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Abstract

The Grid Services Base Library (GSBL) is a procedural application programming interface (API) that abstracts many of the high-level functions
performed by Globus Grid services, thus dramatically lowering the barriers to writing Grid services. The library has been extensively tested and
used for computational biology research in a Globus Toolkit-based Grid system, in which no fewer than twenty Grid services written with this
API are deployed.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As the size and complexity of life science data has increased,
so have the sophistication and computational complexity of
data analysis increased. Entire data types that did not exist a
relatively short time ago (e.g., complete genome sequences,
large-scale microarray results, large multilocus genotypes) now
constitute much of life science data. Similarly, analytical chal-
lenges including inference and combinatorial optimization have
been attacked with computer-intensive methods (e.g., stochas-
tic simulation, machine learning methods, Bayesian analysis,
Markov-chain Monte Carlo sampling). As a consequence, the
computational demands of life science research continue to in-
crease. Therefore, some life science researchers are turning to
Grid computing to meet their computing resource needs, fol-
lowing a trend toward Grid computing in academia in general
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[10]. However, there are several barriers to widespread use of
Grid computing in the life sciences, including the lack of Grid-
enabled applications and the difficulty of producing them, the
deficit of Grid computing resources available for life science
research, and the difficulty of using Grid computing effectively.
Several of these barriers to the use of Grid computing in the life
sciences are being addressed [22]. The objective of this paper
is to describe middleware tools that address one specific barrier
mentioned above, difficulty creating Grid-enabled applications.

Grid computing has been defined [10] as a model
of distributed computing that uses geographically and
administratively disparate resources. In Grid computing,
individual users can access computers and data transparently,
without having to consider location, operating system, account
administration, and other details. In Grid computing, the details
are abstracted, and the resources are virtualized.

Our ongoing research and development in Grid computing
has been motivated in large part by the computational
demands of our own research in computational biology and
bioinformatics. This research program focuses on problems
in molecular evolution and genetics, which often require
approaches that are very computation-intensive. Our need for
computer resources for our work led to the development of
a simple Grid computing system using commodity tools [23],
which was used for a large-scale simulation study [9]. Our
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subsequent work has made use of the Grid middleware
Globus [12] and the Berkeley Open Infrastructure for Network
Computing (BOINC) [3,7], and focused on expanding the reach
of Grid computing by creating a system that combines these
two models (Myers, Bazinet and Cummings, in preparation).
The work described here extends and complements other
efforts [22] and represents our approach to making it easier
to develop Grid-enabled applications using the Globus Toolkit.
Although our focus is on applications used in computational
biology and bioinformatics, the middleware solution we
developed is general and is applicable to other domains.

The Globus Toolkit represents the current state of the art
in Grid middleware. It is the focus of much of the ongoing
research in Grid computing, and we can expect to see continued
support and development well into the future. Based on a
web services architecture, Globus provides facilities for the
execution and management of jobs on remote resources, on-
the-fly resource discovery, file transfer, authentication and
authorization, and encryption of messages. Using the Globus
Toolkit, it is possible to build large, highly-distributed, and
robust computational grids.

Over the past several years, our research has been aimed
at using the Globus toolkit, in combination with other Grid
middleware, to create a computational Grid for scientific
research. We began development with Globus Toolkit 3,
which formed the backbone of our Grid system. Development
continued until we had a fully functional production-level
Grid system built around Globus Toolkit 3. After successful
production use of this system, we focused our efforts on
upgrading our infrastructure to use Globus Toolkit 4 (which was
released in early 2005). The challenge of writing Grid services
with the Globus Toolkit has remained constant, however, and
we will now describe some of the implementation challenges
we have encountered and our approaches to overcoming them.

2. The challenges of working with Globus

As might be expected in research-grade software, there are
problems with the Globus Toolkit. First, the application pro-
gramming interface (API) that Globus provides for writing Grid
services is a relatively low-level one, and accomplishing com-
mon tasks (such as transferring a file between two systems) can
often require a lot of code. Writing a fully featured application-
based Grid service is not as easy as we would like it to be.

Second, Globus uses an asynchronous, event-based model
for programming Grid services. Although such a model is well
suited to Grid computing, where one may have to wait unknown
lengths of time for operations to complete (e.g., between
submitting a job and receiving the results), it is not necessarily
the most intuitive programming model. In many cases the task
of writing Grid services will be facilitated if it can be done
using a procedural model with blocking function calls, even if
the underlying infrastructure is event-based.

Third, because the Globus Toolkit is research software under
continual development, there is always the possibility that the
API presented to Grid services will change between versions.
This is precisely what happened between Globus Toolkit 3 and

Globus Toolkit 4. A perceived high probability of API change
can make programmers hesitant about writing Grid services
using the API.

Finally, creating a new Grid service requires creating a
number of new files in a very specific directory structure and
with very specific names, namespaces, and classes. This is a
tedious and error-prone process at best, but one we have to
repeat each time we write a Grid service. Moreover, because
we were interested in having our applications run in a general
framework, we designed our Grid system around the idea that
every Grid-enabled application would be presented as a Grid
service. Thus, we knew we would be building a significant
number of services, and so it was desirable to reduce the
overhead associated with this process as much as possible.

3. Our solution

To resolve the above problems, we have written the Grid
Services Base Library (GSBL), which provides a high-level,
procedural API for writing Grid services. In our Grid system,
GSBL is the API called by our body of Grid services; at
this level, no Globus code is invoked directly. Thus, in the
event that the Globus API changes, only GSBL will require
updating. It should also be noted that the Globus team tries to
preserve concepts from version to version of the toolkit, which
means that high-level GSBL-supported operations should also
migrate easily. This solves the problem of a changing API; in
the rest of this section, we discuss the GSBL API and how it
solves the problems associated with the low-level, event-based
programming model of Globus.

Admittedly, we have not attempted to provide a friendly
interface to the entire Globus API or to support all possible
operations. As a guiding principle of our API design we
have focused on making simple and common tasks easy to
implement, while leaving the programmer to the Globus API
for more difficult and uncommon tasks. We note, however,
that after having built twenty production Grid services for life
science applications, we have yet to encounter the need to
circumvent GSBL to write custom Globus code.

In keeping with standard web services procedures, we have
designed our Grid system with a generalized client–service
architecture in mind. As mentioned previously, each Grid
service represents a Grid-enabled application (see Section 4
for a brief description of our Grid services). A remote
Grid client then invokes a set of operations that cause a
particular application to be run on the Grid. These operations
are performed during job setup, submission, monitoring,
and cleanup, and they fall into the following areas: initial
configuration of Grid client–service interaction, argument
processing, transfer of files between the client and the service,
and submission and monitoring of Grid Resource Allocation
and Management (GRAM) jobs by the service. It should be
noted that GSBL is a library for writing both Grid services and
Grid clients that are inter-operable in the framework outlined.

3.1. Initial configuration of client–service interaction

There are several steps that a Globus Grid client needs to
take in order to establish communication with a Grid service.
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Because our Grid services are implemented with the WS-
Resource Framework (Web Services Resource Framework,
WSRF), these services provide users with the ability to access
and manipulate state (i.e., data values that persist across service
interactions). Following standard Globus Toolkit 4 conventions,
each of our Grid services is composed of a Factory service and
an Instance service. When a client requests resource creation,
it contacts the Factory service. When a client requests that an
operation be performed on a specific resource, it contacts the
corresponding Instance service.

Thus, assuming the WS-Resource Factory pattern is in use,
the client first contacts a Factory service which in turn creates
and initializes a new resource. The Factory service returns an
endpoint reference to a WS-Resource composed of an Instance
service and the recently created resource. The interface of
the Instance service object has been defined in Web Services
Description Language (WSDL), and the associated resource
provides state for this particular Grid service Instance.

This process requires a significant amount of relatively
dense code, code which is nearly identical between Grid
services. Unfortunately, although the overall logic remains
constant, the classes involved do change, because each Grid
service is uniquely typed. Moreover, there is no super-
type for the classes, and the names of the functions to be
called depend on the name of the service (for example,
one has to call get[ServiceName]FactoryPortTypePort() and
get[ServiceName]PortTypePort()), so placing this logic into
a library is not straightforward: neither subclassing nor
templating is effective.

In order to place this code in a library, we made use of the
Java reflection APIs. The constructor for the Grid client base
class takes as parameters a Class object representing the type
of the class used to contact the Factory service, and a Class
object representing the type of the class used to contact the
Instance service; using these objects, it can create new instances
of these classes without prior knowledge of their type. To call
the creation method (whose name varies based on the name
of the Grid service), we use the reflection API to search the
methods of the locator object for a method whose name and
signature match that which we know we need; then we obtain a
reference to this method and call it on our object.

To reiterate, when this initial setup is complete, a new Grid
resource will be created for this particular job request and a
handle to an Instance service will be returned to the client. This
handle is used to contact the Grid service when performing the
operations discussed in the next few sections.

3.2. Argument processing

The applications most often used in our computational
biology research can frequently accept a large number of
command-line arguments (e.g., SSEARCH, part of the FASTA
package [27] has ∼24 arguments). The straightforward Globus
solution to representing these parameters in a Grid services
context would be to create a complex type to hold them, and
pass an instance of this complex type from the client to the
Grid service. Although this approach is adequate in many

cases, it does not fully meet our needs. Defining a type to
handle configuration parameters is helpful, but when such a
type has dozens of fields, some sort of additional support is
needed: manually copying user input into and out of such a type
becomes tedious and error-prone.

In order to provide more robust support for configuration
parameters, we chose to create a separate XML file describing
the parameters. Each parameter has a corresponding record
in the file giving the name of the parameter, its description,
and to facilitate understanding, the name of the flag that the
parameter corresponds to in the original program. A sample
record appears as follows.

<argument key="dbSize">
<flag>Z</flag>
<type>java.lang.Integer</type>
<description>Set the database size to
use when computing E-values.</description>
<takes>size</takes>
<optionalFlag>true</optionalFlag>
<optionalValue>false</optionalValue>

</argument>

The WSDL required to describe the complex type
corresponding to the arguments is automatically generated
from this XML file using our Grid Services Generator
(see Section 3.5). Perl scripts that accept the configuration
parameters as command-line arguments, write them out to a
specifically-formatted file, and then execute the Grid service
client are also automatically generated. GSBL provides a class
for the Grid service client that will read in this file and initialize
an Instance of the custom type.

Finally, once the argument type has been sent to the Grid
service, it will need to be converted back into an argument
string to be passed to a GRAM job (and ultimately to the
original command-line program). GSBL provides a class that
accepts the argument type and, using the XML file described
above, generates the corresponding argument string.

One might ask, why not simply convert the client command-
line arguments to a string, send that to the Grid service, and be
done with it? By parsing the arguments, we allow clients and
services to make choices based on the values of the arguments,
which is required for properly configuring GRAM jobs and
helpful for Grid-level parallelism.

3.3. File transfers

Effective Grid computing requires easy, reliable, bidirec-
tional transfer of files between Grid clients and Grid services.
There are, however, two key problems that need to be solved.
First, there is the question of how the files are to be transferred:
Globus provides a number of different mechanisms for trans-
ferring files. Second, file transfer is one of the areas in Grid
computing in which the Globus asynchronous model is particu-
larly important: subject to file sizes and network speeds, trans-
ferring a file could easily take more time than the timeout of
the underlying remote procedure call libraries. Thus, we need
to provide some mechanism by which this event-based process
can be made to look procedural.
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Our original Globus Toolkit 3-based Grid system used
the Global Access to Secondary Storage (GASS) protocol
to send files between the client and the server, but we are
now using GridFTP in conjunction with Reliable File Transfer
(RFT) in our Globus Toolkit 4-based system. The GridFTP
protocol provides for secure, robust, fast and efficient transfer
of data. The Globus Toolkit also provides the most commonly
used implementation of that protocol, composed of a server
implementation and a scriptable command-line client. In our
system, a GridFTP server runs on both the client and the
service side, thus enabling file transfer between them. RFT
is a WSRF compliant web service that provides scheduler-
like functionality for data movement. Provided with a list of
source and destination URLs (e.g., gsiftp://localhost/foo), the
service writes the file transfer description into a database and
then moves the files on the user’s behalf using the underlying
GridFTP software. At the highest level, therefore, GSBL
negotiates with the RFT service to initiate file transfers, which
in turn makes recourse to GridFTP to actually move data.

In GSBL, the ReliableFileTransferManager class is used to
initiate and monitor file transfers. It accepts a list of files, an up-
load or download operation, and a local and remote endpoint.
Once the transfer is initialized, one calls beginTransfer() to start
the transfer in a separate thread. This call should be immedi-
ately followed by a call to waitComplete(), which will block un-
til the file transfer job object has issued its “transfer complete”
notification. Using these two simple function calls, file transfer
can be made to look procedural; at no point do developers have
to concern themselves with event-handling. As a side note, the
ability to transfer a batch of files in one method call marks an
improvement over our Globus Toolkit 3-based system.

We make use of this file transfer code in two phases of a
job life cycle. The first phase is uploading job input files from
the client to the server, and the second phase is uploading job
output files from the server to the client.

3.4. Creating and monitoring GRAM jobs

Our Grid services need to submit GRAM jobs to remote
computational resources on behalf of the client. These jobs may
have to wait in a remote queuing system for some period of
time, and even once execution begins, processing can take a
long time. As such, the Globus API for submitting GRAM jobs
is an asynchronous, event-based construction.

The GSBLJobManager class for Grid services works
much like the ReliableFileTransferManager class does for file
transfer: it provides methods for starting a GRAM job and
testing whether or not it completed successfully.

When a client calls runService(), passing along the complex
argument type discussed in Section 3.2, this Grid service
method prepares to create the GRAM job and returns
immediately to the client, which may then terminate. From this
point on, the service is in charge of submitting and monitoring
the job, and is also responsible for transferring output files back
to the client host when the job is finished.

Because of this design, it is necessary for job monitoring
to resume in the event that the Globus Grid services container

is shut down and restarted, or otherwise interrupted. We
have provided mechanisms that Grid services can use to
recreate GRAM job objects and check the status of jobs that
were previously submitted. These mechanisms make use of
persistent state information about jobs that Globus keeps on
disk, as well as a database that helps to determine which
jobs have not yet finished. This monitoring process resumes
automatically as each Grid service is initialized when the Grid
services container is restarted.

3.5. Grid Services Generator

In order to further streamline the creation of Grid services
using this library, we have written a program, the Grid Services
Generator (GSG), that generates skeleton implementations and
build environments for Grid services based on an extremely
limited set of inputs (name of the service, package in which
implementation classes should reside, XML description of the
program arguments, and location in the Grid services container
at which the service will be deployed). After running the
program, the user will have client and service Java class
templates that work with GSBL, a WSDL file for both the
Factory service and the Instance service, other required Globus
configuration files, and build files so that the code can be
easily compiled and deployed within a working directory.
Because setting up this development environment for each new
Grid service is otherwise an extraordinarily tedious and error-
prone task, we have found that the GSG dramatically increases
programmer productivity.

The Grid Services Generator was designed to ease the
overall process of developing Grid services. In particular, it
attempts to minimize the amount of code a programmer has
to write by stamping out generic GSBL-based Java classes for
a Grid client and service. Afterward, a programmer simply
completes the non-templated portions of these classes to
customize the behavior of their Grid service. In this way, it
is possible to quickly develop a suite of application-based
Grid services. The following section describes the various Grid
services that we have built to date.

4. Grid-enabled applications

We have built twenty Grid services implementing scientific
computing applications using the GSBL library as part of
a Grid system for comparative genomics research. Each of
these programs is available to be run on our Grid system,
which provides researchers access to more resources than
they would otherwise have. Thus, large amounts of work can
be done in a relatively short time. Our list of applications
includes BLAST [1,2], ClustalW [36], CNS [8], gsi (Bazinet
and Cummings in preparation; Cummings, Neel and Shaw
in preparation), IM [16], LAMARC [19–21], MARXAN [4,
29], MDIV [26], Migrate [5,6], Modeltest [28], MrBayes [33],
ms [18], Muscle [11], PAUP* [35], Phyml [15], Pknots [32],
Seq-Gen [31], Snn [17], SSEARCH [27,34], and Structure [30].

The bioinformatics analyses represented by these applica-
tions and their associated Grid services are those in demand
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for computational biology projects in the Laboratory of Molec-
ular Evolution, Center for Bioinformatics and Computational
Biology, and for several other researchers at the University of
Maryland. Some of these bioinformatic analyses have not yet
been addressed by other Grid systems. However, GSBL is gen-
erally applicable to the development of any computational Grid
service under Globus.

5. Research projects using the Grid

A significant amount of scientific research computing was
completed using our Globus Toolkit 3-based Grid system by
several groups at the University of Maryland: the Laboratory
of David Fushman, the Laboratory of Sarah Tishkoff, the
Laboratory of Maile Neel, and the Laboratory of Michael
Cummings.

The Fushman laboratory ran thousands of protein:protein
docking simulations using the CNS Grid service. When driven
by experimentally derived constraints, these simulations help in
modeling the structures of large multi-subunit proteins, and the
interactions of such proteins with various ligands. An example
is analysis of the structural determinants for recognition of a
polyubiquitin chain [37]. The computation for this problem was
primarily done using BOINC, and the accumulated processing
time was approximately 12.4 CPU years (achieved in only a few
months real-time).

Floyd Reed and Holly Mortensen from the Laboratory of
Sarah Tishkoff have run many analyses using the MDIV and
IM Grid services. These analyses are for studies of human pop-
ulation genetics that use DNA sequence polymorphism to es-
timate the times of divergence and migration rates among eth-
nically diverse populations in Africa. The computations were
done using our globally-distributed BOINC resources (Myers,
Bazinet and Cummings, in preparation), and the accumulated
processing time was approximately 5.1 CPU years.

Our own lab has made extensive use of the gsi Grid
service to complete a study demonstrating the application of
the genealogical sorting index (gsi) statistic for distinguishing
species. Using coalescent theory-based simulations [18] to
model genetic samples drawn from diverging species, the Grid
system was used to calculate the statistic and assess its behavior.
In addition, the probabilities of observed values were estimated
using permutation (Bazinet and Cummings, in preparation;
Cummings, Neel and Shaw, in preparation). The many millions
of individual analyses required consumed over 94 CPU years.

Across these three studies our GT3-based production Grid
system performed approximately 112 CPU years of work in
about 7 months of wall-clock time. Such studies are only
possible using large collections of resources such as a Grid
computing system.

As we transition to our Globus Toolkit 4-based system, we
have made the Grid system available for limited production use
for testing purposes. Two researchers are studying problems
involved in the design of reserve networks for biological
conservation using MARXAN, and collectively have consumed
several CPU centuries during this period. Maile Neel examines
conservation decisions based on one target type (e.g., rare

species) and the consequences at another level (e.g., genetic
diversity), and this current work builds upon the theme of
earlier work in this general area [24,25]. Joanna Grand,
a National Science Foundation Post Doctoral Fellow in
Biological Informatics, studies the consequences of incomplete
and partial data in the design of conservation reserve networks.

6. Current efforts

We are completing an upgrade of our production Grid
system to use Globus Toolkit 4 and the most recent version
of BOINC [7], which we combine (Myers, Bazinet and
Cummings, in preparation). We are currently testing GSBL
in this new Globus Toolkit 4 environment, and we are
updating surrounding infrastructure to put the new system
into production. The use of Globus Toolkit 4, which presents
Grid services as web services, will facilitate our work in
creating Semantic Web/Grid services and use of the Bio-
STEER workflow composition system [22].

7. Conclusions

We have designed, developed, tested, and put into
production a library for building Globus Grid services and Grid
clients. GSBL dramatically lowers the barriers to writing Grid
services by providing a high-level, procedural API, and has
been used to create Grid services for a number of bioinformatics
applications that are extensively used in computational biology
studies.

8. Software Availability

Recent versions of GSBL and the GSG are avail-
able for download from our Grid research web site,
http://lattice.umiacs.umd.edu/. This software is free; you can
redistribute it and/or modify it under the terms of the GNU Gen-
eral Public License as published by the Free Software Founda-
tion; either version 2 of the License, or (at your option) any later
version. Please credit the original authors where appropriate.
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