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Rethink, Revisit, Revise: A Spiral Reinforced
Self-Revised Network for Zero-Shot Learning

Zhe Liu , Yun Li, Lina Yao , Senior Member, IEEE, Julian McAuley, and Sam Dixon

Abstract— Current approaches to zero-shot learning (ZSL)
struggle to learn generalizable semantic knowledge capable of
capturing complex correlations. Inspired by Spiral Curriculum,
which enhances learning processes by revisiting knowledge,
we propose a form of spiral learning that revisits visual represen-
tations based on a sequence of attribute groups (e.g., a combined
group of color and shape). Spiral learning aims to learn gener-
alized local correlations, enabling models to gradually enhance
global learning and, thus, understand complex correlations. Our
implementation is based on a two-stage reinforced self-revised
(RSR) framework: preview and review. RSR first previews visual
information to construct diverse attribute groups in a weakly
supervised manner. Then, it spirally learns refined localities
based on attribute groups and uses localities to revise global
semantic correlations. Our framework outperforms state-of-the-
art algorithms on four benchmark datasets in both zero-shot
and generalized zero-shot settings, which demonstrates the effec-
tiveness of spiral learning in learning generalizable and complex
correlations. We also conduct extensive analysis to show that
attribute groups and reinforced decision processes can capture
complementary semantic information to improve predictions and
aid explainability.

Index Terms— Neural network, reinforcement learning, spiral
learning, zero-shot learning (ZSL).

I. INTRODUCTION

ZERO-SHOT learning (ZSL) aims to learn general seman-
tic correlations between visual attributes (e.g., is black

and has tail) and classes [1]. The correlations allow knowledge
transfer from seen to unseen classes and, thus, enable ZSL
to classify unseen classes based on the shared knowledge
[2]–[5]. Recent ZSL methods have paved the way by adopting
extractors or attention for localized attribute knowledge to
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enhance semantic learning [6]–[10], but localities may be
biased toward high-frequency visual features of seen classes.
For example, localities, focusing on capturing highly relevant
attributes to classes, may build a biased “short-cut” of indi-
vidual attributes toward seen classes (e.g., wings to Bat) to
maximize the training likelihood. The individual correlations
will confuse the prediction of unseen classes with similar
features (e.g., Bird).

To ease biased visual learning, recent ZSL efforts have
achieved success in regularizing the learned correlations with
attribute groups, i.e., grouping attributes into high-level seman-
tic groups [4], [11]–[14]. For example, Xu et al. [4] refine
localities with predefined attribute groups (e.g., hairless and
furry belonging to texture). The attribute groups can generalize
localities from individual correlations to group correlations
(e.g., grouping hairless and wings to Bat), which can ease the
biased prediction of unseen classes (e.g., grouping furry and
wings to Bird). However, when learning complex knowledge,
even humans may need to revisit information multiple times
to progressively refine and rectify the learned knowledge for
better understanding [15], [16]. These methods directly use
attribute groups to refine localities without any calibration
or rectification, which may not be able to learn complex
semantics precisely.

On the other hand, a well-known education paradigm in
cognitive theory, Spiral Curriculum [17], can teach adults and
children to understand complex knowledge by revisits. This
curriculum decomposes knowledge into a series of topics.
Students first preview overall knowledge and build their views.
Then, they gradually select some topics to review and revise
until they fully understand. Motivated by this, we propose
an alternative form of Spiral Learning for semantic learning.
We take bird classification as an example. As shown in
Fig. 1, when learning to distinguish an unseen class Bird, the
conventional learning process (left) based on fixed attribute
group learning may make biased predictions toward seen
classes, e.g., Bat with the similar shapes and colors. Our
proposed method (right) can preview images to conclude
several possible attribute groups that may need further revisits.
Then, we can progressively review our predictions by selecting
suitable high-level semantics to learn (e.g., the yellow group
in Fig. 1) and, thus, revise their predictions as Bird. This
learning process allows models to group and select suitable
attribute groups to spirally accumulate knowledge, which may
ease the difficulty of learning semantic correlations of difficult
classification tasks and reduce confusing information from
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Fig. 1. Left: conventional methods directly learn images based on a series
of fixed attribute groups, which may introduce some confusing information
(e.g., color) without distinction. Right: proposed spiral process previews to
group attributes and then progressively review predictions by learning suitable
attribute groups with distinction.

insignificant semantics (e.g., the purple group) to ease the
difficulty of learning complex semantic correlations.

In this article, we propose a two-stage reinforced self-
revised (RSR) framework to implement spiral learning in an
end-to-end manner. In the preview stage, we design a weakly
supervised self-directed grouping function to automatically
group attributes into high-level semantic groups. In the review
stage, we propose a reinforced selection module and a revi-
sion module to simulate the process that dynamically selects
attribute groups to revisit visual information. Different from
conventional methods that learn visual localities and directly
aggregate them with global knowledge, spiral learning aims
to learn semantic localities from a global visual representa-
tion and, thus, progressively calibrate the learned knowledge.
We summarize our contributions as follows.

1) We propose a novel RSR framework to decompose
conventional learning processes as an incremental spi-
ral learning process. By spirally learning a series of
semantic localities based on attribute groups, RSR can
dynamically revise the learned correlations and thus ease
the difficulty of learning complex correlations.

2) We demonstrate our consistent improvement over state-
of-the-art algorithms on four benchmark datasets in both
zero-shot and generalized zero-shot settings. To show
the extensibility of our framework, we also present an
adversarial extension to boost simulation ability.

3) We conduct quantitative analysis as well as visualization
of RSR, which indicates that our model can effectively
find significant attributes and combine high-level seman-
tic groups as insightful attribute groups to revise pre-
dictions in an incremental way. Moreover, the decision
processes are explainable.

II. RELATED WORK

A. Zero-Shot Learning

The key insight of ZSL is to capture common seman-
tic correlations among both seen and unseen classes. For
example, Yun et al. [18] propose a salient attribute learning
network to explore and generate the characterized semantic
embedding based on the class-specific information from the

dimension space, which can learn more expressive visual
information. Yang et al. [19] research the zero-shot local-
ization problem by a semantic-assisted location network,
which uses an expectation-maximization algorithm to ease
the information loss caused by the inconsistency between
image embedding space and class embedding space. A typical
approach is to project visual and/or attribute features to
a unified domain and then apply a compatibility function
for classification [9], [20]–[23]. Non-end-to-end approaches
[6]–[8] disentangle attributes or generate instances in the
embedding space to ease the semantic and visual mismatch.
More closely related to our work, modern end-to-end mod-
els [4], [5], [24], [25] are proposed to extract diverse visual
localities corresponding to semantics and, thus, obtain the
overall semantic correlation. Zhu et al. [24] propose a mul-
tiattention model to obtain multiple discriminative localities
under semantic guidance. Xie et al. [5] further incorporate
second-order embeddings to enable stable locality collab-
oration. Some works [4], [11]–[13], [26] propose to use
attribute groups to enhance semantic learning. Atzmon and
Chechik [11] and Jayaraman et al. [12] group attributes to
find joint probabilities of individual attributes for precise
prediction. Liu et al. [26] use class-specific attribute groups
as weights to modify the layerwise outputs. Xu et al. [4] and
Long and Shao [14] manually group attributes to regular-
ize semantic learning. However, these works directly group
attributes for final predictions or rely on extra manual group
annotations, which cannot provide multiple complementary
attribute groups and may fail to learn groups outside human
definitions, e.g., a combined group of multiple manual attribute
groups. In our work, we automatically group attributes into
diverse groups, which can transcend human-defined groups.
We learn a series of semantic localities that complement each
other during spiral learning.

B. Reinforcement Learning in Related Fields

Reinforcement learning has been extensively investigated
for object detection [27], [28], image classification [29], [30],
and few-shot learning [31]. Mathe et al. [27] and
Pirinen et al. [28] use reinforcement learning to improve
sampling visual regions in an efficient and accurate way.
Wang et al. [29] and Chu et al. [31] propose to focus
on different visual regions of images and then aggregate
regional information to obtain an enhanced overall judgment.
Chen et al. [30] use a recurrent reinforced module to narrow
down the visual space based on the spatial contextual
dependence of visual regions. Moreover, Dogru et al. [32]
develop a real-time object-tracking algorithm for the industry
of oil sands, which can combine reinforcement learning and
computer vision to synchronize control theory. Singh and
Zheng [33] propose a semantic guidance pipeline to discover
and combine the distinct position and scale information
with the semantic localization and spatial information of
instances. The pipeline proposes a semantic focus reward
for agent training, enabling the reinforced agents to require
any human supervision. These methods aim to use reinforced
modules to sample visual regions from visual inputs and,
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Fig. 2. Model overview. Given an instance x , RSR spirally learns and revises predictions of the class attribute for x . The preview stage (upper) extracts
a visual representation hex by extractor fex and makes initial prediction a0 by preview classifier fc. A self-directed grouping function f p learns a series of
attribute groups as g. The review stage (lower) spirally revises previous predictions following a sequence of 3R processes. A reinforced module π dynamically
rethinks and selects {(l1)th, (l2)th, . . .} attribute group in g. The revision module fv revisits visual representation based on the selected attribute group to
learn revisions {a1

r , a2
r , . . .}. The model uses revisions to revises a0 as {a1, a2, . . .} until the model obtains a confident prediction (i.e., η > ηT ) or selects all

groups. An optional adversarial extension samples and fuses ground-truth attributes {â1, â2, . . .} with {a1, a2, . . .} for an attribute discriminator fdis to enable
the model to simulate the prior attribute distribution.

thus, narrow down visual space to learn semantic information
within regions. Our method is designed to rethink and select
the most appropriate attribute groups to guide the learning
process, which learns semantic information from the visual
inputs in a global view governed by the selected attribute
groups.

III. RSR NETWORK

Problem Formulation: Given an instance x ∈ R
H×W×C with

size H × W in C channels, each instance has class y ∈ N

and the corresponding class attribute φ(y) = a ∈ R
1×m with m

criteria. Let X , Y , and A be the sets of instances, ground-truth
class labels, and predefined class attribute vectors, respectively.
We define S = {(x, y, a)|x ∈ X S, y ∈ Y S, a ∈ AS} and
U = {(x, y, a)|x ∈ XU , y ∈ Y U , a ∈ AU } as a training
set (i.e., seen classes) and a testing set (i.e., unseen classes),
respectively. Note that seen classes and unseen classes are
disjoint, i.e., S ∩ U = ∅, but AS and AU share the same
criteria to allow knowledge transfer. Given a test instance
(x, y, a), ZSL only predicts unseen instances, i.e., (x, y, a) ∈
U ; generalized ZSL (GZSL) predicts both seen and unseen
instances, i.e., (x, y, a) ∈ S ∪ U .

RSR network consists of two stages: Preview and Review.
The preview stage previews instances and learns attribute
groups. The review stage consists of Rethink, Revisit, and
Revise (3R) processes. The review stage spirally learns seman-
tic localities based on attribute groups to revise decisions in
an incremental way. A model overview is shown in Fig. 2.

A. Preview Stage

The preview stage contains three modules: an information
extractor fex for visual representation hex, a preview classifier

fc for an initial prediction a0, and a self-directed grouping
function f p for attribute groups g.

1) Visual Representation Extraction and Preview Predic-
tion: Spiral learning incrementally revisits information based
on different attribute groups. To reduce the computation cost
during revisits, we extract a visual representation hex for
reuse. Considering that different attribute groups may cor-
respond to different parts of inputs, we learn incompletely
compressed embeddings by a convolutional neural network
(CNN): fex(x) → hex, which can keep the location infor-
mation. Then, to obtain an initial preview prediction, we use
a fully connected network (FCN) as a preview classifier:
fc(hex) → a0. We can jointly optimize fc and fex by a preview
cross-entropy loss LPRE

min
fex, fc

LPRE = − log
exp

(
fc( fex(x))

Tφ(y)
)

∑
ŷ∈Y S exp

(
fc( fex(x))

Tφ(ŷ)
) (1)

where hex ∈ R
14×14×1024 denotes the visual representation;

fc( fex(x)) → a0 denotes the initial prediction of the preview;
and y and φ(y) denote the ground-truth label and the true
attribute vector of x , respectively. LPRE supervises hex and
a0 to learn the correct semantic correlations from a global
perspective. a0 can be viewed as an indicator of the learned
global semantic correlations. The corresponding details about
shape transformation of inputs can be found in Appendix A.

2) Grouping Attributes: Inspired by Spiral Curriculum [17]
that splits complex concepts into several subconcepts,
we decompose the overall attribute criteria into k diverse
subgroups, i.e., attribute groups, and, thus, construct different
tendencies for semantic learning. We adopt a CNN to project
hex into 2048-D vectors and then combine hex with a0 as
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inputs for f p, indicating the visual information and the preview
learning state, respectively. We use an FCN as the self-directed
grouping function f p(hex, a0) → R

k×m
+ to find k diverse

attribute groups as the potential semantic biases that need to
be reviewed in a0. f p predicts k different weights for each
criterion and reshapes the weights followed by a rectified
linear unit (ReLU) to deactivate insignificant criteria as k
subparts of all criteria, i.e., g ∈ R

km → R
k×m
+ . We summarize

f p as follows [11]:

g = f p
(
hex, a0) = ReLU

(
Reshape

(
ωp

(
hex, a0) + bp

))
(2)

where ωp and bp denote the weight and bias parameters of f p,
respectively. We optimize f p based on the spiral reviews in
the review stage, which enables f p to discover complementary
attribute groups.

B. Review Stage

The review stage is a sequential process composed of 3R
to progressively review and revise a0 as {a1, a2, . . . , at :
t ≤ k} without repeated attribute groups, which is conducted
by a reinforced selection module π and a revision module fv .
We first introduce review details and then the optimization
of π .

The rethink process progressively selects suitable attribute
groups to review visual information and eases biased semantic
learning in previous predictions. Considering that the selection
is progressive, and the attribute groups are fixed in the review
stage, we design et = {hex, a0, at } as the tth state vector for π ,
where {hex, a0} can be viewed as the indicator of g and overall
biased semantics; at represents the current state and indicates
the solved biases. To enable π to progressively “rethink” based
on the previous decisions, we use a gated recurrent unit (GRU)
in π to maintain the previous hidden states hπ . We initialize
the state vector as e0 = {hex, a0, a0} and the hidden state as
h0
π = ∅. “Rethink” can be summarized: π(et, ht ) → l t+1 ∈

[1, k], which is a number to indicate the (l t+1)th group in g.
The revisit process learns the revision that extracts semantic

information based on attribute groups. Given the selected
(l t+1)th group in g, we first use elementwise multiplication
to mask a0 with the attribute group to highlight the target
semantic locality. Then, we use an FCN as the revision module
fv to extract and refine the revision from the visual information
hex by

at+1
r = fv

(
a0, hex, g(l

t+1)
)

=
(
ωv

({
g(l

t+1) � a0, hex

})
+ bv

)
� g(l

t+1) (3)

where at+1
r denotes the refined revision by multiplying the

selected attribute group g(l
t+1); � denotes elementwise mul-

tiplication; and ωv and bv are learnable parameters of fv .
To enable at+1

r to learn semantic locality that can enhance
correlation learning, we use a local cross-entropy loss LLOC

LLOC = − log
exp

((
at+1

r

)T
φ(y)

)
∑

ŷ∈Y S exp
((

at+1
r

)T
φ(ŷ)

) (4)

where y is the ground-truth label and φ(y) denotes the true
attribute vector of the input instance. The masked revision
deactivates insignificant attribute criteria, so only a part of the
remaining criteria with large weights in at+1

r will significantly
influence LLOC. In other words, LLOC only optimizes at+1

r to
learn generalized semantic locality of the highlighted attribute
group.

The revise process fuses the revision at+1
r with the current

prediction to enhance semantic learning. Given the current
prediction vector at and the revision vector at+1

r , we propose
to revise

at+1 = at

‖at‖ + β
at+1

r∥∥at+1
r

∥∥ (5)

where β = 1/(t + 1) is an autoweighted factor to adjust the
influence of the revision on the prediction.

We predict labels by finding the most similar class
attribute by cosine similarity. We adopt cosine similarity
to measure the similarities between the learned attributes
and the normalized prior attributes (i.e., unit attribute
vectors). Given at and at+1

r , we let fcos(at, φ(y)) and
fcos(at+1

r , φ(y)) be the similarities of at and at+1
r to class y,

respectively. Then, the similarity of the revised at+1 to
class y can be fcos(at+1, φ(y)) = (1/(‖at+1‖)) fcos(at , φ(y))+
(β/(‖at+1‖)) fcos(at+1

r , φ(y)), where fcos is the cosine similar-
ity and φ(y) is the normalized true attribute. The correspond-
ing proof is in Appendix D.

fcos(at+1, φ(y)) is a weighted similarity of fcos(at , φ(y))
and fcos(at+1

r , φ(y)), which only propagates the similarity
information in revision at+1

r to revise at . In other words, at+1

is the revised prediction of at by the refined locality at+1
r .

To supervise revisions and predictions to complement each
other, we use an overall cross-entropy loss LOA and a joint loss
function LJNT (6) and (7), as shown at the bottom of the page,
where (a0)i , (at+1)i denote prediction probabilities of the
i th criterion in a0 and at+1 by cosine similarity, respectively;
m is the attribute criterion dim. LJNT optimizes the joint
probability of a0 and at+1. We take LJNT as a regularization
term to regularize locality learning to be consistent with the

LOA = − log
exp

((
at+1

)T
φ(y)

)
∑

ŷ∈Y S exp
((

at+1
)T
φ(ŷ)

) (6)

LJNT = − log

⎧⎨
⎩

∑
i∈[1,m]

[
exp

((
a0

)T

i
φ(y)

)][
exp

((
at+1

)T

i
φ(y)

)]
[∑

ŷ∈Y S exp
((

a0
)T
φ(ŷ)

)][∑
ŷ∈Y S exp

((
at+1

)T
φ(ŷ)

)]
⎫⎬
⎭ (7)
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global prediction by modifying the influence of attributes to
the optimization based on a0.

Then, we can learn the sequence of revised pre-
dictions {a1, a2, . . . , at} and the corresponding revisions
{a1

r , a2
r , . . . , at

r }. We can summarize the unified review loss
function LREV as follows:
min
f p, fv

LREV =
∑

t

αt−1[LLOC
(
at

r

) + LOA
(
at

) + LJNT
(
a0, at

)]
(8)

where α ∈ (0, 1) is a predefined discount parameter. LREV

enables the review processes to learn refined semantic locali-
ties to complement each other in an incremental way, which
optimizes attribute groups in g to be constantly linked to
diverse and different semantics.

The reinforced selection module is designed to enhance
the review process with better group selection. Thus, π aims
to improve the accuracy of predicting the ground-truth label y
during the review stage. To measure the improvement in accu-
racy, we define p(L)i as the prediction probability of class i
in loss L. The goal of π is to improve p(LREV)y, i.e., the
mean correct probability of the terms in LREV. To highlight
the revision significance during selection, we define RRSR =
[p(LREV)y + p(UNI)y] as the reward of π , where p(UNI)y =
[p(a0)y + ∑

t(1/(1 + t))p(at
r )y] is a union probability of the

initial prediction and unnormalized revisions to enlarge the
probability difference. Then, we optimize π by maximizing

max
π

E

[∑
t

γ t−1 RRSR

]
(9)

where γ ∈ (0, 1) is a predefined discount parameter.
We implement this optimization by proximal policy opti-
mization (PPO) following [34]. See Appendix E for more
optimization details.

The confidence parameter enables our model to auto-
halt the review stage. We define a confidence parameter from
the perspective of achieving a solid union prediction η =
maxi [p(UNI)i ], which is the highest label probability in the
union probability. Given a predefined probability threshold ηT ,
our model early stops the review stage when obtaining a
confident prediction, i.e., η > ηT .

C. Adversarial Training Extension

Similar to adversarial training [35], a crucial property
of ZSL is to simulate the same semantic correlation in
the real semantic distribution. Therefore, adversarial training
may enhance the model by using prior attribute distributions
to regularize the learned attribute distribution. This section
introduces an adversarial version of RSR (A-RSR), which
implements adversarial training using the same structure but an
additional attribute discriminator fdis. Considering A-RSR as
an extractor, we use fdis(at) → [0, 1] to distinguish attributes,
where “0” denotes the fake attribute from A-RSR and “1”
is the true attribute. Then, we optimize an adversarial loss
function LA-RSR to regularize the model to simulate the prior

attribute distribution by confusing fdis

min
fex, fc, f p, fv

max
fdis

∑
t

αt−1
{
Eât ∼AS

[
log fdis

(
ât

)]
+ Eat ∼A-RSR(x)

[
log

(
1 − fdis

(
at

))]
+LRSR

(
at

)}
(10)

where α is the same discount parameter in RSR; ât ∼ AS is the
ground-truth attribute from the prior attribute distribution of
inputs; at is an attribute from the learned attribute distribution;
and LRSR = LPRE + LREV is an auxiliary classifier loss
to optimize the spiral learning modules. Then, we split the
optimization of π into two components to better serve adver-
sarial training. Following (9), we redesign reward functions as
RDIS = [1 − fdis(at)], RA-RSR = [RRSR + fdis(at)] for training
and confusing fdis, respectively. Both RDIS and RA-RSR enable
π to find the most significant semantic groups, which can
assist or constrain fdis. Thus, we can optimize (9) based on
the new rewards to enable π to be consistent with learning
goals of (10). Note that we do not use ât for training π to let
π focus on capturing the significant semantics for A-RSR.

D. Implementation Details

1) Training Strategy: We propose a two-stage training pro-
cedure to ease the training difficulty. Stage-I optimizes the
nonreinforced modules to enable models to provide reliable
judgment. We first optimize fex and fc in the preview stage to
extract the reliable visual representation and initial prediction
using (1). We pretrain the model to provide a set of initial
solid parameters for the following reinforcement training, pre-
venting training collapse due to the complex training process.
Then, we fix parameters of fex and fc. We use random group
selection to optimize f p, fv , and fdis without early stopping
to be capable of handling the general review situations fol-
lowing (8) and (10) for RSR and A-RSR, respectively. We
use random group selection to replace the reinforced selection
module at first to mimic the learning process of humans.
Humans will make random attempts in the beginning stage of
learning knowledge, which will help models accumulate more
generalized knowledge during training. Stage-II optimizes the
reinforced selection module. We fix the nonreinforced modules
and use π to select locations with early stopping, which
enables our model to be able to handle the general selection
situation and precisely autohalt in the inference stage. PPO
optimizes π to maximize reward functions using (9) based on
the corresponding rewards for RSR and A-RSR, respectively.

2) Inference Strategy: The model autohalts the proceeding
once η > ηT or all groups have been selected, i.e., t = k.
Given an arbitrary revised prediction at , we predict labels as
follows:

ZSL: ŷ = arg max
ŷ∈Y U

(
at

)T
φ(ŷ)

GZSL: ŷ = arg max
ŷ∈Y U ∪Y S

[(
at

)T
φ(ŷ)− εδ(ŷ)

]
(11)

where ŷ denotes the predicted label; ε ∈ [0, 1] is a calibration
factor to fine-tune the model toward unseen classes. δ is a sign
function that returns 1 if ŷ ∈ Y U or 0 otherwise. The second
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term in GZSL is calibrated stacking [36], which is commonly
used in end-to-end models [4], [5] to prevent models being
largely biased toward seen classes due to the lack of training
instances of unseen classes.

IV. EXPERIMENTS

We validate our models on four widely used benchmark
datasets: Scene UNderstanding (SUN) [37], Caltech-UCSD
Birds (CUB) [38], Attributes Pascal and Yahoo (aPY) [39],
and Animals With Attributes (AWA2) [40].

SUN [37] is a comprehensive dataset of annotated images
covering a large variety of environmental scenes, places, and
objects. The dataset consists of 14 340 fine-grained images
from 717 different classes. Following [40], the dataset is
divided into two parts to prevent overlapping unseen classes
from the ImageNet classes: 645 seen classes for training
and the rest 72 unseen classes for testing. The attribute is
human-annotated and is of 102 dimensions.

AWA2 [40] is a subset of the AWA dataset, which is an
updated version of AWA1. The AWA2 is the only dataset
provided with the source images, while the raw images of the
AWA1 dataset are not provided. This dataset contains 37 322
images from 50 animal species captured in diverse back-
grounds. AWA2 selects 40 classes for training and ten classes
for testing in the ZSL setting. The AWA dataset is annotated
with binary and continuous attributes, and we take the 85-D
continuous attributes for the experiments following [40], which
is more informative.

CUB [38] consists of 11 788 images from 200 different
bird species. CUB is a fine-grained dataset that some of
the birds are visually similar, and even humans can hardly
distinguish them. It is challenging that a limited number of
instances are provided for each class, which only contains
nearly 60 instances. CUB splits classes as 150/50 for train/test
in the ZSL setting.

aPY [39] comprises of 15 339 images from 32 classes. In the
ZSL setting, 20 classes are viewed as seen classes for training,
and the remaining ten classes are used as unseen classes
for testing. The dataset is annotated with 64-D attributes.
This dataset is very challenging that the classes are very
diverse. aPY constitutes two subsets—aYahoo images and
Yahoo aPascal images—so there may exist similar objects with
different class/attribute semantic correlations.

The datasets are divided by proposed split (PS) to prevent
overlapping train/test classes [40]. For the comprehensive
comparison, we compare our model with 15 state-of-the-art
methods, including six locality-based methods (denoted by ∗).
We report these methods in the inductive mode [40] without
manual group side information [4] during training. We use
stochastic gradient descent (SGD) [41] to train our models.
We set α as 0.9 and γ as 0.99 on four datasets. Grid search
(in Section IV-C) is used to set ηT as 0.4 and k as 5, except
ηT = 0.7 on aPY for A-RSR. See Appendix A for more
parameter and architecture details.

A. Main Results of Zero-Shot and GZSL

To validate the effectiveness of the proposed modules,
we take the preview stage as the baseline (the base model),
which is a fine-tuned ResNet101 [46] with a classifier. Then,

we show the results on the best step during group selections of
variants w/o reinforced module or adversarial extension: RSR,
Random-self-revised (SR), Random-adversarial SR (ASR),
and A-RSR, respectively. See Section IV-C for accuracy per
step. Note that Random-ASR and A-RSR use Random-SR
as the pretrained backbone. In Table I, we measure average
per-class Top-1 accuracy (T1) in ZSL, Top-1 accuracy on
seen/unseen (s/u) classes, and their harmonic mean (H) in
GZSL.

In Table I, compared with the base model, our frame-
work improves the initial prediction by 4.2%/5.9% (SUN),
4.0%/4.0% (CUB), 6.0%/6.9% (aPY), and 2.1%/2.8% (AWA2)
in ZSL/GZSL. The progress of Random-SR and Random-ASR
proves spiral learning to be effective at revising the preview
predictions with semantic localities refined by attribute groups.
Compared with random selection, RSR and A-RSR further
improve random selection by up to 1.4%/1.9% in ZSL/GZSL,
demonstrating that the self-directed grouping function can pro-
vide complementary attribute groups and reinforced selection
better uses the group relationships. The adversarial exten-
sion slightly impairs the performance of Random-ASR on
AWA2. This may be caused by the significant domain shift
between seen and unseen classes, which may lead to the
model simulating biased seen distributions. Otherwise, the
adversarial extension improves performance by up to 1.2%
in both ZSL and GZSL. The adversarial training enhances the
performance of Random-SR more than the performance of
RSR, which is because the reinforced selection may provide
too specific visual information and, thus, lack generalization
for adversarial training to learn.

Compared with state-of-the-art algorithms, we can observe
that the most basic spiral learning model, i.e., Random-SR,
can obtain the state-of-the-art performance of locality-based
methods, which demonstrates the advantage of learning refined
semantic localities based on attribute groups. The proposed
reinforced selection module further improves the performance:
RSR (e.g., CUB and AWA2) and A-RSR (e.g., SUN and aPY)
achieve the best performance, which demonstrates the effec-
tiveness of spiral learning in tackling complex correlations.
Spiral learning can review different attribute groups and revisit
visual information to spirally understand the correlations that
cannot be understood with one-time learning. RSR and A-RSR
consistently outperform other methods by a large margin,
i.e., 2.7%/2.8%, 0.6%/0.8%, and 4.5%/1.8% on SUN, CUB,
and aPY in ZSL/GZSL, respectively. Our models obtain the
highest unseen scores and harmonic mean accuracy on four
datasets, which demonstrates our effectiveness in learning
unbiased localities to revise the learned global semantic corre-
lation. The improvement of performance on CUB and AWA2
is not as significant as that on SUN and aPY, which may
be caused by the low accuracy of finding significant attributes
and the sparse attribute criterion weights of the learned groups,
which will be discussed in Section IV-B.

B. Attribute Group and Decision Process Analysis

In this section, we conduct a quantitative analysis on the
learned attribute groups to demonstrate the effectiveness of the
self-directed grouping function, and we visualize the decision
process to illustrate the strong explainability of the decision
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TABLE I

MAIN RESULTS. ∗ DENOTES LOCALITY-BASED METHODS. THE BASE MODEL USES a0 AS PREDICTIONS. WE MEASURE AVERAGE PERCLASS

ACCURACY OF TOP-1 (T1), UNSEEN/SEEN CLASSES (u/s), AND HARMONIC MEAN (H)

TABLE II

ATTRIBUTE-LEVEL ANALYSIS ON g. A HIGH SPARSITY DEGREE INDICATES WEIGHT IMBALANCE

process. We analyze the components of g based on the
human annotation to discover some cognitive insights. The
analysis is conducted from three perspectives: the attribute
level, the group level, and the decision level. The criterion
number differs in different groups, so we take the maximum
10% weighted attributes to represent the group tendencies of
learning semantics.

1) Attribute-Level Analysis: We first analyze attribute
groups from an attribute perspective, i.e., finding significant
attribute criteria and learning a balanced weight distribution.
To analyze criterion significance, we view the top-ten largest
criteria as the most significant criteria annotated by humans
because we use the feature variance as attribute vectors [40]
(a larger value indicates more significant features). Then,
given an instance set X , we calculate the average top-ten
shot accuracy to measure whether g contains the significant
attribute criteria by [∑x∈X ψ(gx)]/|X |, where ψ denotes a
sign function to return 1 if any top-ten largest attribute criterion
ai ∈ gx , otherwise 0; |X | denotes the instance number. In
other words, we calculate the ratio of the number of instances
that can correctly classify the important attributes in manual
annotations as the most ten important attributes in g to the
instance number in the dataset. To measure the balance of

Fig. 3. Semantic analysis of learned attribute groups (g1–g5). We annotate
the semantic groups (in legend) for attribute criteria in each attribute group
based on the human annotations [37] to reveal the semantic meaning. We plot
the relative composition ratios of semantics in each group to illustrate the
diverse semantic tendencies of attribute groups.

weight distribution, we calculate the ratio of the maximum
weight to the minimum weight in attribute groups as the
sparsity degree, i.e., max(g)/min(g). When a large sparsity
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Fig. 4. Decision process visualization. Numbers in brackets are specific attribute criterion weights. (a) Instance-1. (b) Instance-2. (c) Instance-3.

Fig. 5. Weight distributions during training and testing of RSR and A-RSR, respectively. The x-axis denotes the specific weight value, and the y-axis denotes
different datasets. From left to right in the legend, we sort the weights from low to high and split them into groups with the same sizes of 10% nonzero
attribute criteria. (a) RSR training stage. (b) RSR testing stage. (c) A-RSR training stage. (d) A-RSR testing stage.

degree exists in attribute groups, it indicates that criterion
weights may be imbalanced. We summarize top-ten shot
accuracy and sparsity degree in Table II. We can observe
that the self-directed grouping function can effectively find
significant criteria from the cognitive judgment of humans,
especially aPY. The function can find few significant criteria
on CUB, which may lead to the limited improvement of our
framework. Criterion weights are balanced on SUN, CUB, and
aPY but are slightly imbalanced on AWA2. The high sparsity
degree of A-RSR on AWA2 misguides the model to learn a
local optimum.

2) Group-Level Analysis: To analyze semantic meaning
of the learned attribute groups, we refer to human anno-
tations from SUN [37], which splits attribute criteria into
four high-level semantic groups: function, material, light-
ing, and spatial envelope (e.g., warm belonging to light-
ing). Note that we do not use manual group annotations
during training. We calculate the relative composition ratios
of attribute criteria, belonging to different manual semantic
groups, to our learned attribute groups as semantic tenden-
cies. See Appendix F for calculation details of composition
ratios. In Fig. 3, we take five attribute groups (i.e., g1-g5)
learned by RSR as examples and exhibit their average seman-
tic tendencies on SUN. We can observe that the weakly
supervised f p can build five diverse semantic tendencies.
For example, g5 mainly focuses on function, while g4 com-
bines material, function, and lighting as an attribute group,
which shows that g can provide insightful attribute groups
transcending manual annotations, i.e., combined semantic
groups.

3) Decision-Level Analysis: In Fig. 4, we visualize three
representative instances of airlock and alley with the cor-
responding attribute names, e.g., climbing, from the SUN
dataset [37]. From the first two airlock instances, we can
observe that the reinforced module selects different groups
for locality learning due to the different confusing classes.
Our model revises the preview prediction bank vault and
car fontseat by learning the business/climbing function, seat
material, and lighting, respectively. Comparing instance-2 with
instance-3, the self-directed grouping function produces differ-
ent weights in warm lighting, which indicates that criterion
weights are instance-specific. For instance-3 that contains
complex correlations, the reinforced module selects suitable
groups to progressively distinguish tunnel road and alley until
finding not of concrete to make a confident prediction. This
dynamic decision process exhibits the strong explainability of
our framework.

C. Ablation Study

1) Attribute Criterion Weight Distribution Analysis: To
explore the detailed weight distribution in attribute groups,
we sort attribute criterion weights from low to high and split
them into groups with the same sizes of 10% nonzero criteria
in Fig. 5. We can observe that most of the weights are small,
and the model will slightly modify them with the new revisited
information. Only the top 10% criteria take the highest weights
in the groups, showing the significant influences during the
review stage and can be viewed as the representative semantic
tendencies of attribute groups. By comparing the training and
testing stages, we can find that the weight distributions of the
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Fig. 6. (a) and (b) Accuracy curves. (c) and (d) Hyperparameter study on k and ηT , respectively.

TABLE III

ZSL RESULTS FOR NON-PRETRAINED A-RSR

font 90% criteria in testing are sparser than those in training,
indicating that it is more difficult for the self-directed grouping
function to find and concentrate on the significant criteria of
the unseen classes. By comparing RSR and A-RSR, we can
observe that both models have relatively balanced weight
distributions on SUN, which leads to good performance in
ZSL and GZSL experiments. Also, RSR and A-RSR have
the most imbalanced weight distributions on AWA2. While
RSR shows better weight distribution in the testing stage
than the training distribution, the testing weight distribution
of A-RSR tends to be even sparser than in the training
stage, which leads to the poor performance of A-RSR on
AWA2. The imbalanced weight distribution may be caused
by the significant domain shift in AWA2, which misguides
the adversarial training to simulate the inaccurate semantic
correlation.

2) Step-Accuracy Curve: Fig. 6(a) and (b) takes SUN and
CUB as examples to show accuracy of each step. Compared
with a random selection that cannot select suitable attribute
groups, RSR and A-RSR can progressively improve predic-
tions, especially on CUB. This indicates that the reinforced
module can utilize complementary attribute groups to guide
revisits to visual information and help models incrementally
understand some complex correlations that are difficult to learn
within a single step.

3) Hyperparameter Study: Fig. 6(c) exhibits k analysis
of Random-SR, which is the initial parameters for variants.
k largely influences Random-SR on aPY but less so on other
datasets, which indicates that aPY can be easy to overfit.
The best (on average) performance is obtained when k = 5.
Fig. 6(d) exhibits ηT study of RSR and A-RSR. ηT is sensitive
to A-RSR on aPY (i.e., ±0.43) but stable on other datasets
(i.e., ±0.28). Overall, our models are stable under different
parameters.

4) ZSL Performance of A-RSR Without Pretraining: In
Table III, we show the A-RSR results without using a pre-
trained RSR backbone. We can find that the ZSL performance
is significantly lower than the results using the pretrained RSR
backbone, decreasing up to 2.0%, 2.2%, 4.3%, and 0.2% on

SUN, CUB, aPY, and AWA2. The results indicate that the
attribute discriminator is not able to directly regularize the
spiral learning. When the base model does not have enough
capability of learning an accurate prediction, the adversarial
learning may not be able to optimize the base model to obtain
overall optimality. Therefore, adversarial training should be a
good optional extension of our model to achieve an enhanced
spiral learning when the model is well-trained and the domain
shift is not significant.

V. CONCLUSION

In this work, we present a spiral learning scheme inspired by
Spiral Curriculum and propose an end-to-end RSR framework
for ZSL. RSR spirally reviews visual information based on
complementary attribute groups to learn the complex corre-
lations that are difficult to capture without revisits. The con-
sistent improvement on four benchmark datasets demonstrates
the advantage of revisiting semantic localities. We validate
the learned attribute groups from quantitative and explain-
able perspectives, which verifies that the weakly supervised
self-directed grouping function is able to find significant
attributes and insightful semantic groups. We also visualize
the decision process to illustrate the explainability of the spiral
learning. The adversarial extensibility of RSR shows promise
for application in other ZSL settings, such as generative
learning. In the future, we plan to apply our novel learning
manner, i.e., the RSR framework based on spiral learning,
in more diverse real-world scenarios, e.g., object detection
and neural language processing, to enhance the ability to learn
difficult tasks.

APPENDIX

A. More Implementation Details

We conduct experiments on Python 3.7.9 in Linux
3.10.0 with a GP102 TITANX driven by CUDA 10.0.130 with
a fixed seed 272. The neural networks are implemented on
Pytorch 1.7.0 and complied with GCC 7.3.0.
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B. Parameter Setting

For calibrated stacking [36], we set ε to 1.2 × 10−6 on SUN,
1.12 × 10−5 on CUB, 2.9 × 103 on aPY, and 1.2 × 10−1

on AWA2 tuned on a held-out validation set following [4],
respectively. We use SGD [41] to train our model in an end-
to-end manner with a momentum of 0.9, a weight decay of
10−5, and a learning rate of 10−3.

C. Network Architecture

Our framework consists of five modules: the visual rep-
resentation extractor fex, the preview classifier fc, the
self-directed grouping function f p , the revision module fv ,
and the reinforced selection module π . We provide the source
code of the testing stage with detailed network architecture
codes in Supplementary files.

We let FCN(m) be an FCN layer with output dimension m,
Max(7 × 7) be a max-pooling layer with the kernel size of
7 × 7, Adp(1 × 1) be an adaptive average pooling layer with
the output kernel size of 1 × 1, Dropout(0.5) be a dropout
layer with the keeping rate of 0.5, ReLU be the rectified linear
activation function, and GRU(1024) be a GRU with the hidden
state size of 1024. The parameters that we do not provide are
set to the default values.

Visual representation extractor fex(x) → hex is a subnet
of ResNet101 pretrained on ImageNet [47], which is composed
of the blocks before the second-last layer before classifier in
the original ResNet101.

Preview classifier fc(hex) → a0 is composed of the
second-last layer before classifier in the original ResNet101
pretrained on ImageNet, a pooling layer, an FCN layer, and a
dropout layer. We use Max(7 × 7) on CUB and Adp(1 × 1)
on other datasets as the pooling layer. Then, the output of
the pooling layer is reshaped as 2048-D vectors. We adopt
a two-layer FCN (i.e., FCN(1024) − FCN(m)) on aPY and
one-layer FCN (i.e., FCN(m)) on other datasets, where m
denotes the attribute dim. Specifically, the one-layer FCN is
without bias term on CUB. The dropout layer keeping rate is
set to 0.7 on AWA2 and 0.5 on other datasets.

Self-directed grouping function f p(hex, a0) → R
k×m
+

embeds hex using the second-last module of ResNet101 fol-
lowed by Adp(1 × 1) and reshapes the output to 2048-D
vectors. We concatenate the 2048-D vectors with a0 and adopt
a two-layer FCN, i.e., FCN(1024 + m/2)− ReLU − FCN(k ∗
m) − ReLU to obtain the attribute groups, where k is the
predefined group number.

Revision module fv (a0, hex, glt
) → at

r adopts the same
structure as f p to embed hex into 2048-D vectors, i.e., the
second-last module of ResNet101 followed by Adp(1 × 1).
Then, we concatenate the vectors with the masked g(l

t )�a0 and
feed them to an FCN layer to obtain the revision. We design
the FCN layer as FCN(1024 + m/2) − FCN(m) − Dropout
on aPY and FCN(m)− Dropout on other datasets. Similar to
the design of fc, we use FCN without bias term on CUB. The
keeping rate of dropout layer is set to 0.7 on AWA2 and 0.5 on
other datasets.

Reinforced module π(et , ht
π ) → l t is a recurrent

actor–critic network, which utilizes a recurrent module to

extract information from et , ht
π to feed actor and critic,

respectively. First, we use the concatenated {hex, a0} as the
component of et , which is composed of the compressed
2048-D hex and the preview prediction a0 from f p. We extract
information of this part via an FCN layer, i.e., FCN(1024).
Then, we use FCN(m, 256)− ReLU− FCN(512) if m < 256,
otherwise FCN(512), to extract information from at . Finally,
we concatenate the extracted information from {hex, a0} and
at with ht

π to feed GRU(1536) to let the output contain
the previous selection information. With the output of GRU,
we use FCN(512)−ReLU−FCN(k)−Softmax as actor module
to calculate the probability distribution of all the locations and
adopt FCN(512) − ReLU − FCN(1) as the critic module to
infer the current state score, where k is the predefined group
number, and the hidden state dim of GRU equals the input
dimension.

D. Proof of Remark 1

Proof: Given the current prediction vector at and the
revision vector at+1

r , we let φ(y) be the unit attribute vector
of the ground-truth label y. Following [48], we can calculate
the cosine similarities to φ(y) for at and at+1

r as follows:

fcos
(
at , φ(y)

) =
∑

i∈[1,m] at
iφ(y)i

‖at‖‖φ(y)‖ (12)

fcos
(
at+1

r , φ(y)
) =

∑
i∈[1,m]

(
at+1

r

)
i
φ(y)i∥∥at+1

r

∥∥‖φ(y)‖ . (13)

Similarly, we can easily have

fcos
(
at+1, φ(y)

)

=
∑

i∈[1,m]

(
1

‖at ‖ at + β

‖at+1
r ‖at+1

r

)
i
φ(y)i∥∥at+1

∥∥‖φ(y)‖
= 1∥∥at+1

∥∥ fcos
(
at , φ(y)

) + β∥∥at+1
∥∥ fcos

(
at+1

r , φ(y)
)
. (14)

E. Proximal Policy Optimization

Our reinforced selection module is implemented by a
recurrent actor–critic network composed of an actor π and
a critic V , where V aims to estimate the state value [34].
During the training process, we sample the location of the
selected group l following l t+1 ∼ π(loc|et , ht

π ) to optimize
the actor–critic network, where et denotes the state and ht

π

is the hidden state in the recurrent module for the tth step.
We maximize a unified form of reward function for RSR and
A-RSR as follows:

max
π

E

[∑
t

γ t−1 Rt

]
(15)

where γ = 0.99 is a predefined discount parameter and Rt

denotes the reward function for RSR or A-RSR. According to
the work of Schulman et al. [34], the optimization problem
can be addressed by a surrogate objective function using
stochastic gradient ascent

Lt
CPI = π

(
l t+1

∣∣et , ht
π

)
πold

(
l t+1

∣∣et , ht
π

) f̂ t
ad (16)
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where πold and π represent the before and after updated policy
network, respectively. f̂ t

ad is the advantages estimated by V as
follows:

f̂ t
ad = −V

(
et , ht

e

) +
∑

t≤i≤k

γ i−t Rt (17)

where k denotes the maximum length of the sampled groups,
i.e., the predefined group number. The optimization of π
usually gets trapped in local optimality via some extremely
great update steps when directly optimizing the loss function,
so we optimize a clipped surrogate objective Lt

CPI

Lt
CLIP = min

{
π

(
l t+1

∣∣et , ht
π

)
πold

(
l t+1

∣∣et , ht
π

) f̂ t
ad

CLIP

(
π

(
l t+1

∣∣et , ht
π

)
πold

(
l t+1

∣∣et , ht
π

)
)

f̂ t
ad

}
(18)

where CLIP is the operation that clips input to [0.8, 1.2] in
our experiments.

Then, we use the following loss function to boost the
exploration of the optimal policy network π and the precise
estimated advantages by V

max
π,V

Ex,t

[
Lt

CLIP − λ1MSE

(
V

(
et , ht

π ,
∑

t≤i≤k

γ i−t Rt

))

+λ2Sπ
(
et , ht

π

)]
(19)

where λ1 = 0.5 and λ2 = 0.01 are two parameters to smooth
the loss function; MSE denotes the mean square error loss
function; and Sπ (et , ht

π ) denotes the entropy bonus for the
current actor–critic network following [34], [49].

F. Semantic Analysis Calculation

Given an instance x , it has k attribute groups
{g1, g2, . . . , gk}. From datasets, we have semantic group
annotated by humans {g1

s , g2
s , . . .}. For an attribute group gi

and an semantic group annotated by humans g j
s , we can

calculate the semantic ratios of different semantic groups in
gi by

ogi

g j
s

=
∣∣∣gi ∩ g j

s

∣∣∣∣∣gi
∣∣ (20)

where ogi

g j
s

denotes the ratio of semantic group g j
s in attribute

group gi ; |gi ∩ g j
s | denotes the attribute number of the

overlapping attributes in gi and g j
s ; and |gi | denotes attribute

number in gi . Apparently,
∑

j ogi

g j
s

= 1.
To ease the imbalance of criterion numbers in different

manual semantic groups, we normalize the ratios to know the
relative ratios of semantic groups for each attribute group by

nogi

g j
s

=
ogi

g j
s

max
({∥∥∥ogi

g j
s

∥∥∥
2
: i ∈ [1, k]

)} (21)

where ‖ogi

g j
s
‖2 denotes the L2-norm of ogi

g j
s
; nogi

g j
s

denotes the

normalized ratio of the semantic group g j
s in attribute group gi .

To better analyze the ratios, we rescale the ratio scope and
let their sum be 1 by Softmax

rogi

g j
s

=
exp

(
nogi

g j
s

)
∑

j exp
(

nogi

g j
s

) (22)

where rogi

g j
s

denotes the relative ratio of semantic group g j
s in

the attribute group gi ;
∑

j rogi

g j
s

= 1.

Then, let rogi

g j
s
(x) denote the ratio of the semantic group

g j
s in the attribute group gi for instance x . We can know the

average relative ratios of semantic groups in attribute groups
on each dataset, which can reveal the semantic tendencies

dogi

g j
s

=
∑

x∈X rogi

g j
s
(x)

|X | (23)

where X denotes a dataset and |X | denotes the instance
number.

We use dogi

g j
s

to portray the semantic tendencies of the

learned attribute groups. Only if gi has a high relative ratio for
each instance in a dataset, we can dogi

g j
s

achieve a high score,

which means that gi focuses on learning g j
s . Otherwise, it does

not focus on g j
s . Therefore, dogi

g j
s

can represent the semantic
tendencies of the attribute groups.
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