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Faster graphical models for point-pattern matching
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Abstract—It has been shown that isometric matching problems can be solved exactly in polynomial
time, by means of a Junction Tree with small maximal clique size. Recently, an iterative algorithm
was presented which converges to the same solution an order of magnitude faster. Here, we build on
both of these ideas to produce an algorithm with the same asymptotic running time as the iterative
solution, but which requires only a single iteration of belief propagation. Thus our algorithm is much
faster in practice, while maintaining similar error rates.
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1. INTRODUCTION

A fundamental problem in Computer Vision and Pattern Recognition is to find a
correspondence between two sets of image features. This has many applications,
including reconstruction of the spatial geometry of a 3D scene (such as Hartley
and Zisserman, 2004), feature-based object recognition (such as Felzenszwalb and
Huttenlocher, 2005), and people detection in images (such as Caetano et al., 2007).

We investigate a particular instance of the matching problem called near-isometric
point pattern matching. In this setting, one assumes that the two feature sets to be
matched differ only by isometric transformations, but allowing for point jitter and
outliers. Therefore, the two sets may have different sizes. We introduce a method
for obtaining the best match in the above setting which turns out to be much faster
than the best competitor, while maintaining the same accuracy guarantees. Our
method is directly inspired by the early work on probabilistic graphical models for
matching using Junction Trees, first introduced in Caelli and Caetano (2005).

∗To whom correspondence should be addressed. E-mail: julian.mcauley@nicta.com.au

http://www.brill.nl/sv


444 T. S. Caetano and J. J. McAuley

2. BACKGROUND

The problem of point pattern matching consists of finding an instance of a ‘template’
graph (say, S ) in a ‘target’ scene (say, U ) (see Note 1). In this paper we will assume
that the instance (S ′) of S in U is simply a near-isometric transformation of S
(i.e., an isometric transformation, subject to some noise). In other words, we are
attempting to find a mapping ŷ : S → U such that the distances between pairs of
points in S are preserved in S ′. That is,

ŷ = arg max
y

∑

i,j ;i �=j

−∣∣d(si, sj ) − d
(
y(si), y(sj )

)∣∣2
(1)

(d(a, b) is simply the Euclidean distance between a and b). Unfortunately, this is
an instance of the quadratic assignment problem, which is NP-hard in general (see
Anstreicher, 2003).

It was shown however in Caetano et al. (2006) that under isometric transforma-
tions, it is not necessary to include dependencies between all pairs of nodes, but
rather it is sufficient that the dependency structure constitutes a globally rigid graph
(see Connelly, 2005). In such a graph, the lengths of the present edges uniquely
determine the lengths of the absent edges (and thus the absent edges can be ig-
nored — see Caetano et al. (2006) for details). Importantly, it is shown in Caetano
and Caelli (2006) that there exist globally rigid graphs with small tree-width (see
Fig. 2), meaning that the problem of equation (1) can be solved efficiently by means
of exact probabilistic inference in a graphical model with small maximal clique
size.

2.1. Preliminaries

Being more formal, we start by reviewing the general modeling methodology in
the line of work of Caelli and Caetano (2005); Caetano et al. (2006); Caetano and
Caelli (2006); and McAuley et al. (2008), which is also explored in this paper.
One represents the problem of finding a correspondence between two sets of point
features as a problem of finding the most likely realisation of random variables
in a Markov Random Field (i.e., an undirected probabilistic graphical model —
see Bishop, 2006; Pearl, 1988). Each point in S is represented by a random
variable, which is graphically depicted by a circle in the probabilistic graphical
model (see Figs 1 and 2). Each random variable has a state space consisting of
|U | possible realisations, i.e., the number of point features in the scene pattern.
Indeed, in this model the fact that the random variable si has realisation uj has
precisely the semantics that the point si in S is matched to the point uj in U .
Therefore, an entire joint realisation of the graphical model consisting of all the
variables {s1, . . . , s|S|} represents an entire match between the point patterns S
and U . In a Markov Random Field, edges between nodes represent the pattern
of conditional independence statements assumed in the model. More precisely, if
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n(i) is the set of nodes connected to node i by an edge, then the model assumes
p(yi |yrest) = p(yi |yn(i)). Under this model, the probability of a match y is, by
the Hammersley–Clifford theorem, decomposed over the maximal cliques of the
underlying graph:

p(Y = y) = 1

Z

∏

c∈C
ψc(yc), (2)

where C is the set of maximal cliques c in the graph and ψc(yc) are arbitrary non-
negative real-valued functions, called potential functions, which intuitively encode
the ‘goodness’ of the partial match yc for the variables in the clique c. In other
words, the Hammersley–Clifford theorem gives a clear algebraic form for the joint
distribution that satisfies the conditional independence statements assumed in the
model. Therefore, in order to find the most likely joint realisation in such a model
(which corresponds to the best point matching), one needs to find y that maximises
an expression which factorises over the variables in the cliques of the graph, as
shown in equation (2).

2.2. Models for matching

In Caetano and Caelli (2006), it is shown that by using a k-tree as a graphical model
(Fig. 1), one can solve matching problems under translations, similarity, affine, and
projective transformations (for k = 1, 2, 3, 4, respectively), due to the number
of variables involved in each type of transformation. This is done by encoding
in each maximal clique a potential function ψc(yc) that enforces agreement of
transformations of points in that clique (see Note 2). Of interest to us is the fact
(shown in Caetano et al., 2006) that a 2-tree can be used to solve matching problems
under rotation and translation, whereas isometric matching problems (i.e., rotations,
translations, and reflections) can be solved using a 3-tree (due to its global rigidity).
Furthermore, it is shown that inference in a k-tree can be solved in O(|S||U |k+1)

time by means of the Junction–Tree algorithm.
In McAuley et al. (2008), the authors present another graph which is also globally

rigid, but whose maximal clique size is smaller (three nodes instead of four).

Figure 1. A k-tree graph. The square denotes an entire clique of k nodes. Note that the set of nodes
{1 . . . k, i}, for k < i � n, forms a maximal clique in this diagram.
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However, the clique-graph of their model no longer forms a tree, meaning that
standard Junction–Tree algorithms cannot be applied. Instead, they show that Loopy
Belief Propagation in such a graph will converge to the optimal solution, though
not necessarily in a single iteration. Thus the asymptotic complexity is decreased
from O(|S||U |4) to O(|S||U |3). Their experiments reveal that in practice, the
performance increase is very close to |U |, despite having to run the algorithm for
several iterations.

3. OUR MODEL

As mentioned, a 2-tree can be used to solve matching problems subject to trans-
lations and rotations. To achieve this, we enforce not only that the mapping ŷ

preserves the distances between nodes, but also that it preserves orientations be-
tween triangles. That is, for a 2-tree graph (say, G), the problem of maximising (2)
becomes:

ŷ = arg max
y

∏

i,j∈G
exp

(−∣∣d(si, sj ) − d
(
y(si), y(sj )

)∣∣2
2

)

︸ ︷︷ ︸
edges

×
|S|∏

i=3

I

(
sign

(
det

([
s1 − si

s2 − si

]))
= sign

(
det

([
y(s1) − y(si)

y(s2) − y(si)

])))

︸ ︷︷ ︸
triangles

(3)

(the sign of the determinant determines the orientation of the triangle; I (·) is
an indicator function; note that this is equivalent to a max-sum formulation
in which assignments not obeying the above equality are given a potential of
−∞).

The idea behind our method stems from the realisation that such a model can
also be used to handle reflections, simply by running it twice: during the first
iteration, we insist that the orientations are preserved by the mapping (as in
equation (3)), whereas during the second iteration, we insist that the orientations
are different. We then simply choose the ŷ which has the lower cost amongst both
iterations.

To continue this idea, we can augment our 2-tree to include a Boolean variable
encoding both of these possibilities. The graphical model we use is shown in Fig. 2
(bottom). Note that we do not actually use a 2-tree, but our graph maintains the
same properties (we choose this topology for easier comparison to the method
of McAuley et al., 2008). Notice that although the maximal clique size of our
model is increased from three to four, the asymptotic running time is not changed
by this addition — it is still O(|U ||S|3), and only a single iteration is required.
This is because the number of states of the new boolean variable is (obviously) two
(independent of |U | or |S|).
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Figure 2. Graphical models (left), and their clique-graphs (right). (a) The model of McAuley et al.
(2008). (b) The model of Caetano and Caelli (2006). (c) The proposed model.

To be precise, we add the variable R to our model, with domain {0, 1}. Our
maximisation problem now becomes:

ŷ, r̂ = arg max
y,r

|S|∏

i,j∈G
exp

(−∣∣d(si, sj ) − d
(
y(si), y(sj )

)∣∣2
2

)

×
|S|−2∏

i=1

[
(1 − r)I

(
sd(si, si+1, si+2) = sd

(
y(si), y(si+1), y(si+2)

))

+ rI
(
sd(si, si+1, si+2) �= sd

(
y(si), y(si+1), y(si+2)

))]
(4)
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Figure 3. Three examples mapping the triangle (ABC) to (abc). (1) The orientations are different;
the penalty is the squared sum of the smaller angles, (� + λ)2. (2) The orientations are different; the
penalty is (� + θ)2. (3) The orientations are the same; there is no penalty.

(where sd(a, b, c) is simply the sign of the determinant sign
(
det

([(
a−c

b−c

)]))
; r̂ now

recovers whether the template scene is reflected (r̂ = 1) or not (r̂ = 0) in the target).
Although this model will correctly solve isometric matching problems, it will

be somewhat sensitive to noise, as a small error in a single point can change
the orientation of a triangle (if it contains an angle very close to 0◦ or 180◦).
Hence, rather than imposing an infinite penalty upon triangles with non-matching
orientations, we suggest a ‘soft-error’ model which imposes a penalty of P |ϕ|2,
where ϕ is the smallest angle by which we could rotate a point to give the two
triangles the same orientation, and the same angle (see Fig. 3 for examples) (see
Note 3). The constant P is determined experimentally (we found P = 100 to work
well in practice).

4. EXPERIMENTS

We implemented the proposed model, as well as those from Caetano et al. (2006)
and McAuley et al. (2008) (with topologies shown in Fig. 2) in C++ using
the Blitz++ array library (see Note 4). OpenMP was used to parallelise the
initialisation of our model, which simply consists of computing the potential for
each possible assignment, and is done independently in each clique. Experiments
were run on a Quad-Core, 2.66 GHz machine. When using the method of McAuley
et al. (2008) we ran 20 iterations of belief propagation (in McAuley et al., 2008),
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Figure 4. Performance on the ‘house’ dataset. Top: Error as the baseline (separation between
frames) increases. Our model (JT, 3-cliques) is compared to those of Caetano and Caelli (2006)
(JT, 4-cliques) and McAuley et al. (2008) (LBP). Our model with hard error appears to exhibit
the best performance for higher baselines, despite performing slightly worse for lower baselines
(each of the other models appears to perform equally). Bottom: Time taken to initialise the model
(left), and to perform belief propagation (right). For each baseline, the average performance on all
examples is shown, with error bars indicating standard error. This figure is published in colour on
http://brill.publisher.ingentaconnect.com/content/vsp/spv

the authors use a convergence test after each iteration, and stop the algorithm at
convergence; we have chosen not to do so, as running this test appears to take almost
as long as propagation itself).

4.1. House data

For our first experiment, we consider the CMU ‘house’ sequence (see Note 5),
a sequence of 111 frames of a toy house, with the same 30 points labelled in each
frame. This experiment appeared in both Caetano et al. (2006) and McAuley et al.
(2008), and is presented here for comparison.

In Fig. 4 (top), we compare the performance of our model to those of Caetano et
al. (2006) and McAuley et al. (2008) as the baseline (separation between frames)
increases (the problem becomes increasingly difficult for higher baselines, as the
house is gradually subject to more significant non-isometric transformations).

http://brill.publisher.ingentaconnect.com/content/vsp/spv
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It is interesting to note that when imposing a hard-error (i.e. when strictly
enforcing that orientations are consistent), our model appears to perform worse
than those of Caetano et al. (2006) and McAuley et al. (2008) for low baselines,
but much better for high baselines. As a possible explanation, we may observe
poor performance with a low baseline due to our model’s sensitivity to noise; the
better performance for high baselines may simply be explained by the fact that our
potential function implicitly enforces that mappings are injective within cliques,
whereas the potentials of Caetano et al. (2006) and McAuley et al. (2008) do not.
Alternately, when using a soft error, we observe almost identical performance to the
other methods.

The bottom of Fig. 4 compares the running time of our method against those of
Caetano et al. (2006) and McAuley et al. (2008). In McAuley et al. (2008),
the authors reported an improvement of almost precisely |U | over the method of
Caetano et al. (2006), despite the fact that their algorithm requires several iterations
to converge. The explanation for this appears to be that the running time of their
implementation is dominated by the initialisation stage (i.e., computing the clique
potentials), whereas message passing is done using efficient array libraries. We have
attempted to address this issue by parallelising the initialisation stage, meaning that
we are able to do initialisation much faster than propagation. As expected, our
initialisation is slower than that of McAuley et al. (2008), due to the fact that we
must compute a potential not only for each triangle, but also for each orientation.
However, this is more than made up for during propagation, wherein our algorithm
achieves a marked improvement.

Figure 5 shows the topology of our model, as well as an example of matching
using our model and that of McAuley et al. (2008).

Figure 5. (a) The topology of our graphical model. (b) An example matching, using the model
of McAuley et al. (2008) (9/30 points correct, mismatches are shown in red-bold). (c) An example
matching, using the proposed method (23/30 points correct, using hard-error). This figure is published
in colour on http://brill.publisher.ingentaconnect.com/content/vsp/spv

http://brill.publisher.ingentaconnect.com/content/vsp/spv
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4.2. Synthetic data

For our second experiment, we use a silhouette image from the Mythological
Creatures 2D database (from Bronstein, Bronstein and Kimmel, 2007; Bronstein,
Bronstein, Bruckstein and Kimmel, 2007) (see Note 6). We randomly selected
30 points on the silhouette, and randomly perturbed their x and y-coordinates
uniformly between −ε/2 and ε/2 pixels. For each value of ε (from 0 to 20), 20
such perturbations were created, resulting in 20×19 = 380 pairs for matching. The
results of matching in this setting are shown in Fig. 6. The performance of all four
models is similar for this dataset (and the running times are similar to those of the
previous experiment).

Figure 7 shows an example of matching using this dataset. Since the order of
points in our graphical model is chosen at random for this experiment, the topology
of our model appears to have much less ‘structure’ than in Fig. 5.

Figure 6. Performance on the synthetic dataset. Top: Error as ε (epsilon) increases. Our model
(JT, 3-cliques) is compared to those of Caetano and Caelli (2006) (JT, 4-cliques) and McAuley et
al. (2008) (LBP). In this case, using a hard-error appears to result in slightly worse performance,
whereas the other models appear to perform equally. Bottom: Time taken to initialise the model
(left), and to perform belief propagation (right). For each value of ε, the average performance on all
examples is shown, with error bars indicating standard error. This figure is published in colour on
http://brill.publisher.ingentaconnect.com/content/vsp/spv

http://brill.publisher.ingentaconnect.com/content/vsp/spv
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Figure 7. (a) The topology of our graphical model. In contrast with the topology shown in Fig. 5,
the nodes are ordered randomly. (b) An example matching, using the model of McAuley et al.
(2008) (22/30 points correct, mismatches are shown in red-bold). (c) An example matching, using
the proposed method (24/30 points correct, using hard-error). This figure is published in colour on
http://brill.publisher.ingentaconnect.com/content/vsp/spv

5. CONCLUSION

We have presented a model for performing near-isometric point pattern matching
which is faster than its nearest competitors, while maintaining the same accuracy
guarantees. In comparison to the approach of Caetano and Caelli (2006), whose
running time is O(|S||U |4) (where |S| and |U | are the sizes of the template
and target scenes, respectively), and the approach of McAuley et al. (2008),
whose running time is O(|S||U |3) per iteration, the running time of our method
is O(|S||U |3), but requires only a single iteration to converge. This result is
achieved by noting that a 2-tree can be used to perform matching up to rotation
and translation, if we either enforce or prohibit that the template scene is reflected
in the target. We then augment this model to include a boolean variable, allowing
for both of these possibilities.

NOTES

1. Strictly, we are talking about embeddings of graphs in the plane.

2. For example, for affine-invariant matches, k = 3 and the joint assignment in the
4-clique {1, 2, 3, i} needs to be such that the joint realisations in each of the 4
triangles within the clique induce the same affine transformation.

3. In the max-product setting, we multiply the potential by exp(−P |ϕ|2).
4. Blitz++ array library: http://www.oonumerics.org/blitz

http://brill.publisher.ingentaconnect.com/content/vsp/spv
http://www.oonumerics.org/blitz
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5. CMU ‘house’ sequence: http://vasc.ri.cmu.edu/idb/html/motion/house/index.
html

6. Mythological Creatures 2D database: http://tosca.cs.technion.ac.il
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