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Abstract—We describe our approach to extend the BEAGLE

library for high-performance statistical phylogenetic inference
(maximum likelihood estimation and Bayesian analysis) in
order to support a wider range of modern accelerators and
multicore CPUs, and present the corresponding performance
results from these platforms. Our solution includes a shared
code design providing a uniform interface for a variety of
compute platforms available under CUDA and OpenCL par-
allel computing frameworks. We have also implemented CPU

threading in BEAGLE, and in sum these improvements allow
the library to exploit a wide-range of hardware parallelism
including CPU and Xeon Phi, vectorization intrinsics (e.g., SSE,
AVX), and GPUs. Although code reuse and maintainability are
features of our design, our approach also includes hardware-
specific optimizations for performance critical portions of the
code. Extending the BEAGLE library in this manner allows
a greater variety of users to exploit the hardware resources
available to them. As an example of increase in performance,
using BEAGLE on a system with two Intel Xeon E5-2680v4
CPUs we observe a 39-fold speedup for a MrBayes 3.2.6 codon-
model analysis, compared to the native MrBayes MPI-SSE

implementation. The general design features of the library
also provide a model for software development using parallel
computing frameworks that is applicable to other domains.

Keywords-Bayes methods; Biology computing; Evolution (bi-
ology); Phylogeny; Maximum likelihood estimation; Multicore
processing; Parallel programming

I. INTRODUCTION

Advances in computer hardware, specifically in parallel

architectures, such as multicore CPUs, manycore CPUs (e.g.,

Intel Xeon Phi), GPUs, and CPU intrinsics (e.g., SSE, AVX),

have created opportunities for new approaches to computa-

tionally intensive analysis methods. The design and devel-

opment process required to take advantage of these parallel

computing resources begins with decisions of what hardware

to support and development frameworks to use. These initial

decisions typically have implications that generally constrain

applicable hardware used by the software developed, as well

as the complexity of the software itself. Here we describe the

software design and optimization approaches used to extend

the range of hardware devices supported in the upcoming

release of BEAGLE, a high-performance library for statistical

phylogenetics [1]. We then explore the performance of the

library on a variety of modern hardware resources and

platforms.

Our design harnesses parallel hardware via multiple

frameworks, and includes a model for sharing kernels for

CUDA and OpenCL frameworks. Our own motivations for

pursuing a development plan involving multiple frameworks

comprise a number of elements. First among these is our

desire to serve a large community of evolutionary biologists

and others doing very common, but very computationally

intensive calculations. This community has access to a broad

range of hardware, and developing with multiple frameworks

helps our library work across this range of hardware. Sec-

ondly, use of multiple frameworks diversifies risk across

both hardware and software platforms. Market forces largely

determine the composition of the hardware-software ecosys-

tem, and correctly choosing the more important among the

possible combinations can be difficult in the early phases

of the hype cycle and in the presence of vendor marketing.

Poor choice of target hardware or development framework

can result in greatly diminished impact and a poorly served

domain science community.

Regardless of high apparent promise of any particular

option, at least initially, diversifying across processor ar-

chitectures and development frameworks seems prudent.

As examples of risk in the hardware realm consider the

history of processors such as the Intel Itanium and STI Cell

Broadband Engine, or the current status of the Intel Xeon

Phi. In the realm of frameworks illustrative examples of

risk include OpenCL for Apple macOS, for which not all

features are supported, and OpenCL for Xeon Phi (Knights

Landing), which is not available at the time of this writing.

In addition to risk reduction, diversifying across processor

architectures and development frameworks results in deeper

understanding of hardware features and programming ap-

proaches, which can subsequently lead to better performance

across implementations.

We continue this paper by providing an abbreviated review

of related work, some context of the basic problem from the

application domain science and computational perspectives,

a general overview of the BEAGLE library, and follow with

details regarding our shared framework strategy, including
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various design issues, hardware-specific optimizations, and

performance results.

II. RELATED WORK

We restrict our abbreviated consideration of related work

involving to that involving the CUDA and OpenCL frame-

works, as these comprise the most widely used for GPU

programming, which is a special, though not exclusive, focus

of the BEAGLE library. Furthermore, it is the users of the

CUDA and OpenCL frameworks who are most likely to find

some of our design decisions most applicable to their own

efforts. This related work can be generally classified as

translators, where the objective is to take code associated

with one framework, most commonly CUDA for NVIDIA

GPUs, and translate to another framework or processor

architecture. These translators differ in the starting code for

translation, as well as the target framework or processor

architecture.

Starting with the pseudo-assembly code Parallel Thread

Execution (PTX) generated in the CUDA framework,

Ocelot [2] targets x86 and STI Cell Broadband Engine

processors, whereas Caracal [3] targets the AMD Compute

Abstraction Layer (CAL), a low-level access software de-

velopment layer. Source-to-source translation from CUDA

has been an approach followed by others. Among the direct

source code translation approach are MCUDA [4] targeting

x86-based processors, and CU2CL (CUDA-to-OpenCL) [5],

[6], which targets OpenCL. Swan [7] also targets OpenCL,

but requires the developer to replace CUDA API calls with

intermediary equivalent calls in a Swan-specific syntax, and

these, in turn, are translated to generate the OpenCL code.

Our own work described in this paper differs fundamen-

tally from the work mentioned above. First, our approach is

to design and develop kernels that are shared between CUDA

and OpenCL, rather than to create or employ a tool for after-

the-fact translation to a different framework or architecture.

From our perspective and objectives this fundamental dif-

ference has several advantages over translation particularly

in the areas of efficiency and simplicity: i) ready sharing of

core algorithms; ii) easier accommodation of new analytical

models; iii) no dependence on translators, which may or

may not be up-to-date with respect to the latest framework

versions, thus eliminating another potential development

risk; iv) reduces duplicated code; and v) adroitly facilitates

hardware-specific optimizations.

III. EVOLUTIONARY BIOLOGY, THE SCIENTIFIC DOMAIN

Research in evolutionary biology can generally be divided

as being most closely associated with either of two broad

categories: i) macroevolution, which involves the processes

of speciation and extinction; and ii) microevolution, which

involves the processes affecting changes in the genetic struc-

ture of populations. These evolutionary categories converge

in that trees representing ancestor-descendent relationships

are central to the conceptual and analytical framework for

both macro- and microevolution, which are embodied by

phylogenetics and population genetics respectively.

In a broad sense phylogenetics is the study of evolutionary

relationships. Typically, modern phylogenetic analyses in-

volve obtaining DNA sequence data from a set of organisms,

and using model-based methods to infer a binary tree. This

tree represents the evolutionary history of the organisms

going back to their most recent common ancestor and is,

in essence, a subset of the overall tree of life.

A. Likelihood Function

The most effective methods for inferring both phylo-

genetic trees and gene genealogies are based on either

maximum likelihood estimation or Bayesian analysis, which

share the same computational bottleneck: calculation of the

likelihood of trees [8]. When profiling GARLI [9], a leading

phylogenetic inference program, we have observed that,

for DNA models, likelihood related calculations typically

constitute over 94% of the overall runtime. For more com-

plex models (e.g., amino-acid or codon-based), likelihood

calculation will typically incur an even greater proportion of

the analysis time. Speeding the calculation of the likelihood

function is key to increasing the performance of statistical

inference-based phylogenetic analyses.

The core likelihood calculations apply to a subtree com-

prising a node (x0) and its two descendant nodes (x1 and

x2), and the connecting branches (of length t1 and t2),

and is repeated for all such subtrees of the larger tree

being considered. This partial-likelihoods function [8] is as

follows.

L(x0) =

(∑
x1

Pr(x1|x0, t1)L(x1)

)
×

(∑
x2

Pr(x2|x0, t2)L(x2)

) (1)

This calculation is repeated for each site (i.e., sequence

position), and for each possible character a site can assume

(e.g., a, c, g, and t, for a nucleotide model sequence). The

computational complexity of the likelihood calculation for

a given tree is O(p × s2 × n), where p is the number of

positions in the sequence (typically on the order of 102 to

106), s is the number of states each character in the sequence

can assume (typically 4 for a DNA model, 20 for an amino-

acid model, or 61 for a codon model), and n is the number

of operational taxonomic units (e.g., species, alleles).

Thus, to explore even a fraction of the total search space,

a very large number of topologies are evaluated, and hence

a very great number of likelihood calculations have to be

performed. This leads to analyses that can take days, weeks

or even months to run. Further compounding the issue, rapid

advances in the collection of DNA sequence data have made
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the limitation for biological understanding of these data an

increasingly computational problem.

The structure of the likelihood calculation, involving large

numbers of positions and multiple states, as well as other

characteristics, makes it a very appealing computational fit

to modern parallel microarchitectures such as multi and

manycore CPUs, and especially, GPUs.

IV. BEAGLE

BEAGLE [1] is a high-performance likelihood-calculation

platform for phylogenetic applications. BEAGLE defines a

uniform application programming interface (API) and in-

cludes a collection of efficient implementations for calculat-

ing a variety of phylogenetic models on different hardware

devices, such as graphics processing units (GPUs), Intel

Xeon Phi devices, and multicore CPUs.

The BEAGLE project has been very successful in bringing

hardware accelerators to phylogenetics. The library was the

first to focus on high-performance computation of the phylo-

genetic likelihood calculation via fine-scale parallelization.

It is the most widely adopted library for this purpose and has

been integrated into popular phylogenetics software includ-

ing BEAST [10], MrBayes [11], and PhyML [12], and has

been widely used for phylogenetic analyses. Recent work

on the BEAGLE library identifying independent likelihood

estimates in analyses of partitioned datasets and in proposed

tree topologies, and configuring concurrent computation of

these likelihoods via CUDA and OpenCL frameworks results

in substantially increased performance [13].

Other proposals have been made to bring hardware ac-

celeration to statistical phylogenetics, however these have

typically focused only on MrBayes and have only applied to

a subset of models the program supports [14], or have not

made the source code or binaries available [15].

A. Overall Design

The general structure of the BEAGLE library version 1

can be conceptualized as layers (Fig. 1), the upper most of

which is a C API. Alternatively, Java programs can use a

Java Native Interface (JNI) wrapper, which is provided with

the source code.

Underlying the API is an implementation management

layer, which loads the available implementations, makes

them available to the client program, and passes API com-

mands to the selected implementation. Internally, the imple-

mentations in BEAGLE derive from two general models. One

is a serial CPU implementation model that does not directly

use external frameworks, and which comprises a standard

CPU implementation, and one with added SSE intrinsics.

The other implementation model involves an explicit par-

allel accelerator programming model, which uses the CUDA

external computing framework. This parallel implementation

model communicates directly with the GPU via CUDA APIs.

Java programs

BEAGLE

C/C++ programs

implementation manager

JNI wrapper

hardware-specific implementations

CPU SSECPU

C API

CUDA GPU

implementation base-code

CUDA modelCPU serial model

Figure 1. Layer diagram depicting the overall structure of the BEAGLE

library version 1.

B. Application Programming Interface

The BEAGLE API was designed to increase performance

via fine-scale parallelization while reducing data transfer and

memory copy overhead to an external hardware accelerator

device. To accomplish this, the library lacks the concept or

data structure for a tree, which provides for a more simplified

implementation in application programs. Instead, BEAGLE

acts directly on flexibly indexed data storage which stores

the partial-likelihoods.

C. Implementation Overview

The design of BEAGLE allows for new implementations

to be developed without the need to alter the core library

code or how client programs interface with the library.

This architecture also includes a plugin system, which

allows implementation-specific code (via shared libraries)

to be loaded at runtime when the required dependencies

are present. Consequently new frameworks and hardware

platforms can more easily be made available to programs

that use the library, and ultimately to users performing

phylogenetic analyses.

D. CPU Implementations

BEAGLE version 1 includes a serial CPU implementation,

as well as an SSE implementation for nucleotide models in

double-precision, which uses vector processing extensions

present in many CPUs to parallelize computation across

character state values.

E. CUDA Implementation

The initial version of BEAGLE exclusively used the CUDA

platform to exploit NVIDIA GPUs. It implemented novel

computational methods for evaluating likelihoods under ar-

bitrary molecular evolutionary models, harnessing the large
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tree space

partial likelihood

⇠       unique site patterns       ⇢

t0,0 t1,0 t2,0 t3,0 t4,0 t5,0 t6,0 t7,0 t8,0

t0,1 t1,1 t2,1 t3,1 t4,1 t5,1 t6,1 t7,1 t8,1

t0,2 t1,2 t2,2 t3,2 t4,2 t5,2 t6,2 t7,2 t8,2

t0,3 t1,3 t2,3 t3,3 t4,3 t5,3 t6,3 t7,3 t8,3

⇠
   

 s
ta

te
s 

   
⇢

L(x0) =

x0

x1 x2

Figure 2. Diagrammatic example of the tree sampling process and
fine-grained parallel computation of phylogenetic partial likelihoods using
BEAGLE on GPUs for a nucleotide-model problem with 5 taxa and 9 site
patterns. Each entry in a partial likelihood array L is assigned to a separate
GPU thread t. In this simplified example, 45 GPU threads are created to
enable parallel evaluation of each entry of the partial likelihood array L(x0)
Calculations for real datasets would typically generate thousands of threads.

number of processing cores to efficiently parallelize calcu-

lations [1], [16]. We originally chose to develop with the

CUDA Driver API rather than the Runtime API due to its

greater flexibility. This also facilitated sharing code with the

subsequently developed OpenCL solution.

F. Parallel Computation

BEAGLE exploits GPUs via fine-grained parallelization

of functions necessary for computing the likelihood on a

phylogenetic tree. Phylogenetic inference programs typically

explore tree space in a sequential manner (Fig. 2, tree space)

or with only a small number of sampling chains, offering

limited opportunity for task-level parallelization. In contrast,

the crucial computation of partial likelihood arrays at each

node of a proposed tree presents an excellent opportunity for

fine-grained data parallelism, for which GPUs are especially

suited.

In order to calculate the overall likelihood of a pro-

posed tree, phylogenetic inference programs perform a post-

order traversal, evaluating a partial likelihood array at each

node. When using BEAGLE, the evaluation of these multi-

dimensional arrays is offloaded to the library. Though each

partial likelihood array is still evaluated in series, BEAGLE

assigns the calculation of the array entries to separate

GPU threads, for computation in parallel (Fig. 2, partial

Table I
SYSTEM SPECIFICATIONS

system 1 system 2

CPU (Intel) Core i7-930 Xeon E5-2680v4 (x2)

GPU 1 (NVIDIA) Quadro P5000 —

GPU 2 (AMD) Radeon R9 Nano FirePro S9170

Linux kernel 4.8.13 3.10.0

GCC version 6.2.1 6.2.0

CUDA release 8.0 —

OpenCL driver 1 NVIDIA 375.26 Intel 1.2.0

OpenCL driver 2 AMD 1912.5 AMD 1800.8

likelihood). Further, BEAGLE uses GPUs to parallelize other

functions necessary for computing the overall tree likeli-

hood, thus minimizing data transfers between the CPU and

GPU. These additional functions include those necessary

for computing branch transition probabilities, for integrating

root and edge likelihoods, and for summing site likelihoods.

For exploiting CPU parallelism, BEAGLE provides an SSE

implementation that vectorizes likelihood calculations. Ad-

ditionally, in order to exploit multiple CPU cores, application

programs running partitioned analyses can invoke multiple

library instances, one for each data subset (or partition).

This approach suits the trend of increasingly large molecular

sequence data sets, which are often heavily partitioned in

order to better model the underlying evolutionary processes.

V. EXTENDING SUPPORTED HARDWARE IN BEAGLE

A. Benchmarking and Testing Methods

As we extended BEAGLE with new implementations, we

further developed our test program (genomictest) to support

a wider range of analysis types and more detailed output.

This program generates random synthetic datasets of arbi-

trary sizes and is used to evaluate performance and assure

correct functioning of the library.

For benchmarking we generate a measure of throughput in

terms of the effective number of floating point operations per

second for computation of the partial-likelihoods function

(see equation III-A). In contrast to a direct timing bench-

mark, throughput allows us to more easily compare per-

formance across different problem sizes and floating point

precision formats. This measure also allows comparison to

an upper performance bound and generally informs whether

computations are compute or memory bound.

For assessing result correctness, we developed a set of

testing scripts which evaluate different analyses types by

varying input parameters to our genomictest program. These

testing scripts are publicly available in the project repository

and we have verified correct functioning of all new imple-

mentations described below.

Table I shows relevant hardware and software specifica-

tions for the two main systems used to perform the bench-

marks results reported in this paper. Table II summarizes the
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Table II
GPU SPECIFICATIONS

Quadro P5000 Radeon R9 Nano FirePro S9170

Cores 2560 4096 2816

Memory 16 GB 4 GB 32 GB

Bandwidth 288 GB/s 512 GB/s 320 GB/s

SP compute 8900 GFLOPS 8192 GFLOPS 5240 GFLOPS

hardware features of the three GPUs used, with Bandwidth

denoting device global memory bandwidth and SP compute

indicating theoretical single-precision peak throughput.

B. Design Modifications

In order to support additional hardware devices, we have

modified the BEAGLE library at different levels (Fig. 3). At

the implementation base-code layer we have changed the

serial CPU solution to a threaded model one, using C++

threads, and throughout this paper C++ refers implicitly

to the 2011 version of the standard [17]. We have also

modified what was the CUDA base-code to a framework

independent accelerator model with support for both CUDA

and OpenCL external computing frameworks. This parallel

implementation model communicates with the CUDA and

OpenCL APIs through a single internal interface, which, in

turn, has an implementation available for each framework.

Further significant sharing of code between CUDA and

OpenCL exists at the kernel level. There is a single set

of kernels for both frameworks, with keywords for each

being defined at the pre-processor stage. Though there is

a common kernel code-base for both frameworks, functions

that impart a crucial effect on performance are differentiated

for each hardware type. This allows for distinctly optimized

parallel implementations that are shown on the figure, one

for CUDA GPUs, one for OpenCL GPUs, and one for parallel

x86 devices such as multicore CPUs with SIMD-extensions.

C. Library Availability

The BEAGLE project is open source under the GPL v3.0

license. The work described here will be part of an upcoming

hardware-specific implementations

CPU SSECPU

hardware interface

CUDA OpenCL-GPU OpenCL-x86

CUDA / OpenCL interface

implementation base-code

accelerator modelthreaded model

Figure 3. Layer diagram depicting the modified portions of the BEAGLE

library necessary to extend hardware support.

release and is available under a development branch of the

library located at https://github.com/beagle-dev/beagle-lib/

tree/kernel-concurrency.

The library includes compilation workflows for all major

platforms (Linux, macOS, Windows). For Linux and macOS

it uses an autoconf/automake build system. For Windows

we use a Visual Studio build system. One unique aspect

of the compilation system is the use of scripts to generate

OpenCL/CUDA kernel source code for different inference

types (e.g., amino-acid or codon-based) and floating point

formats, allowing for better performance at runtime.

VI. CPU THREADED IMPLEMENTATION

To harness the increasingly parallel nature of modern

CPUs, and recognizing that external frameworks such as

CUDA and OpenCL are not always available to users of BEA-

GLE, we developed a more portable parallel implementation.

In the process of developing our solution, we briefly

assessed a variety of CPU threading frameworks such as

POSIX threads and OpenMP. Ultimately, we felt the best

solution when balancing portability, development cost, and

performance was to use the C++ threading model. This

approach also allowed us to more easily combine the added

parallelism with the existing, low-level, SSE vectorization of

character states.

Given the decision to use C++ threads, we then iterated

through a variety of approaches to concurrent computation

of the phylogenetic likelihood function which we will briefly

describe and compare below.

A. Futures

Our initial approach involved modifying the default CPU

implementation in BEAGLE such that for each partial-

likelihoods operation to be computed, a C++ standard li-

brary asynchronous future was created. Thus, this approach

only concurrently computed partial-likelihood operations

that were independent in the tree topology being assessed,

and did not take advantage of the independent nature of each

sequence pattern in the likelihood computation.

B. Thread-create

Our next approach involved the on-demand creation and

joining of a set of threads with each partial-likelihoods

call to BEAGLE. These C++ standard library threads were

used for concurrent computation of the partial-likelihood

functions across independent site patterns. We used a load-

balancing approach wherein the sequence of independent

patterns is broken up into equal sizes, according to the

number of CPU hardware threads available. To prevent small

problem sizes from being slower than the previous serial

implementation, we set a minimum sequence length of 512

patterns for threading to be used.
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Table III
CPU THREADING OPTIMIZATIONS

throughput (GFLOPS) speedup

tips serial futures thread-create thread-pool (× serial)

8 35.82 37.92 39.07 193.10 5.39

16 35.47 59.70 78.26 258.99 7.30

64 14.95 78.67 87.91 217.24 14.53

128 13.62 61.61 60.19 126.95 9.31

C. Thread-pool

This final iteration of our CPU threading solution involved

modifying the thread-create approach to use a pool of C++

standard library threads. For this approach we also used the

threads for concurrent computation of the root likelihood

across independent site patterns, in addition to the partial-

likelihoods function.

Table III compares the relative performance of the core

partial-likelihoods function for each of the threading ap-

proaches we assessed. The throughput measure in GFLOPS

is for the single-precision floating point format and is

computed as described in section V-A.

For this comparison we used a fixed sequence length

of 10,000 patterns across tree sizes of 8, 16, 64, and 128

sequences at the tips, running on the two CPUs on system 2

(Table I). The column labeled serial shows throughput for

the original single-threaded CPU implementation in BEAGLE,

with some degree of vectorization provided by GCC.

The results show the increases in performance for each

iteration of our CPU threading solution and that the thread-

pool approach performs best across all four problem sizes

assessed. We also note the relative increase in performance

from the original serial implementation to the final thread-

pool solution.

VII. OPENCL IMPLEMENTATION

In order to exploit a broader range of hardware resources,

including AMD and Intel GPUs, we extended BEAGLE so

it can use the OpenCL programming framework, an open

standard for parallel computing devices. With OpenCL we

have also been able to better utilize the parallel computing

capability of modern CPUs, both via multiple cores and

vectorization extensions such as Intel SSE and Advanced

Vector Extensions (AVX).

A. OpenCL and CUDA Code Sharing

The OpenCL work is based on our previous implementa-

tion for the CUDA platform. Taking advantage of the many

similarities between these parallel-computing frameworks

we developed a shared code design that includes a single

internal interface to the hardware resource and a single set

of kernels. This design allows future work on the library to

more easily benefit users of either framework.

A single set of kernels for OpenCL and CUDA is achieved

by using preprocessor definitions for framework specific

keywords. The internal hardware interface is also shared,

and only the implementation itself differs between OpenCL

and CUDA. The hardware interface deals with loading the

different kernels and compiling the correct one for the given

analysis parameters (such as the number of states the model

can assume, and floating point precision), as well as all

the hardware accelerator related functions such as executing

kernels, copying data, querying device characteristics, and

other auxiliary functions. Few further distinctions had to be

overcome for both frameworks to share code. Most notably,

subpointer addressing within kernels was done by using

the clCreateSubBuffer function in OpenCL and by pointer

arithmetic in CUDA.

B. Hardware-Specific Optimizations

The use of OpenCL provides a common, vendor-neutral,

platform for current and future parallel hardware archi-

tectures and allows BEAGLE to exploit a variety of re-

sources from a single code base. Nonetheless, recognizing

that important distinctions exist between what practices

work best for each hardware architecture, we have adapted

performance-critical code for different runtime scenarios.

These hardware-specific optimizations can be categorized

into two variants of our OpenCL solution, one that targets

GPU architectures and another that addresses x86 processors.

1) OpenCL-GPU: With our OpenCL-GPU solution we

focused on high-end NVIDIA and AMD GPUs, though our

implementation is also compatible with Intel GPUs.

Our initial work on OpenCL consisted of a direct trans-

lation of the CUDA implementation running on the same

NVIDIA hardware. Although we expect NVIDIA GPUs to

exhibit best performance under CUDA, having them working

under OpenCL served as an important comparison point and

validation of our approach. The effect of framework-choice

on NVIDIA devices is further explored in section VIII.

For AMD GPUs, we found that few changes were required,

as these are ultimately similar in architecture to NVIDIA

CUDA devices. For codon-based inference models and others

with higher-count state spaces, we had to reduce the num-

ber of sequence patterns computed per work-group in our

likelihood calculation kernel. This was in order to reduce

memory usage in the local address space, as we found AMD

devices to have less of this memory than NVIDIA devices.

Another optimization we implemented for AMD GPUs

was the use of the OpenCL precompiler definitions

FP FAST FMAF and FP FAST FMA, for single and double-

precision floating-point operations respectively. These

macros achieved non-trivial performance gains without loss

of precision, and indicate whether fast fused-multiply-add

(FMA) operations, which perform multiply and add opera-

tions in a single action, are supported by the hardware. For

a problem size of 105 sequence patterns on a modern GPU

2828

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 19,2021 at 18:09:45 UTC from IEEE Xplore.  Restrictions apply. 



Table IV
OPENCL-GPU OPTIMIZATIONS

throughput (GFLOPS)

precision patterns without FMA with FMA % gain

single 10,000 213.02 216.87 1.81

double 10,000 124.14 136.88 10.26

single 100,000 408.63 411.43 0.69

double 100,000 178.04 199.23 11.90

(AMD Radeon R9 Nano on system 1), we noticed up to an

11.9% performance improvement in double-precision mode

for our core partial-likelihoods kernel (Table IV).

2) OpenCL-x86: For our OpenCL-x86 solution we collab-

orated with Intel to develop an optimized implementation for

Xeon CPUs and first generation Xeon Phi (Knights Corner)

accelerators. Since this work started Intel has dropped sup-

port for OpenCL on Xeon Phi, however Intel has continued

developing drivers for Xeon CPUs and we have observed

strong performance on these multicore processors with our

x86 solution (further detailed in section VIII).

In the process of finding the best solution for Intel x86

processors, we tested several variations of our core partial-

likelihoods kernel. This included explicit OpenCL vector

usage and reorganization of execution threads from two to

three-dimensional work-groups. Ultimately we found that

the key optimization was to have each thread of execution

do more work in comparison to our GPU approach. This was

especially important when computing the partial-likelihoods

function for nucleotide models where only 4 states are

possible and each thread has a lighter workload. To achieve

this heavier workload per thread, our OpenCL-x86 for DNA-

based inferences, loops over the state space in each work-

item instead of computing all states concurrently, as is

done with the GPU approach. We also found that it was

advantageous to avoid the explicit use of the local memory

address space and allow the OpenCL compiler to manage

memory caching.

Given these x86-specific changes to our nucleotide-model

likelihood computation kernel, we proceeded to optimize for

work-group size, which determines the number of sequence

patterns computed per work-group. Table V explores per-

formance with the dual CPUs on system 2 for work-groups

of increasing size. The table also shows throughput for our

original OpenCL-GPU solution running on the Xeon CPUs

and the relative speedup achieved due to our architecture-

specific optimizations. We observe that peak performance is

achieved with a work-group size of at least 256 patterns. We

opted to use this size as we prefer the smallest work-group

size with peak or near-peak performance to reduce pattern

padding when the total number of patterns is not divisible

by the work-group size.

3) OpenCL Driver Implementations: BEAGLE makes use

of the OpenCL Installable Client Driver loader to make all

Table V
OPENCL-X86 OPTIMIZATIONS

work-group size throughput speedup

solution (patterns) (GFLOPS) (× OpenCL-GPU)

OpenCL-GPU 64 15.75

64 79.65 5.06

128 85.51 5.43

OpenCL-x86 256 98.36 6.25

512 98.09 6.23

1024 96.51 6.13

implementations on a system available, which allows the

selection of different drivers for the same hardware resource.

On Linux and Windows operating systems we have found

that vendor-specific OpenCL driver implementations offer the

best performance. On macOS vendor-specific drivers are not

available and we observed reduced performance compared

to other platforms.

VIII. RESULTS

Here we explore the performance of the new implementa-

tions for the BEAGLE library on a variety of modern parallel

hardware resources. System specifications are as described

in Table I. We also evaluated performance on a machine

with an Intel Xeon Phi 7210 CPU (not an accelerator), Linux

kernel version 3.10.0, and GCC version 6.2.0.

A. Partial-likelihoods Kernel Performance

We have used our genomictest program to benchmark the

core likelihood function of BEAGLE on a variety of hardware

platforms and for a range of problem sizes. Again, this

function is the main bottleneck for phylogenetic inferences,

typically accounting for over 90% of the total execution

time. We have found the relative performance gains observed

here correlate strongly with those of a full inference run.

Figure 4 shows throughput in effective GFLOPS (billions

of floating-point operations per second) for our partial-

likelihoods calculation kernel for analyses with increasing

unique site pattern counts, across a number of parallel

computing devices and implementations. We evaluated our

C++ threading, OpenCL-x86, OpenCL-GPU, and CUDA im-

plementations. The hardware devices represent a sample of

the range of consumer-level and high-performance comput-

ing resources available to domain scientists who are the

ultimate users of the BEAGLE library, and included AMD

Radeon R9 Nano, AMD FirePro S9170, and NVIDIA Quadro

P5000 GPUs, Intel Xeon Phi 7210 manycore CPU, and dual

Intel Xeon E5-2680v4 multicore CPUs. The figure includes

performance results for computing partial-likelihoods for

both nucleotide and codon-model analyses. The left-side

vertical axis labels show the speedup relative to the average

performance of a baseline serial, single threaded and non-

vectorized, CPU implementation. We chose to use this non-

parallel CPU implementation as a comparison baseline as
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Figure 4. Plots showing throughput performance in GFLOPS for the core
likelihood function of the BEAGLE library, for nucleotide and codon-based
models with a range of problem sizes running on a variety hardware
platforms and implementations. Speedup factors (which are relative to
unvectorized single-core performance), throughput, and number of unique
site patterns are on a log-scale.

it provides a consistent performance level across different

problem sizes. It is also relevant as it has been the default

implementation in BEAGLE in previous releases and many

phylogenetic inference softwares use serial code as their

standard. We note that performance results reported here are

in all cases far from theoretical peak compute throughput for

each platform as the calculation of phylogenetic sequence

likelihoods is substantially memory-bound, especially for

nucleotide models.

1) Nucleotide Model: For nucleotide-based likelihood,

we observe that throughput strongly scales with the number

of site patterns for all parallel hardware resources using

our accelerator model. For a small number of patterns the

parallel OpenCL implementations exhibit poor performance

relative to others due to greater execution overhead. By 105

patterns the performance across these devices has reached a

saturation point, with the exception of the AMD Radeon R9

Nano GPU, which continues to slightly scale up in perfor-

mance. Overall, best performance is achieved by the AMD

Radeon R9 Nano GPU, with 444.92 GFLOPS of throughput

for a problem with 475,081 unique site patterns. This

represents a ∼58-fold speedup over the baseline serial, non-

vectorized, CPU implementation, and a ∼5.1-fold speedup

over our fastest CPU solution at this problem size, which is

the OpenCL-x86 implementation running on two Intel Xeon

E5-2680v4 processors.

For CPUs using our threaded model, we observe that per-

formance does not monotonically increase with the number

of patterns and we require further investigation to understand

this aspect of the result. We observe very strong performance

for the dual Intel Xeon E5-2680v4 CPUs between approxi-

mately 3,000 and 50,000 patterns, with a peak performance

of 328.78 GFLOPS at 20,092 unique patterns, also being

the overall fastest implementation at this problem size. We

observe weak performance from the Xeon Phi 7210 CPU

for problems under 104 patterns, though we have not done

optimization work specific to this platform. Further, we note

that we did not use SSE vectorization for these benchmarks

as it is not available in single-precision in BEAGLE.

2) Codon Model: For codon-based analyses, we ob-

serve that throughput performance is less sensitive to the

number of unique site patterns. This is due to the better

parallelization opportunity afforded by the 61 biologically-

meaningful states that can be encoded by a codon. This

higher state count of codon data compared to nucleotide

data increases the ratio of computation to data transfer

resulting in increased relative performance for codon-based

analyses (Fig. 4). We also observe similar performance from

all GPU devices and less overhead effect from use of the

OpenCL framework. Overall, highest throughput is achieved

by the AMD Radeon R9 Nano GPU, with 1324.19 GFLOPS

for 28,419 patterns, equivalent to a ∼253-fold speedup

over the baseline serial, non-vectorized, CPU implementation

and ∼2-fold speedup over the OpenCL-x86 implementation

running on two Intel Xeon E5-2680v4 processors. Our

threaded model for CPUs does not perform as well for codon-

based inferences as it only parallelizes the computation of

independent site patterns.

B. Multicore Performance Scaling

Figure 5 shows CPU performance results of the core

likelihood function for nucleotide-model analyses with 104

unique patterns when utilizing an increasing number of

hardware threads on system 2. The two processors on this

system have 14-cores each for a total of 56 hardware

threads running at 2.40 GHz. This benchmark was achieved

using the taskset utility in Linux for our threaded model

implementation, and the OpenCL device-fission feature for

our OpenCL-x86 solution.
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Figure 5. Plot showing multicore CPU performance scaling for the threaded

model and OpenCL-x86 implementations in BEAGLE for nucleotide-model
likelihood function with 104 patterns. Throughput in GFLOPS is on a log-
scale.

Parallelization on multicore systems remains an impor-

tant topic as researchers increasingly invest in multicore

hardware, where core counts on high-end systems regularly

reach 40 or greater. The results here show that throughput for

both implementations starts to saturate at around 27 threads,

suggesting memory bandwidth limitations.

C. Application-Level Results

We ran MrBayes 3.2.6 on system 2 to benchmark

application-level performance for our new C++ threaded,

OpenCL-x86, and OpenCL-GPU implementations for BEA-

GLE. MrBayes uses MPI to concurrently compute separate

Markov chain Monte Carlo chains across processors [18].

This is an additional level of concurrency and is compli-

mentary to that provided by the BEAGLE library, which par-

allelizes computation across site patterns with our threaded

model implementation, and across site patterns, states, and

rate categories with our accelerator model solutions. Addi-

tionally, MrBayes uses SSE vectorization in single-precision

floating point format.

For evaluating performance with the nucleotide model

we used a dataset from an RNA-Seq study of advanced

moths and butterflies [19] with 16 taxa and 742,668 site

patterns, of which 306,780 were unique. For the codon

model benchmark we used a 15 taxa dataset with 6,080

unique codon patterns, which was a subset of a larger

arthropod dataset [20]. Both analyses were run with four

Metropolis-coupled, Markov chain Monte Carlo chains.

We also assessed each dataset under single and double-

precision floating point formats. MrBayes supports both

modes and certain analyses with larger number of taxa ben-

efit from more precise computation. All reported speedups

compare the total execution time relative to that of MrBayes-

MPI in double-precision mode.
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Figure 6. Plot showing speedups for MrBayes in single and double-
precision mode using various BEAGLE library implementations as well
as the built-in SSE option, relative to the MrBayes-MPI implementation in
double-precision. Speedup factors are on a log-scale.

Generally we observe that speedups are largest under the

codon models, as they allow for greater parallelism. For the

OpenCL-GPU implementation we note significant speedups

across all benchmark scenarios. Relative to the fastest single-

precision format implementation in MrBayes, speedups are

7.6 and 13.8-fold for the nucleotide and codon model

analyses, respectively. For the CPU-based implementations,

we observe that for a nucleotide analysis of this problem

size both implementations are closely matched, although

for codon inferences, the OpenCL-x86 has a significant

advantage. We also observe relatively modest performance

from the Xeon Phi CPU across all scenarios.

IX. CONCLUSION

The BEAGLE project addresses a common bottleneck

across phylogenetic inference programs by accelerating like-

lihood computation. The library now includes additional par-

allel computing implementations, and combines both CUDA

and OpenCL frameworks in a single codebase to address

a wider-range of hardware resources. These advancements

are of immediate benefit to users of phylogenetic programs

that exploit the library. Additionally, developers of other

phylogenetic software packages can reference these results

to assess the suitability of using BEAGLE with their program,

or for developing similar parallel solutions.

Although the improvements described in this paper also

allow users to execute in parallel on multiple devices within

a system, this requires the client program to partition the

problem across site patterns and create a separate library

instance for each hardware device. Further, selecting the
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best performing implementation depends not only on the

hardware available but on problem size and type. We plan

to further develop BEAGLE so that computation can be

dynamically load balanced across multiple devices from

within a single library instance. The library would also

select the best implementation for each data subset and

hardware pair. This will allow for greater memory efficiency

and performance gains which will be especially relevant in

heterogeneous systems.
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