as well as a dynamic
pool of volunteer computing resources distributed throughout
the world. These resources total well over 5000 CPU cores, and
will scale up with demand. In addition to distributing the
computation, we have also endeavored to speed up the analysis
programs themselves. Hence, we have invested significant time
developing BEAGLE (Broad-platform Evolutionary Analysis
General Likelihood Evaluator) [4], a library that uses graphics
processing units (GPUs) to speed up the likelihood calculations
at the heart of most phylogenetic analysis programs. As we will
describe further on, we have also emphasized building intuitive
user interfaces to the system. Our system delivers all of the
needed computational power to the research community, but is
also feature-rich and easy to use.

B. The Lattice Project
The Lattice Project is a grid computing system that

represents nearly a decade of work. Our first grid computing
system built from commodity tools [5] completed a 15 CPU
year simulation study of phylogenetic bootstrap and posterior
probability values [6] in just a few months. Subsequent
development yielded a system that combines multiple types of
grid middleware (software that resides between the operating
system and the applications). Specifically, our system allows
grids based on Globus (the current state of the art in service
grid middleware [7]) and on BOINC [8] to inter-operate [9],
thus permitting incorporation of a much wider range of
resources. BOINC (Berkeley Open Infrastructure for Network
Computing) is open-source middleware designed for so-called
public computing, i.e., grids incorporating computers
volunteered by individuals, as in the well-known SETI@home
project [10]. The current incarnation of our system, The Lattice
Project [11], encompasses clusters, institutional desktops
aggregated into Condor pools [12], and PCs using BOINC. It
has been used recently in studies of conservation biology [13],
pandemic influenza [14], human evolution [15], protein
binding [16], quantifying lineage divergence [17], phylogenetic
analyses of various organisms (e.g., Lepidoptera [18-20];
arthropods [21-22]; plants [23-34]; and rotifers [25]), and in
total has performed computation in excess of 20,000 CPU
years. Our BOINC project has involved 11,142 volunteers and
23,192 public desktop computers in 121 different countries.

C. GARLI
GARLI (Genetic Algorithm for Rapid Likelihood

Inference) is an open-source phylogenetic inference program
that uses the maximum likelihood (ML) criterion. Actively
developed by Derrick Zwickl [26, 27], it is loosely based on
earlier genetic algorithm work by Paul Lewis [28]. GARLI
uses an evolutionary algorithm to search for the likelihood
optimum in the joint space of tree topologies, branch lengths
and model parameter values. The program was developed with
the goals of increasing both the speed of ML inference and the
size of the datasets that can reasonably be analyzed. This is
achieved primarily through algorithmic techniques that allow
for accurate discrimination between trees while performing
only a small fraction of the computation required by older
methods. The program is being adapted to accommodate novel
analysis features of AToL projects by allowing more data
types, partitioned models, efficient analysis of incomplete data
sets, and topological recombination. The GARLI service
available through The Lattice Project allows a user to submit
large numbers of GARLI jobs, which in turn execute on our
grid resources. For BOINC, we developed a special version of
GARLI that includes features such as checkpointing and
BOINC client progress bar updates.

III. GARLI WEB INTERFACE
For several years, the primary means of grid job submission

in our system was through a command line interface on a
UNIX machine. We thought that since researchers were used to
running these programs from the command line, interfacing
with the grid this way would feel natural to them. Thus, grid
users would upload input data to this UNIX machine, submit

their jobs to a particular grid service, and download their
results from this machine when the jobs were finished. We also
provided utilities that allowed a user to query the status of jobs
in the system, and cancel jobs that were no longer needed.

The command line interface is still perfectly useable, but
requires some basic knowledge of UNIX, which is an
impediment for many biologists. Given the popularity of
science portals such as CIPRES [29] and the Oslo Bioportal
[30], we knew that a web-based interface to our services would
generate considerably more interest, and would be easier for
the majority of people to use. Hence, we developed software
that takes an XML description of grid application arguments
and options and automatically generates a Drupal [31] web
interface for that application (Fig. 1). Building within the
Drupal framework affords a number of advantages, such as
built-in authentication and authorization, form validation, and
easy theming and integration with other Drupal content. Drupal
also has a large number of actively developed modules that
provide additional functionality such as the ability to
masquerade as other web site users, CAPTCHAs, and so on.
We have developed our software as a Drupal module so others
can plug it in to their Drupal site if they wish, and we intend to
integrate our interface generation software with our lower-level
Grid Services Generator [32] eventually.

Figure 1. Screenshot of the GARLI web interface showing job creation at
http://www.molecularevolution.org/software/phylogenetics/garli/garli_create_job.

A. Using the GARLI Web Interface
An investigator may use the GARLI web interface in a

guest mode, in which they provide their email address for
identification, or as a registered user which allows for more
sophisticated job tracking features. The form allows one to
upload any necessary input files (genetic sequence data,
starting tree, or constraint file) and specify the desired
application parameter settings. Our basic interface is similar to
others in providing these features. What makes it uniquely
powerful, however, is the ability to submit up to 2000 job
replicates with a single submission. Before any jobs are
scheduled, the system uses a special GARLI validation mode to
ensure there are no problems with the data files and parameters
specified. Each replicate is then scheduled to run in parallel on
a separate processor in our grid system. The user is notified via
email about important status updates (such as job completion or
job failure). After all the job replicates are finished, the system
automatically runs some post-processing on the results and
makes them available in a single zip file for the user to
download.

B. The Power of Distributed Computing
When a portal user submits a large number of jobs, the grid

system breaks these up into smaller batches and may schedule
each of these batches to a different grid computing resource.
Whereas other science portals generally allow you to use only
one processor or maybe a small handful, and often restrict how
long a job may run for, our system currently has no such
limitations. Eventually we may need to impose such limits on
use, but on balance we expect to be able to offer significantly
more computing power than other science portals. This is
because we our resource base will automatically scale up to
meet with demand by attracting more volunteer computers that
run BOINC. The following section describes our grid resources
in more detail.

IV. GRID RESOURCES
With regard to including resources, our approach is simple:

we believe that there is a place for every computer to
participate in a grid. We argue that the large heterogeneity in
types of research problems is best met with heterogeneous
computational resources. For example, some problems may
require a closely coupled parallel computing environment (e.g.,
a cluster with low latency, high bandwidth interconnections
between nodes). Other problems are easily broken up into
wholly independent processes, the results of which can be
united to form a composite result (e.g., a parameter sweep).
These are often called “embarrassingly parallel” problems, and
are appropriately handled by desktop computing resources.
Hence, our system includes a variety of these resource types.

Resource building is one of the principal activities
associated with creating and expanding a grid system, and as
such it has been one of our highest priorities. Beyond simply
aggregating CPU power, resource building usually involves
collaboration between different people and organizations. Such
people may not know anything about grid computing, in which
case we take the time to explain the goals of the project, the
benefits of being involved with it, and the technical details that

enable these groups to effectively contribute their local
resources to the project. However, it is important to define what
constitutes a local resource, how one can be created, and the
policies and procedures that govern its use.

We define a local resource as an established computing
resource administered in one domain and capable of
functioning independently from the grid system. Users of a
local resource submit and monitor compute jobs using a local
resource manager (LRM), often simply called a "scheduler".
Pools of computers running Condor software or dedicated
clusters running Portable Batch System (PBS) software are
common local resources. A typical grid system contains a
grid-level scheduler, which assigns a computational job
submitted at the grid level to an eligible local resource, where
the job is then subsequently scheduled locally. This sort of
hierarchical functionality is what makes grid computing
appealing: it is the ability to use many different resources
simultaneously and efficiently, wherein the grid system handles
user authentication and authorization, job scheduling and
monitoring, and data placement. The Lattice Project provides
these features, thus enabling researchers to perform a large
amount of computation in a short amount of time without
having to worry about low-level details. In addition, the user
gains access to computational resources outside of their
administrative domain.

We have attempted to be all-inclusive with regard to the
types of resources that can be integrated into our system.
Currently we support resources federated with Condor, PBS,
Sun Grid Engine (SGE) [33], or BOINC. Once a scheduler is
installed on a local resource, that resource must be tied into the
grid system by installing Globus components on a resource
node that has the capability to submit jobs to the local
scheduler. One of these components is called a scheduler
adapter (formerly job manager). There exists a different
scheduler adapter for each resource type. This is typically a
collection of scripts responsible for translating a generic job
description in Globus Resource Specification Language (RSL)
or Job Submission Description Language (JSDL) format into a
resource-specific job description (e.g., a Condor or PBS submit
file). We have customized and extended the stock versions of
the PBS and Condor adapters that come bundled with the
Globus Toolkit, and have assembled an SGE adapter from
various sources. We wrote our BOINC scheduler adapter
completely from scratch. Another important resource-specific
component is the scheduler provider, which collects
information about the current state of a resource – e.g., number
of free CPU cores, total RAM, total disk space, and so on. This
information is used for job scheduling and monitoring.

As for some specific details about our computing resources,
we support three major computing platforms: Linux, Windows,
and Mac OS. Four different institutions are currently tied in to
The Lattice Project: University of Maryland, Bowie State
University, Coppin State University, and the Smithsonian
Institution. Our resources include four Condor pools, four
computing clusters, and an international pool of BOINC
clients. As users of the grid system increase, so will demand for
resources. The BOINC client pool can easily grow to meet this
demand, but it will be necessary to continue to seek out other
resources and new institutional partners. These resources are

already paid for; they are simply underutilized. Additionally,
computing resources in a grid system with an intelligent
grid-level scheduler are used more efficiently than if each
resource was used independently. For example, jobs with large
memory requirements can be sent to clusters with large
memory nodes, and tightly coupled jobs (e.g., MPI jobs [34])
can be sent to clusters with fast interconnects. Pleasingly
parallel jobs can be sent to a Condor or BOINC pool, and so
on. The following section discusses grid-level scheduling in
more detail.

V. GRID-LEVEL SCHEDULING
The scheduling component of any grid system is likely to

be one of the most important and logically complex, since to a
large extent it determines the overall efficiency of the system.
This component is often called a meta-scheduler because it
performs scheduling at the level above local resources. The
scheduler must be informed about the present state of remote
resources, a function performed by the Globus Monitoring and
Discovery Service (MDS). For example, consider a Globus
installation for which MDS has been configured to monitor the
status of a Condor pool. In that case, the Condor scheduler
provider will periodically parse the output of the Condor
command “condor_status” to discover the total number of
nodes in the pool, the number of nodes that are actually free
(not bound to a machine owner or another computational
process), and other information about the pool. This
information is stored in XML format in the Globus container
memory space and is valid for a short lifetime, typically on the
order of minutes. The information in this MDS database can be
periodically propagated to another MDS database running in
another Globus container process. Using this mechanism, we
aggregate all of the data about remote grid resources in a
central MDS database, and query it to make scheduling
decisions. Next we describe the scheduling algorithm in detail.

A. General Scheduling Algorithm
First, the scheduler needs to know which resources are

reporting. If a remote installation goes offline, any jobs sent
there will fail, so we cannot safely assume that our resources
are always up and running. Thus, if we cease to receive MDS
information from a certain resource, we mark the resource as
“offline” and make sure no new jobs are scheduled there. Then
the question becomes: of the resources that are reporting, to
which one do we send a particular job? We recognize that a
given job may not run on all resources, so the scheduler
matches on various attributes to narrow down the possibilities.
For example, the system keeps track of which CPU architecture
and operating system combinations each application is
compiled for (e.g., Intel/Mac OS X), and compares this list
against the platforms each resource is advertising. Likewise, if
the job has a minimum memory requirement, we filter out
resources that do not meet the minimum memory criterion.
Other resource requirements are also considered if necessary,
such as MPI-capability and the presence or absence of software
dependencies (e.g., Java). One can imagine any number of
additional filtering and ranking criteria, especially around
complex issues like policy – determining which users may
access a particular resource, which users have priority over

other users, when a particular resource may be used and for
how long, and so on. We have not yet placed any such policy
restrictions on resource use at the grid level, though it may be
necessary to do so in the future. However, it is important to
stress that when grid jobs run at the local resource level, they
are always subject to the local policies that govern use of that
resource by the local grid user account.

From the final set of eligible resources, the scheduler
chooses a resource based on three criteria: current load on the
resource, resource speed, and resource stability. The scheduler
attempts to keep jobs from backing up on any single resource
by spreading work around fairly evenly; however, such a naïve
algorithm does not use resources very efficiently because it
does not take into account resource speed. We can correct for
resource speed if we can somehow measure it consistently,
which is challenging for large, heterogeneous, often dynamic
computing resources. Our procedure for actually accomplishing
this varies, but the basic method is to run a short GARLI job on
each unique individual machine that is part of a resource, and
average the runtimes we collect. We compare this averaged
runtime to the runtime from a “reference computer”, which is
arbitrarily assigned a speed of 1.0. If the job runs in half the
time on the resource we are benchmarking, that resource is
assigned a speed of 2.0 – in twice the time, a speed of 0.5 – and
so forth. The final criterion, stability, refers to the likelihood
that a particular job will be interrupted after some period of
time. A “stable” resource will accommodate long-running jobs,
whereas “unstable” resources will be suitable for shorter jobs.
Thus, in order to choose a resource for a job, one must have an
accurate, a priori job runtime estimate, which we discuss in the
following section.

VI. GARLI RUNTIME ESTIMATES WITH RANDOM FORESTS

A. Motivation
Having accurate GARLI runtimes in advance of actual job

scheduling is essential for a number of reasons. First, as
mentioned above, it prevents long-running jobs from ending up
on a resource where they do not have a chance of completing.
Interruptions can occur because of interference from human
users or other computational processes, limits on resource use,
technical failures, and a variety of other reasons. Currently we
simply designate a resource as either stable, or unstable – if it is
unstable, we do not send it jobs estimated to take longer than n
hours, where n is currently set to 10.

Second, having a runtime estimate allows us to deal with
BOINC-specific scheduling issues. For example, we can
programmatically specify reasonable workunit deadlines,
which are needed on a volunteer computing platform to
periodically reissue work if results are not received in a timely
manner. To date, we have had to fill in this value manually for
each batch of work we run through BOINC, which is not
feasible if we wish to use public computing for the wide variety
of GARLI jobs submitted via the web interface. In a similar
vein, accurate runtime estimates allow the BOINC scheduler to
hand out the proper amount of work when a client makes a
work request, thus leading to greater efficiency since the client
may not need to check in as often.

Third, if we find that someone has submitted jobs that are
very short, e.g. a few minutes, we can ratchet up the number of
search replicates each individual GARLI job will perform.
Otherwise, for very short running jobs, the overhead of
submitting each one independently substantially and negatively
impacts performance gains from parallelization.

Fourth, in combination with other data, runtime estimates
help us provide researchers with an idea of how long it will
take for their jobs to complete, which is of great use in project
planning and time management.

B. Challenges and Solutions
GARLI is a particularly challenging program to compute

runtime estimates for. For one thing, the size of the input data
can vary from modest (a few taxa, short sequences) to massive
(hundreds or thousands of taxa, sequences thousands of
characters in length). Furthermore, the program supports a
variety of evolutionary models, some much more
computationally intense than others. For example, amino acid
and codon models tend to take substantially longer than
nucleotide models to analyze the same data. Finally, since the
program is genetic algorithm-like, there are numerous options
for controlling the behavior of the algorithm itself that can have
an impact on runtime. Our solution is to isolate all of the
variables of interest and let a machine learning algorithm
estimate, for a particular combination of input parameters, how
long the job is going to take based on training data collected
from previous GARLI runs. There are many machine learning
methods for classification and regression [35]. The particular
method we use is random forests, which we provide additional
background on in the following section. The runtime estimate
provided by the random forests model is scaled by the resource
speed value described previously. This approach is in contrast
to machine learning techniques for runtime prediction that are
based solely on historical workload traces [36, 37].

An alternative to computing runtime estimates would be to
modify GARLI to terminate after a predetermined period of
time (e.g., one hour). After the job terminates, intermediate
output would be collected and a new job would be sent out,
picking up at the point where the previous job had left off via a
checkpointing mechanism. We intend to explore this approach
eventually, but we anticipate significant overhead resulting
from terminating jobs and rescheduling them, and moving large
amounts of data around in this process.

C. Random Forests
Random forests [38-41] is a machine learning technique

developed by Breiman and Cutler to perform classification and
regression using an ensemble of tree-based statistical models
(hence, “forest”) instead of just one, thus producing more
accurate results. Final predictions are obtained by a voting
scheme using the ensemble. Bagging [38] is an early example
of this technique in which each tree is constructed from a
bootstrap sample [42] drawn with replacement from the
training data. Bagging reduces prediction error for unstable
predictors, such as trees, by reducing the variance through
averaging [38, 43]. Minimizing the correlation between the
quantities being averaged can favorably enhance this effect, so

random forests seek to effect such correlation reduction by a
further injection of randomness. Instead of determining the
optimal split of a given node of a constituent tree by evaluating
all allowable splits on all covariates, as is done with single tree
methods or bagging, a subset of the covariates drawn at random
is employed. Breiman [40, 41] argues that random forests (a)
display exceptional prediction accuracy, (b) that this accuracy
is attained for a wide range of settings of the single tuning
parameter employed, and (c) that overfitting does not arise due
to the independent generation of ensemble members.

To estimate GARLI runtimes, we generated random forests
made up of 1 × 104 individual trees constructed by
sub-sampling nine predictor variables at each node. Variable
importance was assessed by measuring the increase in group
purity when partitioning data based on a variable. We used the
R package randomForest [44, 45].

D. Model Building
In order to construct a model with random forests, it is

necessary to decide which analysis parameters will be included.
Based on a combination of our experience using GARLI,
program documentation, and correspondence with the program
author, we isolated all of the parameters that could possibly
affect runtime, and excluded those that we do not allow users to
modify via the GARLI web interface. Unlike other machine
learning methods, random forests do not require variable

Figure 2. Importance of phylogenetic analysis parameters in predicting
GARLI runtime as determined by random forest analysis and measured in
terms of percent increase in mean square error.

(attribute) selection. Rather, they allow use of all possible
variables, and the importance of each variable is quantified.
This is illustrated in our model where the most important
analysis parameter affecting runtime is use of a substitution
rate heterogeneity model, with a difference in mean square
error of 89.7%, followed by data type (nucleotide, amino acid,
or codon) at 72.4%. In contrast, the number of rate categories
has almost no importance. All analysis parameters and their
effect on runtime prediction, as measured by percent increase
in mean square error, are shown in Figure 2.

Approximately 150 GARLI jobs were used as training data;
these represent a great diversity of “real” jobs that had been
previously submitted by researchers using the grid system. The
values of the nine predictor variables were recorded from each
job, along with runtime, the response variable (measured in
seconds). These values were arranged in a matrix and used to
build a model with randomForest, which for this amount of
data takes very little time to compute. The percentage of
variance explained by these nine variables is approximately
93%, an excellent result. The model itself, stored as an R
object, can subsequently be used to make a runtime prediction
for a new set of predictor values. In our cross-validation
testing, predicted runtimes matched the actual runtimes closely
enough to greatly improve scheduling effectiveness. Because
the model is an ensemble of 1 × 104 individual regression trees,
it is not easily depicted here.

It should now be clear why random forests is a reasonable
choice for this problem: (a) its runtime estimation performance
is excellent, (b) it automatically produces a measure of variable
importance, which allows us to better understand how
parameters impact runtime, (c) it easily incorporates categorical
and continuous variables in the analysis, and (d) it does not
take much computational time to build or update the model.

E. Integration with the Grid-level Scheduler
After building the model, we programmed the system to use

the model to produce a runtime estimate for each GARLI job
submitted. More specifically, the system collects the values of
the nine predictor variables and produces a runtime estimate
via the predict() function in the randomForest package. This
runtime estimate is subsequently used to do the things
mentioned previously: (a) determine whether to send this job to
a stable or unstable resource, scaling the runtime estimate used
to make this decision by the speed of each resource, (b) give an
accurate BOINC runtime estimate and wall clock deadline, (c)
increase the number of search replicates in the case of very
short-running jobs, and (d) provide the researcher a time
estimate of how long it will take their submission to complete.

Since our training data did not cover the entire spectrum of
possible values for the nine predictor values, and since GARLI
itself is under constant development, we would like to
continuously update the model based on information collected
from incoming jobs. To do this, we simply fork off a single job
replicate on our reference computer, which is actually a cluster
of homogeneous machines, and add the observed runtime and
values of the predictor variables to the matrix we use to build
the model. Then we simply rebuild the model, which is

immediately available for use with incoming jobs. In this
manner the model is continually improved.

VII. CONCLUSION
We have described various aspects of The Lattice Project, a

grid computing system specializing in molecular phylogenetic
analyses. In particular, we have described a web interface that
allows researchers to submit large numbers of GARLI jobs
quickly and easily; the computing resources those jobs run on;
and mechanisms for scheduling those jobs. Finally, we have
described a novel method that produces runtime estimates for
GARLI jobs using random forests. Such runtime estimates are
critical in order to use our grid computing resources efficiently.

ACKNOWLEDGMENT
We gratefully acknowledge Derrick Zwickl for his help

with GARLI and modifications to the program, Barry Dutton
as the primary developer of the GARLI web interface, and
Bradley Senft for incorporating GARLI runtime estimates into
the BOINC scheduler adapter. The U.S. National Science
Foundation award 0755048 provided funding for this project.

REFERENCES
[1] Assembling the Tree of Life (AToL) initiative,

http://www.phylo.org/atol/.
[2] A. Bazinet and M. Cummings, “The Lattice Project: a Grid research and

production environment combining multiple Grid computing models,” in
Distributed & Grid Computing — Science Made Transparent for
Everyone. Principles, Applications and Supporting Communities, M.
Weber, Ed. Marburg: Rechenkraft.net, 2008, ch. 1, pp. 2–13.

[3] J Felsenstein, “Confidence limits on phylogenies: An approach
using the bootstrap”, Evolution, 39: 783-791, 1985.

[4] beagle-lib, http://code.google.com/p/beagle-lib/.
[5] D. Myers and M. Cummings, “Necessity is the mother of invention: a

simple grid computing system using commodity tools,” J Parallel Distr
Com, vol. 63, no. 5, pp. 578–589, May 2003.

[6] M. Cummings, S. Handley, D. Myers, D. Reed, A. Rokas, and K.
Winka, “Comparing bootstrap and posterior probability values in the
four-taxon case,” Syst Biol, vol. 52, no. 4, pp. 477–87, Aug 2003.

[7] I. Foster and C. Kesselman, “Globus: a toolkit-based Grid architecture,”
in The Grid: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, Eds. Morgan-Kaufmann, 1999, pp. 259–278.

[8] Berkeley Open Infrastucture for Network Computing (BOINC),
http://boinc.berkeley.edu/.

[9] D. Myers, A. Bazinet, and M. Cummings, “Expanding the reach of Grid
computing: combining Globus- and BOINC-based systems,” in Grids for
Bioinformatics and Computational Biology, ser. Wiley Book Series on
Bioinformatics: Computational Techniques and Engineering, E.-G. Talbi
and A. Zomaya, Eds. Hoboken: Wiley-Interscience, 2008, ch. 4, pp. 71–
85.

[10] SETI@home, http://setiathome.ssl.berkeley.edu.
[11] A. Bazinet, "The Lattice Project: A multi-model Grid computing

system", Master's thesis, University of Maryland,
http://hdl.handle.net/1903/9892, 2009.

[12] M. Litzkow, M. Livny, and M. Mutka, “Condor — a hunter of idle
workstations,” Proceedings of the 8th International Conference on
Distributed Computing Systems, pp. 104–111, 1988.

[13] J. Grand, M. Cummings, T. Rebelo, T. Ricketts, and M. Neel, “Biased
data reduce efficiency and effectiveness of conservation reserve
networks,” Ecol Lett, vol. 10, no. 5, pp. 364–74, May 2007.

[14] C. Dibble, S. Wendel, and K. Carle, “Simulating pandemic influenza
risks of us cities,” in Winter Simulation Conference, S. G. Henderson, B.

Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, Eds. WSC,
pp. 1548–1550, 2007.

[15] S. A. Tishkoff, M. K. Gonder, B. M. Henn, H. Mortensen, A. Knight, C.
Gignoux, N. Fer- nandopulle, G. Lema, T. B. Nyambo, U.
Ramakrishnan, F. A. Reed, and J. L. Mountain, “History of
click-speaking populations of Africa inferred from mtDNA and Y
chromosome genetic variation,” Mol Biol Evol, vol. 24, no. 10, pp.
2180–95, Oct 2007.

[16] R. Varadan, M. Assfalg, S. Raasi, C. Pickart, and D. Fushman,
“Structural determinants for selective recognition of a Lys48-linked
polyubiquitin chain by a UBA domain,” Molecular Cell, vol. 60, pp.
687–698, 2005.

[17] M. Cummings, M. Neel, and K. Shaw, “A genealogical approach to
quantifying lineage divergence,” Evolution, vol. 62, no. 9, pp. 2411–22,
Sep 2008.

[18] J. Regier, A. Zwick, M. Cummings, A. Kawahara, S. Cho, S. Weller, A.
Roe, J. Baixeras, J. Brown, C. Parr, D. Davis, M. Epstein, W.
Hallwachs, A. Hausmann, D. Janzen, I. Kitching, M. Solis, S.-H. Yen,
A. Bazinet, and C. Mitter, “Toward reconstructing the evolution of
advanced moths and butterflies (Lepidoptera: Ditrysia): an initial
molecular study,” BMC Evol Biol, vol. 9, p. 280, 2009.

[19] A. Zwick, J. Regier, C. Mitter, and M. Cummings, “Increased gene
sampling yields robust support for higher-level clades within
Bombycoidea (Lepidoptera),” Syst Entomol, vol. in press, 2010.

[20] A. Y. Kawahara, A. A. Mignault, J. C. Regier, I. J. Kitching and
C. Mitter, “Phylogeny and biogeography of hawkmoths (Lepidoptera:
Sphingidae): evidence from five nuclear genes”, PLoS ONE, 4(5):
e5719, 2009.

[21] J. Regier, J. Shultz, A. Ganley, A. Hussey, D. Shi, B. Ball, A. Zwick, J.
Stajich, M. Cummings, J. Martin, and C. Cunningham, “Resolving
arthropod phylogeny: exploring phylogenetic signal within 41 kb of
protein-coding nuclear gene sequence,” Syst Biol, vol. 57, no. 6, pp.
920–38, Dec 2008.

[22] J. C. Regier, J. W. Shultz, A. Zwick, A. Hussey, B. Ball, R. Wetzer, J.
W. Martin, and C. W. Cunningham, “Arthropod relationships revealed
by phylogenomic analysis of nuclear protein-coding sequences,” Nature,
vol. 463, no. 7284, pp. 1079–83, Feb 2010.

[23] M. Neel and M. Cummings, “Section-level relationships of North
American Agalinis (Orobanchaceae) based on DNA sequence analysis of
three chloroplast gene regions,” BMC Evol Biol, vol. 4, p. 15, Jun 2004.

[24] S. Marten-Rodrıguez, C. B. Fenster, I. Agnarsson, L. E. Skog, and E. A.
Zimmer, “Evolutionary breakdown of pollination specialization in a
Caribbean plant radiation,” New Phytologist, vol 188, no. 2, pp.403-17,
Jun 2010.

[25] M. Reyna-Fabian, J. Laclette, M. Cummings, and M. Garcia-Varela,
“Validating the systematic position of Plationus Segers, Murugan &
Dumont, 1993 (Rotifera: Brachionidae) using sequences of the large

subunit of the nuclear ribosomal DNA and of cytochrome C oxidase,”
Hydrobiologia, vol. 644, no. 1, pp. 361–370, May 2010.

[26] Genetic Algorithm for Rapid Likelihood Inference,
http://www.bio.utexas.edu/faculty/anti-sense/garli/garli.html.

[27] D. J. Zwickl, "Genetic algorithm approaches for the phylogenetic
analysis of large biological sequence datasets under the maximum
likelihood criterion", PhD dissertation, The University of Texas at
Austin, 2006.

[28] P. O. Lewis, "A genetic algorithm for maximum-likelihood phylogeny
inference using nucleotide sequence data", Molecular Biology and
Evolution, 15:277–283, 1998.

[29] Cyberinfrastructure for Phylogenetic Research (CIPRES),
http://www.phylo.org/.

[30] University of Oslo Bioportal, http://www.bioportal.uio.no/.
[31] Drupal - Open Source CMS, http://www.drupal.org/.
[32] Bazinet, A. L., D. S. Myers, J. Fuetsch and M. P. Cummings, "Grid

Services Base Library: a high-level, procedural application program
interface for writing Globus-based Grid services", Future Generation
Computer Systems 23:517–522, 2007.

[33] Sun Grid Engine, http://gridengine.sunsource.net/.
[34] W. Gropp, E. Lusk, and A. Skjellum, "Using MPI, portable parallel

programming with the Message-Passing Interface", MIT Press,
Cambridge, MA, 1994.

[35] S. B. Kotsiantis, “Supervised machine learning: A review of
classification techniques”, Informatica, p. 249, 2007.

[36] H. Li, D. Groep, L. Wolters, “An evaluation of learning and heuristic
techniques for application run time predictions”, Proceedings of 11th
Annual Conference of the Advance School for Computing and Imaging
(ASCI), 2005.

[37] C. Glasner and J. Volkert, “An architecture for an adaptive run-time
prediction system”, Proceedings of the 7th International Symposium on
Parallel and Distributed Computing (ISPDC’08), 2008.

[38] L. Breiman, "Bagging predictors", Machine Learning 24:123-140, 1996.
[39] L. Breiman, "Arching classifiers (with discussion)", Ann Stat 26:801-

849, 1998.
[40] L. Breiman, "Random Forests", Machine Learning 45:5-32, 2001.
[41] L. Breiman, "Statistical modeling: the two cultures", Stat Sci 16:199-

215, 2001.
[42] B Efron, R Tibshirani, "An Introduction to the Bootstrap", New York:

Chapman & Hall, 1993.
[43] TJ Hastie, R Tibshirani, J. H. Friedman, "The Elements of Statistical

Learning", New York: Springer, 2001.
[44] The R Project for Statistical Computing, http://www.r-project.org/.
[45] L Breiman, A Cutler, A Liaw, M Wiener, randomForest,

http://cran.r-project.org/web/packages/randomForest/.

